首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

2.
Isolated mesophyll protoplasts from Valerianella locusta L. were subjected to freeze-thaw cycles. Subsequently, steady-state pool sizes of 14C-labeled intermediates of the photosynthetic carbon reduction cycle were determined by high performance liquid chromatography. Protoplasts in which CO2 fixation was inhibited by preceding freezing stress, showed a strong increase in the proportion of fructose-1,6-bisphosphate, sedoheptulose-1,7-bisphosphate and triose phosphates. These results indicate an inhibition of the activities of stromal fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase. Furthermore, freezing stress caused a slight increase in the proportion of labeled ribulose-1,5-bisphosphate, which may be based on an inhibition or ribulose bisphosphate carboxylase activity. It was shown earlier (Rumich-Bayer and Krause 1986) that freezing-thawing readily affects photosynthetic CO2 assimilation independently of thylakoid inactivation. The present results are interpreted in terms of an inhibition of the light-activation system of the photosynthetic carbon reduction cycle, caused by freezing stress.Abbreviations FBP Fructose-1,6-bisphosphate - HMP Hexose Monophosphates - PGA 3-phosphoglycerate - PMP Pentose Monophosphates - RBP Ribulose-1,5-bisphosphate - SBP Sedoheptulose-1,7-bisphosphate - TP Triose Phosphates  相似文献   

3.
Full-size cDNAs encoding the precursors of chloroplast fructose-1,6-bisphosphatase (FBP), sedoheptulose-1,7-bisphosphatase (SBP), and the small subunit of Rubisco (RbcS) from spinach were cloned. These cDNAs complete the set of homologous probes for all nuclear-encoded enzymes of the Calvin cycle from spinach (Spinacia oleracea L.). FBP enzymes not only of higher plants but also of non-photosynthetic eukaryotes are found to be unexpectedly similar to eubacterial homologues, suggesting a eubacterial origin of these eukaryotic nuclear genes. Chloroplast and cytosolic FBP isoenzymes of higher plants arose through a gene duplication event which occurred early in eukaryotic evolution. Both FBP and SBP of higher plant chloroplasts have acquired substrate specificity, i.e. have undergone functional specialization since their divergence from bifunctional FBP/SBP enzymes of free-living eubacteria.Abbreviations FBP fructose-1,6-bisphosphatase - SBP sedoheptulose-1,7-bisphosphatase - FBA fructose-1,6-bisphosphate aldolase  相似文献   

4.
W. M. Kaiser  J. A. Bassham 《Planta》1979,144(2):193-200
The conversion of U-labelled [14C]glucose-6-phosphate into other products by a soluble fraction of lysed spinach chloroplasts has been studied. It was found that both an oxidative pentose phosphate cycle and a glycolytic reaction sequence occur in this fraction. The formation of bisphosphates and of triose phosphates was ATP-dependent and occurred mainly via a glycolytic reaction sequence including a phosphofructokinase step. The conversion, of glucose-6-phosphate via the oxidative pentose phosphate cycle stopped with the formation of pentose monophosphates. This was found not to be because of a lack in transaldolase (or transketolase) activity, but because of the high concentration ratios of hexose monophosphate/pentose monophosphate used in our experiments for simulating the conditions in whole chloroplasts in the dark. Some regulatory properties of both the oxidative pentose phosphate cycle and of the glycolytic pathway were studied.Abbreviations DHAP dihydroxyacetone phosphate - GAP 3-phosphoglyceraldehyde - PGA 3-phosphoglycerate - HMP hexose monophosphates - including F6P fructose-6-phosphate - G6P glucose-6-phosphate - GIP glucose-1-phosphate - 6-PGL phosphogluconate - PMP pentose monophosphates - including R5P ribose-5-phosphate - Ru5P ribulose-5-phosphate - X5P xylulose-5-phosphate - E4P erythrose-4-phosphate - S7P sedoheptulose-7-phosphate - FBP fructose-1,6-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

5.
The light activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) and sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37) was inhibited in isolated intact spinach (Spinacia oleracea L.) chloroplasts exposed to reduced osmotic potentials. Decreases in the velocity and magnitude of light activation correlated with the overall reduction in CO2 fixation rates. Responses of osmotically stressed chloroplasts to both varying pH and exogeous dihydroxyacetone phosphate (DHAP) or 3-phosphoglycerete (PGA) were examined. In the presence of DHAP, the absolute rate of CO2 fixation was increased and this increase was most pronounced at alkaline pH. Enhanced light activation of these enzymes was also observed under these conditions. However, in the presence of PGA, similar increases in photosynthetic rate and enzyme activation were not evident. Light-dependent stromal alkalization was unaffected by the stress treatments. Inhibition of light activation under hypertonic conditions is discussed in terms of substrate availability, possible alterations of the redox state of ferredoxin and associated electron carriers, and inhibited enzyme-enzyme or enzyme-substrate interactions involved in the light activation process.Abbreviations and symbols DHAP dihydroxyacetone phosphate - PGA 3-phosphoglycerate - s osmotic potential  相似文献   

6.
John Kobza  Gerald E. Edwards 《Planta》1987,171(4):549-559
The photosynthetic induction response was studied in whole leaves of wheat (Triticum aestivum L.) following 5-min, 30-min and 10-h dark periods. After the 5-min dark treatment there was a rapid burst in the rate of photosynthesis upon illumination (half of maximum after 30s), followed by a slight decrease after 1.5 more min and then a gradual rise to the maximum rate. During this initial burst in photosynthesis, there was a rapid rise in the level of 3-phosphoglycerate (PGA) and a high PGA/triose-phosphate (triose-P) ratio was obtained. In addition, after the 5-min dark treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39), ribulose-5-phosphate kinase (EC 2.7.1.19) and chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) maintained a relatively high state of activation, and maximum activation occurred within 1 min of illumination. The results indicate there is a high capacity for CO2 fixation in the cycle upon illumination but attaining maximum rates requires an increase in the ribulose-1,5-bisphosphate (RuBP) pool (adjustment in triose-P utilization for carbohydrate synthesis versus RuBP synthesis). With both the 30-min and 10-h dark pretreatments there was only a slight rise in photosynthesis upon illumination, followed by a lag, then a gradual increase to steady-state (half-maximum rate after 6 min). In contrast to the 5-min dark treatment, the level of PGA was low and actually decreased initially, whereas the level of RuBP increased and was high during induction, indicating that Rubisco is limiting. This regulation via the carboxylase was not reflected in the initial extractable activity, which reached a maximum by 1 min after illumination. The light activation of chloroplastic fructose-1,6-bisphosphatase in leaves darkened for 30 min and 10 h prior to illumination was relatively slow (reaching a maximum after 8 min). However, this was not considered to limit carbon flux through the carbon-fixation cycle during induction since RuBP was not limiting. When photosynthesis approached the maximum steady-state rate, a high PGA/triose-P ratio and a high PGA/RuBP ratio were obtained. This may allow a high rate of photosynthesis by producing a favorable mass-action ratio for the reductive phase (the conversion of PGA to triose phosphate) while stimulating starch and sucrose synthesis.Abbreviations Chl chlorophyll - FBP fructose-1,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - Pi inoganic phosphate - Rubisco RuBP carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate - triose-P triose phosphates (dihydroxyacetone phosphate+glyceraldehyde-3-phosphate)  相似文献   

7.
A cDNA encoding the Calvin cycle enzyme transketolase (TKL; EC 2.2.1.1) was isolated from Sorghum bicolor via subtractive differential hybridization, and used to isolate several full-length cDNA clones for this enzyme from spinach. Functional identity of the encoded mature subunit was shown by an 8.6-fold increase of TKL activity upon induction of Escherichia coli cells that overexpress the spinach TKL subunit under the control of the bacteriophage T7 promoter. Chloroplast localization of the cloned enzyme is shown by processing of the in vitro synthesized precursor upon uptake by isolated chloroplasts. Southern blot-analysis suggests that TKL is encoded by a single gene in the spinach genome. TKL proteins of both higher-plant chloroplasts and the cytosol of non-photosynthetic eukaryotes are found to be unexpectedly similar to eubacterial homologues, suggesting a possible eubacterial origin of these nuclear genes. Chloroplast TKL is the last of the demonstrably chloroplast-localized Calvin cycle enzymes to have been cloned and thus completes the isolation of gene probes for all enzymes of the pathway in higher plants.Abbreviations RPE ribulose-5-phosphate 3-epimerase - RPI ribose-5-phosphate isomerase - TKL transketolase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - PGK phosphoglycerate kinase - FBP fructose-1,6-bisphosphatase - SBP sedoheptulose-1,7-bisphosphatase - OPPP oxidative pentose phosphate pathway - Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase - FBA fructose-1,6-bisphosphate aldolase - IPTG isopropyl -d-thiogalactoside - TPI triosephosphate isomerase  相似文献   

8.
Werner M. Kaiser 《Planta》1979,145(4):377-382
Hydrogen peroxide (6x10-4 M) causes a 90% inhibition of CO2-fixation in isolated intact chloroplasts. The inhibition is reversed by adding catalase (2500 U/ml) or DTT (10 mM). If hydrogen peroxide is added to a suspension of intact chloroplasts in the light, the incorporation of carbon into hexose- and heptulose bisphosphates and into pentose monophosphates is significantly increased, whereas; carbon incorporation into hexose monophosphates and ribulose 1,5-bisphosphate is decreased. At the same time formation of 6-phosphogluconate is dramatically stimulated, and the level of ATP is increased. All these changes induced by hydrogen peroxide are reversed by addition of catalase or DTT. Additionally, the conversion of [14C]glucose-6-phosphate into different metabolites by lysed chloroplasts in the dark has been studied. In presence of hydrogen peroxide, formation of ribulose-1,5-bisphosphate is inhibited, whereas formation of other bisphosphates,of triose phosphates, and pentose monophosphates is stimulated. Again, DTT has the opposite effect. The release of 14CO2 from added [14C]glucose-6-phosphate by the soluble fraction of lysed chloroplasts via the reactions of oxidative pentose phosphate cycle is completely inhibited by DTT (0.5 mM) and re-activated by comparable concentrations of hydrogen peroxide. These results indicate that hydrogen peroxide interacts with reduced sulfhydryl groups which are involved in the light activation of enzymes of the Calvin cycle at the site of fructose- and sedoheptulose bisphophatase, of phosphoribulokinase, as well as in light-inactivation of oxidative pentose phosphate cycle at the site of glucose-6-phosphate dehydrogenase.Abbreviations ADPG ADP-glucose - DHAP dihydroxyacetone phosphate - DTT dithiothreitol - FBP fructose-1,6-bisphosphate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - HMP hexose monophosphates (fructose-6-phosphate, glucose-6-phosphate, glucose-1-phosphate) - 6-PGI 6-phosphogluconate - PMP pentose monophosphates (xylulose-5-phosphate, ribose-5-phosphate, ribulose-5-phosphate) - RuBP ribulose-1,5-bisphosphate - S7P sedoheptulose-7-phosphate - SBP sedoheptulose-1,7-bisphosphate Dedicated to Prof. Dr. W. Simonis on the occasion of his 70th birthday  相似文献   

9.
Intact chloroplasts isolated from spinach were illuminated in the absence of inorganic phosphate (Pi) or with optimum concentrations of Pi added to the reaction medium. In the absence of Pi photosynthesis declined after the first 1–2 min and was less than 10% of the maximum rate after 5 min. Export from the chloroplast was inhibited, with up to 60% of the 14C fixed being retained in the chloroplast, compared to less than 20% in the presence of Pi. Despite the decreased export, chloroplasts depleted of Pi had lower levels of triose phosphate while the percentage of total phosphate in 3-phosphoglycerate was increased. Chloroplast ATP declined during Pi depletion and reached dark levels after 3–4 min in the light without added Pi. At this point, stromal Pi concentration was 0.2 mM, which would be limiting to ATP synthesis. Addition of Pi resulted in a rapid burst of oxygen evolution which was not initially accompanied by net CO2 fixation. There was a large decrease in 3-phosphoglycerate and hexose plus pentose monophosphates in the chloroplast stroma and a lesser decrease in fructose-1,6-bisphosphate. Stromal levels of triose phosphate, ribulose-1,5-bisphosphate and ATP increased after resupply of Pi. There was an increased export of 14-labelled compounds into the medium, mostly as triose phosphate. Light activation of both fructose-1,6-bisphosphatase and ribulose-1,5-bisphosphate carboxylase was decreased in the absence of Pi but increased following Pi addition.It is concluded that limitation of Pi supply to isolated chloroplasts reduced stromal Pi to the point where it limits ATP synthesis. The resulting decrease in ATP inhibits reduction of 3-phosphoglycerate to triose phosphate via mass action effects on 3-phosphoglycerate kinase. The lack of Pi in the medium also inhibits export of triose phosphate from the chloroplast via the phosphate transporter. Other sites of inhibition of photosynthesis during Pi limitation may be located in the regeneratige phase of the reductive pentose phosphate pathway.Abbreviations FBP Fructose-1,6-bisphosphate - FBPase Fructose-1,6-bisphosphatase - MP Hexose plus pentose monophosphates - PGA 3-phosphoglycerate - Pi inorganic orthophosphate - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - TP Triose Phosphate  相似文献   

10.
Ian E. Woodrow  Keith A. Mott 《Planta》1993,191(4):421-432
A model of the C 3 photosynthetic system is developed which describes the sensitivity of the steadystate rate of carbon dioxide assimilation to changes in the activity of several enzymes of the system. The model requires measurements of the steady-state rate of carbon dioxide assimilation, the concentrations of several intermediates in the photosynthetic system, and the concentration of the active site of ribulose 1,5-bisphosphate carboxyalse/oxygenase (Rubisco). It is shown that in sunflowers (Helianthus annuus L.) at photon flux densities that are largely saturating for the rate of photosynthesis, the steady-stete rate of carbon dioxide assimilation is most sensitive to Rubisco activity and, to a lesser degree, to the activities of the stromal fructose, 6-bisphosphatase and the enzymes catalysing sucrose synthesis. The activities of sedoheptulose 1,7-bisphosphatase, ribulose 5-phosphate kinase, ATP synthase and the ADP-glucose pyrophosphorylase are calculated to have a negligible effect on the flux under the high-light conditions. The utility of this analysis in developing simpler models of photosynthesis is also discussed.Abbreviations c i intercellular CO2 concentration - C infP supJ control coefficient for enzyme P with respect to flux J - DHAP dihydroxyacetonephosphate - E4P erythrose 4-phosphate - F6P fructose 6-phosphate - FBP fructose 1,6-bisphosphate - FBPase fructose 1,6-bisphosphatase - G3P glyceraldehyde 3-phosphate - G1P glucose 1-phosphate - G6P glucose 6-phosphate - Pi inorganic phosphate - PCR photosynthetic carbon reduction - PGA 3-phosphoglyceric acid - PPFD photosynthetically active photon flux density - R n J response coefficient for effector n with respect to flux J - R5P ribose 5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - Ru5P ribulose 5-phosphate - RuBP ribulose 1,5-bisphosphate - S7P sedoheptulose 7-phosphate - SBP sedoheptulose 1,7-bisphosphate - SBPase sedoheptulose 1,7-bisphosphatase - SPS sucrose-phosphate synthase - Xu5P xylulose 5-phosphate - n P elasticity coefficient for effector n with respect to the catalytic velocity of enzyme P This research was funded by an Australian Research Council grant to I.E.W. and was undertaken during a visity by K.A.M. to the James Cook University of North Queensland. The expert help of Glenys Hanley and Mick Kelly is greatly appreciated.  相似文献   

11.
Engelbert Weis 《Planta》1981,151(1):33-39
Photosynthetic CO2 fixation rates in leaves and intact chloroplasts of spinach measured at 18°–20° C are substantially decreased by pretreatment at temperatures exceeding 20° C. Mild heating which causes 80% inhibition of CO2 fixation does not affect phosphoglyceroacid reduction and causes increases in the ATP/ADP ratio and the light-induced transthylakoid proton gradient. The inactivation of the CO2 fixation is completely reversible with half-times of recovery in the order of 15–20 min. Comparison of steady-state patterns of 14C labeled Calvin cycle intermediates of heat-treated and control samples reveals a large increase in the ribulose-1,5-bisphosphate/phosphoglyceroacid ratio and a large decrease in the phosphoglyceroacid/triosephosphate ratio. It is concluded that inactivation of CO2 fixation occurring at elevated temperatures is caused by inhibition of the ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39). Measurements of light-induced light scattering changes of thylakoids and of the light-induced electrochromic absorption shift show that these signals are affected by mild heating in a way which is strictly correlated with the inactivation of the CO2 fixation. It is proposed that the function of the ribulose-1,5-bisphosphate carboxylase in vivo requires a form of activation that involves properties of the thylakoid membrane which are affected by the heat treatment. The fact that these changes in thylakoid membrane properties and of ribulose-1,5-bisphosphate carboxylase activity are already affected at elevated temperatures which can still be considered physiological, and the reversible nature of these changes, suggest that they may play a role in temperature regulation of the overall photosynthetic process.Abbreviations 9-AA 9-aminoacridine - DMO 5,5-dimethyloxazolidine-2,4-dione - FBP fructose-1,6-bisphosphate - HEPES N-2-hydroxyethylpiperazine N-2-ethane sulfonic acid - HMP hexose monophosphates - PGA 3-phosphoglycerate - PMP pentose monophosphates - RuBP ribulose-1,5-bisphosphate - SBP seduheptulose-1,7-bisphosphate - TP triose monophosphates  相似文献   

12.
H. Ekkehard  Mark Stitt 《Planta》1989,179(1):51-60
Spinach leaf discs were floated on methyl-viologen solutions (5–200 nmol·l-1) and the effect on photosynthetic metabolism was then investigated under conditions of saturating CO2. Methyl viologen led to increased non-photochemical quenching, and the ATP/ADP ratio increased from <2 to >10. Comparison of the apparent quantum yield and non-photochemical quenching indicated that these concentrations of methyl viologen were only catalysing a marginal electron flux, and that the decrease in quantum yield was mainly the result of pH-triggered energy dissipation. Similar changes were also obtained after supplying tentoxin to inhibit the chloroplast ATP synthase and increase the energisation of the thylakoids. The photosystem-II acceptor, QA, was monitored by photochemical fluorescence quenching, and became more reduced. In contrast, the activation of NADP-malate dehydrogenase decreased, showing that the acceptor side of photosystem I becomes more oxidised. Similar changes were observed after supplying tentoxin. It is concluded that increased thylakoid energisation can lead to a substantial restriction of linear electron transport. Analysis of metabolite levels showed that glycerate-3-phosphate reduction was imporved, but that there was a large accumulation of triose phosphates and fructose-1,6-bisphosphate. This is the consequence of an inhibition of the regeneration of ribulose-1,5-bisphosphate, caused by inactivation of the stromal fructose-1,6-bisphosphatase and, to a lesser extent, phosphoribulokinase. Methyl viologen also led to inactivation of sucrose-phosphate synthase, and abolished the response of fructose-2,6-bisphosphate to rising rates of photosynthesis. This provides evidence for a primary role of glycerate-3-phosphate in controlling the activity of fructose-6-phosphate, 2-kinase and, thence, the fructose-2,6-bisphosphate concentration as the rate of photosynthesis increases. It is concluded that the very moderate ATP/ADP ratios found in chloroplasts are the results of constraints on the operation of ATP synthase. They can be increased if the thylakoid energisation is increased. However, the increased energisation acts directly or indirectly to disrupt many other aspects of photosynthetic metabolism including linear electron transport, activation of the Calvin cycle, and the control of sucrose and starch synthesis.Abbreviations and symbols Frul,6P2 (Fru1,6Pase) fructose-1,6-bisphosphate(ase) - Fru2,6P, (Fru2,6Pase) fructose-2,6-bisphosphate(-ase) - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - Pi inorganic phosphate - PSI and PSII photosystems I and II - qE high energy' quenching of chlorophyll fluorescence - PGA glycerate-3-phosphate - QA primary stable acceptor of PSII - Ru5P (Ru1,5P2) ribulose-5-phosphate (-1,5-bisphosphate) - SPS sucrose-phosphate synthase - triose P dihydroxyacetone phosphate plus glyceraldehyde-3-phosphate - s apparent quantum yield Dedicated to Professor E. Latzko on the occasion of his 65th birthday  相似文献   

13.
Mark Stitt  Hans W. Heldt 《Planta》1985,164(2):179-188
The metabolite levels in the mesophyll of leaves of Zea mays L. have been compared with the regulatory properties of the cytosolic fructose-1,6-bisphosphatase from the mesophyll to show how withdrawal of triose phosphate for sucrose synthesis is reconciled with generation of the high concentrations of triose phosphate which are needed to allow intercellular diffusion of carbon during photosynthesis. i) A new technique is presented for measuring the intercellular distribution of metabolites in maize. The bundle-sheath and mesophyll tissues are partially separated by differential homogenization and filtration through nylon nets under liquid nitrogen. ii) considerable gradients of 3-phosphoglycerate, triose phosphate, malate and phosphoenolpyruvate exist between the mesophyll and bundle sheath which would allow intercellular shuttles to be driven by diffusion. These gradients could result from the distribution of electron transport and the Calvin cycle in maize leaves. iii) consequently, the mesophyll contains high concentrations of triose phosphate and fructose-1,6-bisphosphate. iv) Most of the regulator metabolite fructose-2,6-bisphosphate, is present in the mesophyll. v) The cytosolic fructose-1,6-bisphosphatase has a lower substrate affinity than that found for the enzyme from C3 species, especially in the presence of inhibitors like fructose-2,6-bisphosphate. vi) This lowered affinity for substrate makes it possible to reconcile use of triose phosphate for sucrose synthesis with the maintenance of the high concentration of triose phosphate in the mesophyll needed for operation of photosynthesis in this species.Abbreviations DHAP Dihydroxyacetonephosphate - Fru1,6-bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - PEP(Case) phosphoenolpyruvate (carboxylase) - PGA 3-phosphoglycerate - Rubisco ribulose-1,5-bisphosphate carboxylase  相似文献   

14.
The inhibition of photosynthesis after supplying glucose to detached leaves of spinach (Spinacia oleracea L.) was used as a model system to search for mechanisms which potentially contribute to the sink regulation of photosynthesis. Detached leaves were supplied with 50 mM glucose or water for 7 d through the transpiration stream, holding the leaves in low irradiance (16 mol photons · m–2 · s–1) and a cycle of 9 h light/15 h darkness to prevent any endogenous accumulation of carbohydrate. Leaves supplied with water only showed marginal changes of photosynthesis, respiration, enzyme levels or metabolites. When leaves were supplied with 50 mM glucose, photosynthesis was gradually inhibited over several days. The inhibition was most marked when photosynthesis was measured in saturating irradiance and ambient CO2, less marked in saturating irradiance and saturating CO2, and least marked in limiting irradiance. There was a gradual loss of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) protein, fructose-1,6-bisphosphatase, NADP-glyceraldehyde-3-phosphate dehydrogenase and chlorophyll. The inhibition of photosynthesis was accompanied by a large decrease of glycerate-3-phosphate, an increase of triose-phosphates and fructose-1,6-bisphospate, and a small decrease of ribulose-1,5-bisphosphate. The stromal NADPH/NADP ratio increased (as indicated by increased activation of NADP-malate dehydrogenase), and the ATP/ADP ratio increased. Chlorophyll-fluorescence analysis indicated that thylakoid energisation was increased, and that the acceptor side of photosystem II was more reduced. Similar results were obtained when glucose was supplied by floating leaf discs in low irradiance on glucose solution, and when detached spinach leaves were held in high light to produce an endogenous accumulation of carbohydrate. Feeding glucose also led to an increased rate of respiration. This was not accompanied by any changes of pyruvate kinase, phosphofructokinase, or pyrophosphate: fructose-6-phosphate phosphotransferase activity. There was a decrease of phosphoenolpyruvate, glycerate-3-phosphate and glycerate-2-phosphate, an increase of pyruvate and triose-phosphates, and an increased ATP/ADP ratio. These results show (i) that accumulation of carbohydrate can inhibit photosynthesis via a long-term mechanism involving a decrease of Rubisco and other Calvin-cycle enzymes and (ii) that respiration is stimulated due to an unknown mechanism, which increases the utilisation of phosphoenolpyruvate.Abbreviations and Symbols Ci CO2 concentration in the air space within the leaf - Fm fluorescence yield with a saturating pulse in dark-adapted material - Fo ground level of fluorescence using a weak non-actinic modulated beam in the dark - Fru1,6bisP fructose-1,6-bisphosphate - Fru1,6Pase fructose-1,6-bisphosphatase - Fru2,6bisP fructose-2,6-bisphosphate - IRGA infrared gas analyser - NAD-MDH NAD-dependent malate dehydrogenase - NADP-MDH NADP-dependent malate dehydrogenase - NADP-GAPDH NADP-dependent glyceraldehyde-3-phosphate dehydrogenase - PEP phosphoenolpyruvate - PFK phospho-fructokinase - PFP pyrophospate: fructose-6-phosphate-phosphotransferase - 3-PGA glycerate-3-phospate - Pi inorganic phosphate - Ru1,5bisP ribulose 1,5-bisphosphate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - triose-phosphates sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate This research was supported by the Deutsche Forschungsgemeinschaft (SFB 137).  相似文献   

15.
In vitro translation of polyA+ mRNAs isolated from purified maize bundle sheath and mesophyll cells results in the production of distinctive, cell-specific polypeptides. Immunoprecipitation experiments show that translatable polyA+ mRNAs for phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK) and NADP-malate dehydrogenase (MDH) are prominent in mesophyll but not bundle sheath cells. On the contrary, those for sedoheptulose-1,7-bisphosphatase (SBP), fructose-1,6-bisphosphatase (FBP), NADP-malic enzyme (ME) and the small subunit of ribulose-1,5-bisphosphate carboxylase (RuBPC SS) are present only in bundle sheath cells. Moreover, polyA+ mRNAs encoding the 33 kD, 23 kD and 16 kD polypeptides of the oxygen-evolving complex (OE33, OE23 and OE16) and the light-harvesting chlorophyll a/b binding protein of photosystem II (LHCP II) are much more abundant in mesophyll than in bundle sheath cells. Northern blot analyses with cDNA clones of PEPC, PPDK, ME, RuBPC SS, OE33, OE23, OE16 and LHCP II are consistent with the conclusion that the cell-specific expression of these genes is regulated at the RNA level. The RNA level differences are especially dramatic in dark-grown maize seedlings after illumination for 24 h.  相似文献   

16.
Light-mediated activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) in intact spinach chloroplasts (Spinacia oleracea L.) is enhanced in the presence of 10−5 molar external free Ca2+. The most pronounced effect is observed during the first minutes of illumination. Ruthenium red, an inhibitor of light-induced Ca2+ influx, inhibits this Ca2+ stimulated activation. In isolated stromal preparations, the activation of fructose-1,6-bisphosphatase is already enhanced by 2 minutes of exposure to elevated Ca2+ concentrations in the presence of physiological concentrations of Mg2+ and fructose-1,6-bisphosphate. Maximal activation of the enzyme is achieved between 0.34 and 0.51 millimolar Ca2+. The Ca2+ mediated activation decreases with increasing fructose-1,6-bisphosphate concentration and with increasing pH. The data are consistent with the proposal that the illumination of chloroplasts leads to a transient increase of free stromal Ca2+. In dark-kept chloroplasts the steady-state concentration of free stromal Ca2+ is 2.4 to 6.3 micromolar as determined by null point titration. These observations support our previous proposal that light-induced Ca2+ influx into chloroplasts does not only influence the cytosolic concentration of free Ca2+ but also regulates enzymatic processes inside the chloroplast.  相似文献   

17.
The occurrence of specific fructose-1,6-bisphosphatase [D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11] (Fru-1,6-P2ase) in the small intestine was confirmed. 1. Fru-1,6-P2ase was isolated from mouse small intestine by a simple method. The isolated enzyme preparation was an electrophoretically homogeneous protein. 2. The molecular weight and subunit molecular weight were 140,000 and 38,000, respectively. 3. The intestinal enzyme was electrophoretically distinct from the liver enzyme. 4. The kinetic properties of the purified intestinal enzyme were compared with those of the mouse liver and muscle enzymes. 5. Mouse intestinal and muscle Fru-1,6-P2ases hydrolyzed ribulose-1,5-bisphosphate in addition to fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate.  相似文献   

18.
The gene fba from the thermotolerant obligate methanotroph Methylococcus capsulatus Bath was cloned and expressed in Escherichia coli BL21(DE3). The fructose-1,6-bisphosphate aldolase (FBA) carrying six His on the C-end was purified by affinity metal chelating chromatography. The Mc. capsulatus FBA is a hexameric enzyme (240 kDa) that is activated by Co2+ and inhibited by EDTA. The enzyme displays low K m to fructose-1,6-bisphosphate (FBP) and higher K m to the substrates of aldol condensation, dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. The FBA also catalyzes sedoheptulose-1,7-bisphosphate cleavage. The presence of Co2+ in the reaction mixture changes the kinetics of FBP hydrolysis and is accompanied by inhibition of the reaction by 2 mM FBP. Phylogenetically, the Mc. capsulatus enzyme belongs to the type B of class II FBAs showing high identity of translated amino acid sequence with FBAs from autotrophic bacteria. The role of the FBA in metabolism of Mc. capsulatus Bath, which realizes simultaneously three C1 assimilating pathways (the ribulose monophosphate, the ribulose bisphosphate, and the serine cycles), is discussed.  相似文献   

19.
(i) We have studied the influence of reduced phosphoglucose-isomerase (PGI) activity on photosynthetic carbon metabolism in mutants of Clarkia xantiana Gray (Onagraceae). The mutants had reduced plastid (75% or 50% of wildtype) or reduced cytosolic (64%, 36% or 18% of wildtype) PGI activity. (ii) Reduced plastid PGI had no significant effect on metabolism in low light. In high light, starch synthesis decreased by 50%. There was no corresponding increase of sucrose synthesis. Instead glycerate-3-phosphate, ribulose-1,5-bisphosphate, reduction of QA (the acceptor for photosystem II) and energy-dependent chlorophyll-fluorescence quenching increased, and O2 evolution was inhibited by 25%. (iii) Decreased cytosolic PGI led to lower rates of sucrose synthesis, increased fructose-2,6-bisphosphate, glycerate-3-phosphate and ribulose-1,5-bisphosphate, and a stimulation of starch synthesis, but without a significant inhibition of O2 evolution. Partitioning was most affected in low light, while the metabolite levels changed more at saturating irradiances. (iv) These results provide decisive evidence that fructose-2,6-bisphosphate can mediate a feedback inhibition of sucrose synthesis in response to accumulating hexose phosphates. They also provide evidence that the ensuing stimulation of starch synthesis is due to activation of ADP-glucose pyrophosphorylase by a rising glycerate-3-phosphate: inorganic phosphate ratio, and that this can occur without any loss of photosynthetic rate. However the effectiveness of these mechanisms varies, depending on the conditions. (v) These results are analysed using the approach of Kacser and Burns (1973, Trends Biochem. Sci. 7, 1149–1161) to provide estimates for the elasticities and flux-control coefficient of the cytosolic fructose-1,6-bisphosphatase, and to estimate the gain in the fructose-2,6-bisphosphate regulator cycle during feedback inhibition of sucrose synthesis.Abbreviations and symbols Chl chlorophyll - Fru6P fructose-6-phosphate - Frul,6bisP fructose-1,6-bisphosphate - Fru-1,6Pase fructose-1,6-bisphosphatase - Fru2,6bisP fructose-2,6-bisphosphate - Fru2,6Pase fructose-2,6-bisphosphatase - Glc6P glucose-6-phosphate - PGI phosphoglucose isomerase - Pi inorganic phosphate - QA acceptor for photosystem II - Ru1,5bisP ributose-1,5-bisphosphate - SPS sucrose-phosphate synthase  相似文献   

20.
In order to study the relative contributions of the autocatalytic increase in the level of substrates and the light activation of enzymes to the control of the induction phase or “lag” in wheat chloroplasts, we measured the light-induced reductive activation of fructose 1,6-bisphosphatase, phosphoglycerate kinase, NADP+-dependent glyceraldehyde-phosphate dehydrogenase, ribulose 1,5-bisphosphate carboxylase, and phosphoribulokinase in isolated chloroplasts. Each was rapidly activated to levels more than adequate to support the maximum rate of photosynthesis. Induction in wheat chloroplasts is characterized by a period of about 1 min during which no O2 is evolved. If small quantities of intermediates such as dihydroxyacetone phosphate (DHAP) or 3-phosphoglycerate (PGA) are added, maximum rates of photosynthesis are achieved within the first minute of illumination. The presence of PGA did not affect the activation of any of the above-mentioned enzymes. Each of the enzymes was therefore capable of sustaining maximum rates of photosynthesis in the presence of PGA, even though there was no O2 evolution from those chloroplasts incubated with CO2 alone as substrate. The inclusion of PGA did not give rise to abnormally high levels of DHAP, FBP, or fructose 6-phosphate in the stroma. We conclude that the levels of substrates or cofactors are the principal, if not the sole, determinants of the rate of photosynthetic carbon assimilation during induction in wheat chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号