首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In the fly, Dryomyza anilis, males copulate repeatedly withthe same female during oviposition. Each copulation bout consistsof intromission followed by several tapping sequences duringwhich the male touches the external genitalia of the femalewith his claspers. The relative fertilization success of thelast male to mate with the female increases with the numberof tapping sequences. In this study, male benefits of repeatedcopulation bouts were examined by comparing matings with thesame number of tapping sequences in one and several copulationbouts. The relative fertilization success for the last maleincreased with successive copulation bouts. Simulated ovipositionpatterns showed that fertilization success in matings with manycopulation bouts was higher than in matings with one bout onlyif eggs were distributed between bouts in a certain way. Thesepredicted oviposition patterns were compared with natural ones.Although males may benefit from repeated copulation, femalesare likely to prefer matings with quick oviposition. This intersexualconflict may also affect natural oviposition patterns. It issuggested that repeated copulation in D. anilis may have evolvedin connection with males trying to secure their paternity becausefemales can discharge sperm at any moment during mating.  相似文献   

2.
Male genitalia are among the fastest evolving morphological characters, and at a general level sexual selection seems to be involved. But experimental determination of the functions of many remarkable genitalic elaborations is very rare. Here we present the first study to address experimentally the adaptive function of a male genital structure that is not involved in sperm transfer. Females of the orb-weaving spider Argiope bruennichi are sexually cannibalistic and polyandrous. The male increases his paternity by obstructing the female's insemination duct with a fragment of his complex genitalia (embolus tip). We manipulated males by detaching another species-specific structure, the median apophysis spur, and found that the spur promotes breakage of the embolus tip inside the female duct, but does not affect the probability and duration of copulation. These data are novel in that they suggest that a genitalic structure which does not transfer sperm nevertheless evolved in the context of sperm competition.  相似文献   

3.
The mechanisms driving the coevolution of male and female genital morphologies are still debated. Female genitalia in Drosophila species bear membranous “pouches” or hardened “shields,” which the male genital armature contact during copulation. Although shield‐like structures likely serve to mitigate the effects of harmful mating, some authors have suggested that soft pouches, which do not prevent male genitalia from inflicting wounds, represent a congruent sensory organ. To elucidate the evolutionary forces responsible for the development of such organs, I examined the effects of artificial damage to various genital parts of female Drosophila erecta on reproductive success. Despite a high survival rate among females, damage to the ovipositor plate resulted in frequent failure of insemination and in the embedment of eggs into the substrate. Damage to the vaginal shield resulted in increased mortality and frequent failure of egg embedment, with an egg blocking the vagina under the damaged shield in some females. Wounding of the pouch had less of an effect on both mating and oviposition success, suggesting that the structure “lures” the male trauma‐causing organs to areas where the resultant wounds do not interfere with insemination or oviposition. These data show that the dual functions of female genitalia (mating and oviposition) mediate genital coevolution.  相似文献   

4.
Courtship is well known for its positive effects on mating success. However, in polyandrous species, sexual selection continues to operate after copulation. Cryptic female choice is expected under unpredictable mating rates in combination with sequential mate encounters. However, there are very few accounts of the effects of courtship on cryptic female choice, and the available evidence is often correlative.Mature Argiope bruennichi females are always receptive and never attack or reject males before mating, although sexual cannibalism after mating occurs regularly. Still, males usually perform an energetic vibratory display prior to copulation. We tested the hypothesis that beneficial effects of courtship arise cryptically, during or after mating, resulting in increased paternity success under polyandry. Manipulating courtship duration experimentally, we found that males that mated without display had a reduced paternity share even though no differences in post-copulatory cannibalism or copulation duration were detected. This suggests that the paternity advantage associated with courtship arose through female-mediated processes after intromission, meeting the definition of cryptic female choice.  相似文献   

5.
Sexual selection is a major force behind the rapid evolution of male genital morphology among species. Most within-species studies have focused on sexual selection on male genital traits owing to events during or after copulation that increase a male''s share of paternity. Very little attention has been given to whether genitalia are visual signals that cause males to vary in their attractiveness to females and are therefore under pre-copulatory sexual selection. Here we show that, on average, female eastern mosquitofish Gambusia holbrooki spent more time in association with males who received only a slight reduction in the length of the intromittent organ (‘gonopodium’) than males that received a greater reduction. This preference was, however, only expressed when females chose between two large males; for small males, there was no effect of genital size on female association time.  相似文献   

6.
Several insects exhibit strong asymmetry in male genital shape, but the functions of this asymmetry is unknown. In the four species of the family Mantidae belonging to the genera Tenodera, Statilia and Hierodula, male genitalia consist of a more complex left‐side lobe, with two well‐pointed sclerotized processes, the apical process (paa) and the distal process (pda). Female genitalia are symmetric, and the genital opening (gonopore) is concealed by placement of the ovipositor (ovi) into the subgenital plate (sgp). Mating with experimental males, in which either paa or pda was cut, demonstrated that paa is essential for successful copulation. By fluorescence detection of the surface of females mated with males in which the paa was coated with fine fluorescent beads, the paa attachment site was determined to be the left edge of the female sgp. This finding suggests that copulation begins with exposure of the female gonopore by the male hooking the paa to the sgp and unfastening the ovi from the sgp, as associated with other parts of the male genitalia. The extremely asymmetric male genitalia also determine their mating posture. The male, mounting the female, bends his abdomen from the right side of his mate to attach his paa to her sgp. We found no antisymmetry in male genitalia, and never observed reversal (leftward) abdominal bending by the males. This was the fixed mating posture, even in virgin males, suggesting its innateness.  相似文献   

7.
Female mate choice in a mating system dominated by male sexual coercion   总被引:5,自引:1,他引:4  
In poeciliid fishes, males can gain copulation either by courtingfemales or through sexual coercion. In some species these twotactics coexist. However, in about half of the poeciliids,males do not display, females never cooperate during copulationand all matings are achieved by thrusting the intromittentorgan toward the genital pore of apparently unaware females.In one of these species, the eastern mosquitofish (Gambusiaholbrooki), the probability of insemination is influenced bythe time females are previously deprived of males, suggestingthat females exert some control over the occurrence of matingeven in a system apparently dominated by sexual coercion. Inthe present study we investigated the tendency of female mosquitofishto approach males in relation to their reproductive status and the time they were previously deprived of males. The tendencyto approach males increased in females that were previouslydeprived of males and in females that had recently given birth.When allowed to choose between males, male-deprived femalespreferred larger males and normally pigmented over melanisticmales. Females preferred groups of three males over a singlemale, whereas the preference for three males over a group ofone male and two females was only marginally significant. Collectively,these results suggest that, even when coercive mating is theonly tactic adopted by males, females may be able to influencethe outcome of these attempts, and thus exert some controlover the paternity of their offspring.  相似文献   

8.
Recent theoretical and empirical interest in postmating processes have generated a need for increasing our understanding of the sources of variance in fertilization success among males. Of particular importance is whether such postmating sexual selection merely reinforces the effects of premating sexual selection or whether other types of male traits are involved. In the current study, we document large intraspecific variation in last male sperm precedence in the water strider Gerris lateralis. Male relative paternity success was repeatable across replicate females, showing that males differ consistently in their ability to achieve fertilizations. By analyzing shape variation in male genital morphology, we were able to demonstrate that the shape of male intromittent genitalia was related to relative paternity success. This is the first direct experimental support for the suggestion that male genitalia evolve by postmating sexual selection. A detailed analysis revealed that different components of male genitalia had different effects, some affecting male ability to achieve sperm precedence and others affecting male ability to avoid sperm precedence by subsequent males. Further, the effects of the shape of the male genitalia on paternity success was in part dependent on female morphology, suggesting that selection on male genitalia will depend on the frequency distribution of female phenotypes. We failed to find any effects of other morphological traits, such as male body size or the degree of asymmetry in leg length, on fertilization success. Although males differed consistently in their copulatory behavior, copulation duration was the only behavioral trait that had any significant effect on paternity.  相似文献   

9.
To identify factors leading to the correlated evolution of exaggerated male and female genitalia, we studied the effects of the variable dimensions of corresponding functional genital parts (male copulatory piece and female vaginal appendix) on copulatory performance in the polygamous carabid beetle Carabus (Ohomopterus) maiyasanus. We used mating pairs of individuals from two populations to increase the variances in genital dimensions and determined the copulation performance (insemination and spermatophore replacement, and copulation time) in single‐ and double‐mating situations. In single mating, insemination success was not affected by genital dimensions, although the copulation time was significantly shorter when the male aedeagus was longer. In the double‐mating experiment, insemination and replacement of spermatophores by the second male succeeded more frequently when the copulatory piece was shorter and the vaginal appendix was longer, and when the difference between the length of the copulatory piece and the vaginal appendix was smaller. Thus, a matching of the corresponding genital parts between the sexes increases the male's reproductive success in sperm competition, but elongation of the copulatory piece cannot be explained simply by the improvement in male reproductive success. We discuss possible factors for the elongation of genital parts in terms of sexual conflict and reproductive interference through interspecific copulation.  相似文献   

10.
11.
Natural selection and post‐copulatory sexual selection, including sexual conflict, contribute to genital diversification. Fundamental first steps in understanding how these processes shape the evolution of specific genital traits are to determine their function experimentally and to understand the interactions between female and male genitalia during copulation. Our experimental manipulations of male and female genitalia in red‐sided garter snakes (Thamnophis sirtalis parietalis) reveal that copulation duration and copulatory plug deposition, as well as total and oviductal/vaginal sperm counts, are influenced by the interaction between male and female genital traits and female behaviour during copulation. By mating females with anesthetized cloacae to males with spine‐ablated hemipenes using a fully factorial design, we identified significant female–male copulatory trait interactions and found that females prevent sperm from entering their oviducts by contracting their vaginal pouch. Furthermore, these muscular contractions limit copulatory plug size, whereas the basal spine of the male hemipene aids in sperm and plug transfer. Our results are consistent with a role of sexual conflict in mating interactions and highlight the evolutionary importance of female resistance to reproductive outcomes.  相似文献   

12.
In polyandrous mating systems, sperm competition and cryptic female choice (CFC) are well recognized as postcopulatory evolutionary forces. However, it remains challenging to separate CFC from sperm competition and to estimate how much CFC influences insemination success because those processes usually occur inside the female's body. The Japanese pygmy squid, Idiosepius paradoxus, is an ideal species in which to separate CFC from sperm competition because sperm transfer by the male and sperm displacement by the female can be observed directly at an external location on the female's body. Here, we counted the number of spermatangia transferred to, removed from, and remaining on the female body during single copulation episodes. We measured behavioral and morphological characteristics of the male, such as duration of copulation and body size. Although males with larger body size and longer copulation time were capable of transferring larger amounts of sperm, females preferentially eliminated sperm from males with larger body size and shorter copulation time by spermatangia removal; thus, CFC could attenuate sperm precedence by larger males, whereas it reinforces sperm precedence by males with longer copulation time. Genetic paternity analysis revealed that fertilisation success for each male was correlated with remaining sperm volume that is adjusted by females after copulation.  相似文献   

13.
Recent comparative studies have revealed that the rapid diversity of genitalia is closely related to sexual selection and that genital development interacts with the development of different body parts. Hypotheses about developmental stability due to selection to genital parts were tested by estimating allometric relations in a sexually dimorphic stag beetle Prosopocoilus inclinatus . All genital parts of males scaled to body size with a slope of less than 1 and all but the median lobe (male intromittent organ) showed smaller variability than other body parts. This supported the 'one-size-fits-all' hypothesis, which suggests broad copulation opportunity by males of any size with females within a population. Nevertheless, we found large variation among different genital parts in coefficients of variation and in values of the switch point where the allometric relations varied significantly. These results strongly support the view that developmental trajectories of genital traits are not necessarily integrated. Among the genitalic traits, male intromittent organ and female genitalia exhibited large variability, suggesting a high responsiveness to the selective regimes and physical interaction during copulation. This may account for rapid diversification of genital morphology, even in closely-related populations in beetle species.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 573–581.  相似文献   

14.
Genitalia are among the fastest evolving morphological traits as evidenced by their common function as diagnostic traits in species identification. Even though the main function of genitalia is the successful transfer of spermatozoa, the presence of diverse structures that are obviously not necessary for this suggests that genitalia are a target of sexual selection. The male genitalia of many spider species are extremely complex and equipped with numerous sclerites, plates and spines whose functions are largely unknown. Selection on male genitalia may be particularly strong in sexually cannibalistic spiders, where mating success of males is restricted to a single female. We investigated the copulatory mechanism of the sexually cannibalistic orb weaving spider Argiope bruennichi by shock freezing mating pairs and revealed a complicated interaction between the appendices and sclerites that make up the male gonopods (paired pedipalps). The plate that covers the female genital opening (scape) is secured between two appendices of the male genital bulb, while three sclerites that bear the sperm duct are unfolded and extended into the female copulatory opening. During copulation, females attack and cannibalise the male and males mutilate their genitalia in about 80% of cases. Our study demonstrates that (i) genital coupling is largely accomplished on the external part of the female genitalia, (ii) that the mechanism requires an interaction between several non-sperm-transferring structures and (iii) that there are two predetermined breaking points in the male genitalia. Further comparative work on the genus Argiope will test if the copulatory mechanism with genital mutilation indeed is an adaptation to sexual cannibalism or if cannibalism is a female counter adaptation to male monopolisation through genital plugging.  相似文献   

15.
One of the most sweeping of all patterns in morphological evolution is that animal genitalia tend to diverge more rapidly than do other structures. Abundant indirect evidence supports the cryptic female choice (CFC) explanation of this pattern, which supposes that male genitalia often function to court females during copulation; but direct experimental demonstrations of a stimulatory function have been lacking. In this study, we altered the form of two male genital structures that squeeze the female’s abdomen rhythmically in Glossina pallidipes flies. As predicted by theory, this induced CFC against the male: ovulation and sperm storage decreased, while female remating increased. Further experiments showed that these effects were due to changes in tactile stimuli received by the female from the male’s altered genitalia, and were not due to other possible changes in the males due to alteration of their genital form. Stimulation from male genital structures also induces females to permit copulation to occur. Together with previous studies of tsetse reproductive physiology, these data constitute the most complete experimental confirmation that sexual selection (probably by CFC) acts on the stimulatory properties of male genitalia.  相似文献   

16.
Costs of inbreeding can lead to total reproductive failure and inbreeding avoidance is, therefore, common. In classical sex roles with no paternal care, the selective pressure to avoid inbreeding is mostly on the female, which carries the higher costs. In some orb-web spiders, this situation is very different because females are polyandrous and males are monogynous or at most bigynous. Additionally, females of many entelegyne orb weavers are thought to bias paternity post-copulatorily towards a desired mate. This increases the selective pressure on males to adjust their investment in a mating with regard to the compatibility to a female.Here, we examine whether genetic relatedness influences mating behaviour in the orb-web spider Argiope bruennichi. We mated either a sibling or a non-sibling male to a female in single copulation trials and compared copulation duration, cannibalism rate and female fecundity.Our experiment revealed that males prolonged their copulation duration and were cannibalized more frequently when mating with a non-sibling female. Males mating with a sibling female were more likely to escape cannibalism by copulating briefly, thus presumably increasing their chances of re-mating with a more compatible female. This suggests that males can adaptively adjust their investment relating to the compatibility of a female.  相似文献   

17.
In polyandrous species, paternity may be influenced by the timingand frequency of mating. Female spiders possess 2 genital openingsthat lead to separate sperm-storage structures. Thus, even whenmating with a previously mated female, a male may reduce directsperm competition by inseminating the opposite opening to herfirst mate. Such morphology may provide females with greatercontrol over paternity. We examined simultaneously whether malesavoided already inseminated female genital openings and whetherthis behavior varied with the time between successive matings.To explore these questions, we mated female golden orb weaverspiders, Nephila edulis, each to 2 males and manipulated thetiming of their second mating. We documented male inseminationpatterns and explored the influence of male mating decisionson paternity success using the irradiated male technique. Wefound that 60% of males avoided sperm competition by discriminatingagainst inseminated genital openings. Moreover, male matingbehavior had a dramatic impact on the paternity success of irradiatedmales. When males inseminated the same genital opening, thecompetitive ability of the irradiated male's sperm was dramaticallyreduced resulting in lower paternity success. In contrast, whenthe 2 males inseminated opposite genital openings both malessired equal proportions of offspring regardless of their radiationstatus. There was no evidence that the timing of the secondmating affected patterns of paternity. Our data suggest thatdifferences in sperm quality may influence paternity successof N. edulis males under a sperm-competitive scenario. In contrast,females appear to have limited postmating control over paternity.  相似文献   

18.
Divergence of genital traits among lineages has the potential to serve as a reproductive isolating barrier when copulation, insemination, and fertilization are inhibited by incompatibilities between female and male genitalia. Despite widespread evidence for genital trait diversity among closely related lineages and coevolution of female and male genitalia within lineages, few studies have investigated genital evolution during the early stages of speciation. We quantified genital variation in replicated population pairs of Poecilia mexicana with ongoing ecological speciation between sulfidic (H2S containing) and nearby nonsulfidic habitats. These analyses revealed rapid and correlated divergence of female and male genitalia across evolutionarily independent population pairs exposed to divergent selection regimes. Both sexes exhibited convergent evolution of genital traits among populations inhabiting similar habitat types. Our results demonstrate that genital evolution can occur during the early stages of speciation‐with‐gene‐flow, potentially as a result of variation in the intensity of sexual conflict among populations. Our results suggest genitalia may contribute to early stages of divergence and challenge the generality of previously suggested mechanisms of genital evolution in poeciliids.  相似文献   

19.
It is now clear in many species that male and female genital evolution has been shaped by sexual selection. However, it has historically been difficult to confirm correlations between morphology and fitness, as genital traits are complex and manipulation tends to impair function significantly. In this study, we investigate the functional morphology of the elongate male intromittent organ (or processus) of the seed bug Lygaeus simulans, in two ways. We first use micro-computed tomography (micro-CT) and flash-freezing to reconstruct in high resolution the interaction between the male intromittent organ and the female internal reproductive anatomy during mating. We successfully trace the path of the male processus inside the female reproductive tract. We then confirm that male processus length influences sperm transfer by experimental ablation and show that males with shortened processi have significantly reduced post-copulatory reproductive success. Importantly, male insemination function is not affected by this manipulation per se. We thus present rare, direct experimental evidence that an internal genital trait functions to increase reproductive success and show that, with appropriate staining, micro-CT is an excellent tool for investigating the functional morphology of insect genitalia during copulation.  相似文献   

20.
The morphologies of male genitalia often appear harmful or aggressive, as if they may inflict physical damage upon females during copulation. Such male genitalia are often thought to function in intra- and intersexual interactions during mating. In the carabid genus Carabus, division Spinulati, males possess a spine (spinula) on the intromittent organ, of which function is unknown. To reveal the function of the spinula, we studied the mating behavior and genital coupling of a Spinulati species, Carabus (Limnocarabus) clathratus. The males positioned the spinula along the inner wall of the vaginal opening throughout copulation. This placement created a small dent and subsequently a melanized patch (wound) on the vaginal wall, but the spinula rarely penetrated the vaginal wall. The spinula did not reach the innermost part of the vagina where the spermatophore is deposited. These results suggest that the spinula is not used for inflicting damage on female genitalia or manipulating spermatophores of rival males. During spermatophore formation, the male partially withdrew the aedeagus, and only the aedeagal tip and endophallus remained within the female. By placing the spinula against the vaginal wall, the male could hold the endophallus within the vaginal chamber in the unstable copulatory posture. Thus, our observations suggest that the spinula primarily functions as an "anchor" to maintain the coupling of the male and female genitalia and thereby ensure insemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号