首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Adjacent flowers on Mimulus ringens floral displays often vary markedly in selfing rate. We hypothesized that this fine-scale variation in mating system reflects the tendency of bumble-bee pollinators to probe several flowers consecutively on multiflower displays. When a pollinator approaches a display, the first flower probed is likely to receive substantial outcross pollen. However, since pollen carryover in this species is limited, receipt of self pollen should increase rapidly for later flowers. Here the first direct experimental test of this hypothesis is described.

Methods

In order to link floral visitation sequences with selfing rates of individual flowers, replicate linear arrays were established, each composed of plants with unique genetic markers. This facilitated unambiguous assignment of paternity to all sampled progeny. A single wild bumble-bee was permitted to forage on each linear array, recording the order of floral visits on each display. Once fruits had matured, 120 fruits were harvested (four flowers from each of five floral displays in each of six arrays). Twenty-five seedlings from each fruit were genotyped and paternity was unambiguously assigned to all 3000 genotyped progeny.

Key Results

The order of pollinator probes on Mimulus floral displays strongly and significantly influenced selfing rates of individual fruits. Mean selfing rates increased from 21 % for initial probes to 78 % for the fourth flower probed on each display.

Conclusions

Striking among-flower differences in selfing rate result from increased deposition of geitonogamous (among-flower, within-display) self pollen as bumble-bees probe consecutive flowers on each floral display. The resulting heterogeneity in the genetic composition of sibships may influence seedling competition and the expression of inbreeding depression.Key words: Autogamy, bee, Bombus fervidus, floral display, geitonogamy, mating system, monkeyflower, Mimulus ringens, paternity analysis, pollen carryover, pollinator visitation sequence, self-fertilization  相似文献   

2.

Background and Aims

Natural variation in fruit and seed set may be explained by factors that affect the composition of pollen grains on stigmas. Self-incompatible species require compatible outcross pollen grains to produce seeds. The siring success of outcross pollen grains, however, can be hindered if self (or other incompatible) pollen grains co-occur on stigmas. This study identifies factors that determine fruit set in Phlox hirsuta, a self-sterile endangered species that is prone to self-pollination, and its associated fitness costs.

Methods

Multiple linear regressions were used to identify factors that explain variation in percentage fruit set within three of the five known populations of this endangered species. Florivorous beetle density, petal colour, floral display size, local conspecific density and pre-dispersal seed predation were quantified and their effects on the ability of flowers to produce fruits were assessed.

Key Results

In all three populations, percentage fruit set decreased as florivorous beetle density increased and as floral display size increased. The effect of floral display size on fruit set, however, often depended on the density of nearby conspecific plants. High local conspecific densities offset – even reversed – the negative effects of floral display size on percentage fruit set. Seed predation by mammals decreased fruit set in one population.

Conclusions

The results indicate that seed production in P. hirsuta can be maximized by selectively augmenting populations in areas containing isolated large plants, by reducing the population sizes of florivorous beetles and by excluding mammals that consume unripe fruits.  相似文献   

3.

Background

Over a season, plant condition, amount of ongoing reproduction and biotic and abiotic environmental factors vary. As flowers age, flower condition and amount of pollen donated and received also vary. These internal and external changes are significant for fitness if they result in changes in reproduction and mating.

Scope

Literature from several fields was reviewed to provide a picture of the changes that occur in plants and flowers that can affect mating over a season. As flowers age, both the entire flower and individual floral whorls show changes in appearance and function. Over a season, changes in mating often appear as alteration in seed production vs. pollen donation. In several species, older, unpollinated flowers are more likely to self. If flowers are receiving pollen, staying open longer may increase the number of mates. In wild radish, for which there is considerable information on seed paternity, older flowers produce fewer seeds and appear to discriminate less among pollen donors. Pollen donor performance can also be linked to maternal plant age. Different pollinators and mates are available across the season. Also in wild radish, maternal plants appear to exert the most control over paternity when they are of intermediate age.

Conclusions

Although much is known about the characters of plants and flowers that can change over a season, there is less information on the effects of age on mating. Several studies document changes in self-pollination over time, but very few, other than those on wild radish, consider more subtle aspects of differential success of pollen donors over time.  相似文献   

4.

Background and Aims

Reduction in female fitness in large clones can occur as a result of increased geitonogamous self-fertilization and its influence through inbreeding depression. This possibility was investigated in the self-compatible, bee-pollinated perennial herb Aconitum kusnezoffii which varies in clone size.

Methods

Field investigations were conducted on pollinator behaviour, flowering phenology and variation in seed set. The effects of self-pollination following controlled self- and cross-pollination were also examined. Selfing rates of differently sized clones were assessed using allozyme markers.

Key Results

High rates of geitonogamous pollination were associated with large display size. Female fitness at the ramet level decreased with clone size. Fruit and seed set under cross-pollination were significantly higher than those under self-pollination. The pre-dispersal inbreeding depression was estimated as 0·502 based on the difference in seed set per flower between self- and cross-pollinated flowers. Selfing rates of differently sized clones did not differ.

Conclusions

It is concluded that in A. kusnezoffii the negative effects of self-pollination causing reduced female fertility with clone size arise primarily from a strong early-acting inbreeding depression leading to the abortion of selfed embryos prior to seed maturation.Key words: Early-acting inbreeding depression, Aconitum kusnezoffii, clone size, female reproductive success, geitonogamy  相似文献   

5.

Background and Aims

Although many studies have reported that clonal growth interferes with sexual reproduction as a result of geitonogamous self-pollination and inbreeding depression, the mating costs of clonal growth are expected to be reduced when genets are spatially intermingled with others. This study examined how clonal growth affects both female and male reproductive success by studying a population of a mass-flowering plant, Sasa veitchii var. hirsuta, with a high degree of clonal intermingling.

Methods

In a 10 × 10 m plot, genets were discriminated based on the multilocus genotypes of 11 nuclear microsatellite loci. The relationships between genet size and the components of reproductive success were then investigated. Male siring success and female and male selfing rates were assessed using paternity analysis.

Key Results

A total of 111 genets were spatially well intermingled with others. In contrast to previous studies with species forming distinct monoclonal patches, seed production linearly increased with genet size. While male siring success was a decelerating function of genet size, selfing rates were relatively low and not related to genet size.

Conclusions

The results, in conjunction with previous studies, emphasize the role of the spatial arrangement of genets on both the quantity and quality of offpsring, and suggest that an intermingled distribution of genets can reduce the mating costs of clonal growth and enhance overall fitness, particularly female fitness.  相似文献   

6.

Background and Aims

Competition among genetically different pollen donors within one recipient flower may play an important role in plant populations, increasing offspring genetic diversity and vigour. However, under field conditions stochastic pollen arrival times may result in disproportionate fertilization success of the first-arriving pollen, even to the detriment of the recipient plant''s and offspring fitness. It is therefore critical to evaluate the relative importance of arrival times of pollen from different donors in determining siring success.

Methods

Hand pollinations and genetic markers were used to investigate experimentally the effect of pollination timing on seed paternity, seed mass and stigmatic wilting in the the dioecious plant Silene latifolia. In this species, high prevalence of multiply-sired fruits in natural populations suggests that competition among different donors may often take place (at fertilization or during seed development); however, the role of variation due to pollen arrival times is not known.

Key Results

First-arriving pollen sired significantly more seeds than later-arriving pollen. This advantage was expressed already before the first pollen tubes could reach the ovary. Simultaneously with pollen tube growth, the stigmatic papillae wilted visibly. Individual seeds were heavier in fruits where one donor sired most seeds than in fruits where both donors had more even paternity shares.

Conclusions

In field populations of S. latifolia, fruits are often multiply-sired. Because later-arriving pollen had decreased chances of fertilizing the ovules, this implies that open-pollinated flowers often benefit from pollen carry-over or pollinator visits within short time intervals, which may contribute to increase offspring genetic diversity and fitness.Key words: Reproduction, reproductive success, pollen, siring success, microsatellite DNA, paternity, pollen tube growth, seed mass, Silene alba, stigma wilting  相似文献   

7.
Niu Y  Yang Y  Zhang ZQ  Li ZM  Sun H 《Annals of botany》2011,108(7):1257-1268

Background and aims

Pollination-induced floral changes, which have been widely documented in flowering plants, have been assumed to enhance the plant''s reproductive success. However, our understanding of the causes and consequences of these changes is still limited. Using an alpine gynodioecious species, Cyananthus delavayi, we investigated the factors affecting floral closure and estimated the fitness consequences of floral closure.

Methods

The timings of floral closure and fertilization were determined. The effects of pollen load, pollen type (cross- or self-pollen) and floral morph (female or perfect flower) on the occurrence of floral closure were examined. Ovule fertilization and seed production were examined to investigate the causes and consequences of floral closure. Flowers were manipulated to prevent closing to detect potential benefits for female fitness.

Key Results

Floral closure, which could be induced by a very low pollen load, occurred within 4–7 h after pollination, immediately following fertilization. The proportion of closed flowers was influenced by pollen load and floral morph, but not by pollen type. Floral closure was more likely to occur in flowers with a higher proportion of fertilized ovules, but there was no significant difference in seed production between closed and open flowers. Those flowers in which closure was induced by natural pollination had low fruit set and seed production. Additionally, seed production was not influenced by closing-prevented manipulation when sufficient pollen deposition was received.

Conclusions

The occurrence of floral closure may be determined by the proportion of fertilized ovules, but this response can be too sensitive to ensure sufficient pollen deposition and can, to some extent, lead to a cost in female fitness. These results implied that the control of floral receptivity by the recipient flowers does not lead to an optimal fitness gain in C. delavayi.  相似文献   

8.

Background and Aims

Flower morphology and inflorescence architecture affect pollinator foraging behaviour and thereby influence the process of pollination and the reproductive success of plants. This study explored possible ecological functions of the lever-like stamens and the floral design in Salvia cyclostegia.

Methods

Flower construction was experimentally manipulated by removing either the lower lever arms or the upper fertile thecae of the two stamens from a flower. The two types of manipulated individuals were intermixed with the control ones and randomly distributed in the population.

Key Results

Removing the sterile lower lever arms significantly reduced handling time per flower of the main pollinator, Bombus personatus. Interestingly, this manipulation did not increase the number of flowers probed per plant visit, but instead reduced it, i.e. shortened the visit sequence of the bumble-bees. Both loss of staminal lever function by removing lower lever arms and exclusion of self pollen by removing upper fertile thecae significantly reduced seed set per flower and seed set per plant. Both the manipulations interacted significantly with inflorescence size for the effect on female reproductive output.

Conclusions

Though the intact flowers demand a long handling time for pollinators, the reversible staminal lever is of advantage by promoting dispersal of pollen and thus the male function. The particular floral design in S. cyclostegia contributes to the floral constancy of B. personatus bumble-bees, with the lower lever arms acting as an optical cue for foraging cognition.  相似文献   

9.

Background and Aims

Reciprocal herkogamy, including enantiostyly and heterostyly, involves reciprocity in the relative positions of the sexual elements within the flower. Such systems result in morphologically and, since pollen is deposited on and captured from different parts of the pollinator, functionally distinct floral forms. Deviations from the basic pattern may modify the functionality of these mechanisms. For heterostylous species, such deviations are generally related to environmental disturbances, pollination services and/or reduced numbers of one floral morph. Deviations for enantiostylous species have not yet been reported. This study aims to investigate enantiostyly in Chamaecrista flexuosa, in particular the presence of deviations from the standard form, in an area of coastal vegetation in north-east Brazil.

Methods

Observations and investigations of floral biology, the reproductive system, pollinator behaviour, floral morphology and morphometry were performed.

Key Results

In C. flexuosa flowers, anthers of different size but similar function are grouped. The flowers were self-compatible and set fruits after every treatment, except in the spontaneous self-pollination experiment, thereby indicating their dependence on pollen vectors. The flowers were pollinated by bees, especially Xylocopa cearensis and X. grisencens. Pollen is deposited and captured from the ventral portion of the pollinator''s body. Variations in the spatial arrangement of floral elements allowed for the identification of floral morphs based on both morphological and functional criteria. Using morphological criteria, morphologically right (MR) and morphologically left (ML) floral morphs were identified. Three floral morphs were identified using functional criteria: functionally right (FR), functionally central (FC) and functionally left (FL). Combinations of morphologically and functionally defined morphs did not occur in equal proportions. There was a reduced frequency of the MR–FR combination.

Conclusions

The results indicate the occurrence of an atypical enantiostyly in C. flexuosa. This seems to improve reproductive success by increasing the efficiency of pollen deposition and capture.  相似文献   

10.

Background and Aims

Trithuria, the sole genus in the family Hydatellaceae, is an important group for understanding early angiosperm evolution because of its sister relationship to the ancient lineage, Nymphaeales (water lilies). Although also aquatic, Trithuria differs from water lilies in that all species are extremely small, and most have an annual life form and grow in seasonal wetlands. Very little is known about their reproductive ecology. This paper reports on reproductive timing, mode of pollination and characteristics of the breeding system of Trithuria submersa in Western Australia.

Methods

Mass collections of open-pollinated plants from different ecological settings were used to characterize the reproductive developmental sequence and natural pollen reception. Hand-pollination, caging and emasculation experiments were used to measure outcross + geitonogamous pollen reception versus autonomous self-pollination in two populations over two field seasons.

Key Results

Natural outcross or geitonogamous pollination was by wind, not by water or insects, but pollen reception was extremely low. Pollen production was very low and pollen release was non-synchronous within populations. The pollen to ovule (P/O) ratio was 23·9, compared with 1569·1 in dioecious Trithuria austinensis. Stigmas became receptive before male phase and remained so until anthers dehisced and autonomous self-pollination occurred. Natural pollen loads are composed primarily of self pollen. Self- and open-pollinated plants had equivalent seed set (both >70 %). Self-pollinated plants produced seed within 17 d.

Conclusions

Autonomous self-pollination and self-fertilization are predominant in T. submersa. The low P/O ratio is not an artefact of small plant size and is inconsistent with long-term pollination by wind. It indicates that T. submersa has evolved a primarily autogamous breeding system. Selfing, along with the effect of small plant size on the speed of reproduction, has enabled T. submersa to colonize marginal ephemeral wetlands in the face of unpredictable pollination.  相似文献   

11.
Cao G  Xue L  Li Y  Pan K 《Annals of botany》2011,107(8):1413-1419

Background and Aims

Allocation of resources to floral traits often declines distally within inflorescences in flowering plants. Architecture and resource competition have been proposed as underlying mechanisms. The aim of the present study is to assess the relative importance of resource competition and architectural effects in pollen and ovule production on racemes of Hosta ventricosa, an apomictic perennial herb.

Methods

Combinations of two defoliation treatments (intact and defoliated) and two fruit-set treatments (no-fruit and fruit) were created, and the roles of architecture and resource competition at each resource level were assessed.

Key Results

Pollen and ovule number per flower increased after defoliation, but pollen to ovule ratio per flower did not change. Pollen, ovules and the pollen to ovule ratio per flower declined distally on racemes at each resource level. In the intact treatment, fruit development of early flowers did not affect either pollen or ovule number of late flowers. In the defoliated treatment, fruit development of early flowers reduced both pollen and ovule numbers of late flowers due to over-compensation caused by defoliation. Late flowers on defoliated fruit racemes produced less pollen than intact fruit racemes but the same number of ovules; therefore, the reduction in pollen number was not caused by over-compensation. In addition, the fruit-set rate of early flowers during flowering was higher in intact racemes than in defoliated racemes.

Conclusions

In flowering plants, the relative importance of architecture and resource competition in allocation to pollen and ovules may vary with the resource pools or the overall resource availability of maternal plants.  相似文献   

12.

Background and Aims

Delayed selfing is the predominant mode of autonomous self-pollination in flowering plants. However, few delayed selfing mechanisms have been documented. This research aims to explore a new delayed selfing mechanism induced by stigmatic fluid in Roscoea debilis, a small perennial ginger.

Methods

Floral biology and flower visitors were surveyed. The capacity of autonomous selfing was evaluated by pollinator exclusion. The timing of autonomous selfing was estimated by emasculation at different flowering stages. The number of seeds produced from insect-pollination was assessed by emasculation and exposure to pollinators in the natural population. The breeding system was also tested by pollination manipulations.

Key Results

Autonomous self-pollination occurred after flowers wilted. The stigmatic fluid formed a globule on the stigma on the third day of flowering. The enlarged globule seeped into the nearby pollen grains on the fourth flowering day, thus inducing pollen germination. Pollen tubes then elongated and penetrated the stigma. Hand-selfed flowers produced as many seeds as hand-crossed flowers. There was no significant difference in seed production between pollinator-excluded flowers and hand-selfed flowers. When emasculated flowers were exposed to pollinators, they produced significantly fewer seeds than intact flowers. Visits by effective pollinators were rare.

Conclusions

This study describes a new form of delayed autonomous self-pollination. As the predominant mechanism of sexual reproduction in R. debilis, delayed self-pollination ensures reproduction when pollinators are scarce.  相似文献   

13.

Background and Aims

The evolution of selfing from outcrossing is characterized by a series of morphological changes to flowers culminating in the selfing syndrome. However, which morphological traits initiate increased self-pollination and which are accumulated after self-fertilization establishes is poorly understood. Because the expression of floral traits may depend on the conditions experienced by an individual during flower development, investigation of changes in mating system should also account for environmental and developmental factors. Here, early stages in the evolution of self-pollination are investigated by comparing floral traits among Brazilian populations of Eichhornia paniculata (Pontederiaceae), an annual aquatic that displays variation in selfing rates associated with the breakdown of tristyly to semi-homostyly.

Methods

Thirty-one Brazilian populations under uniform glasshouse conditions were compared to investigate genetic and environmental influences on flower size and stigma–anther separation (herkogamy), two traits that commonly vary in association with transitions to selfing. Within-plant variation in herkogamy was also examined and plants grown under contrasting environmental conditions were compared to examine to what extent this trait exhibits phenotypic plasticity.

Key Results

In E. paniculata a reduction in herkogamy is the principal modification initiating the evolution of selfing. Significantly, reduced herkogamy was restricted to the mid-styled morph and occurred independently of flower size. Significant genetic variation for herkogamy was detected among populations and families, including genotypes exhibiting developmental instability of stamen position with bimodal distributions of herkogamy values. Cloned genets exposed to contrasting growth conditions demonstrated environmental control of herkogamy and genotypic differences in plasticity of this trait.

Conclusions

The ability to modify herkogamy independently of other floral traits, genetic variation in the environmental sensitivity of herkogamy, and the production of modified and unmodified flowers within some individuals, reveal the potential for dynamic control of the mating system in a species that commonly confronts heterogeneous aquatic environments.Key words: Eichhornia paniculata, expressivity, flower morphology, herkogamy, phenotypic plasticity, pleiotropy, population variation, self-fertilization, stigma–anther separation, outcrossing, tristyly  相似文献   

14.

Background and Aims

Few studies have examined the dynamics of specialist plant–pollinator interactions at a geographical scale. This knowledge is crucial for a more general evolutionary and ecological understanding of specialized plant–pollinator systems. In the present study, variations in pollinator activity, assemblage composition and pollen limitation were explored in the oil-producing species Nierembergia linariifolia (Solanaceae).

Methods

Pollen limitation in fruit and seed production was analysed by supplementary hand pollination in five wild populations. Pollinator activity and identity were recorded while carrying out supplementary pollination to assess the effect of pollinators on the degree of pollen limitation. In two populations, pollen limitation was discriminated into quantitative and qualitative components by comparing supplementation and hand cross-pollination in fruit set and seed set. The effect of flower number per plant on the number of flowers pollinated per visitor per visit to a plant was examined in one of these populations as a possible cause of low-quality pollination by increasing geitonogamy.

Results and Conclusions

Although pollen limitation was evident along time and space, differences in magnitude were detected among populations and years that were greatly explained by pollinator activity, which was significantly different across populations. Floral display size had a significant effect on the visitation rate per flower. Limitation by quality clearly affected one population presumably due to a high proportion of geitonogamous pollen. The great inter-population variation in plant–pollinator interaction (both in pollinator assemblages composition and pollinator activity) and fitness consequences, suggests that this system should be viewed as a mosaic of locally selective processes and locally specialized interactions.Key words: Nierembergia linariifolia, Centris, Chalepogenus, pollen limitation, pollen quality, oil-producing flowers, specialized pollination, floral display, assemblage composition, geographic variation, Solanaceae, tests of equivalence  相似文献   

15.

Background and Aims

The combination of clonality and a mating system promoting outcrossing is considered advantageous because outcrossing avoids the fitness costs of selfing within clones (geitonogamy) while clonality assures local persistence and increases floral display. The spatial spread of genetically identical plants (ramets) may, however, also decrease paternal diversity (the number of sires fertilizing a given dam) and fertility, particularly towards the centre of large clumped clones. This study aimed to quantify the impact of extensive clonal growth on fine-scale paternity patterns in a population of the allogamous Convallaria majalis.

Methods

A full analysis of paternity was performed by genotyping all flowering individuals and all viable seeds produced during a single season using AFLP. Mating patterns were examined and the spatial position of ramets was related to the extent of multiple paternity, fruiting success and seed production.

Key Results

The overall outcrossing rate was high (91 %) and pollen flow into the population was considerable (27 %). Despite extensive clonal growth, multiple paternity was relatively common (the fraction of siblings sharing the same father was 0·53 within ramets). The diversity of offspring collected from reproductive ramets surrounded by genetically identical inflorescences was as high as among offspring collected from ramets surrounded by distinct genets. There was no significant relationship between the similarity of the pollen load received by two ramets and the distance between them. Neither the distance of ramets with respect to distinct genets nor the distance to the genet centre significantly affected fruiting success or seed production.

Conclusions

Random mating and considerable pollen inflow most probably implied that pollen dispersal distances were sufficiently high to mitigate local mate scarcity despite extensive clonal spread. The data provide no evidence for the intrusion of clonal growth on fine-scale plant mating patterns.  相似文献   

16.

Background and Aims

Variation in the relative female and male reproductive success of flowering plants is widespread, despite the fundamental hermaphroditic condition of the majority of species. In many hermaphroditic populations, environmental conditions and their influence on development and size can influence the gender expression of individuals through the formation of hermaphroditic and unisexual flowers. This study investigates the hypothesis that the bulbous, animal-pollinated, perennial Lilium apertum (Liliaceae) exhibits a form of size-dependent gender modification known as gender diphasy, in which the sexual expression of individuals depends on their size, with plants often changing sex between seasons.

Methods

Variation in floral traits was examined in relation to their size using marked individuals in natural populations, and also under glasshouse conditions. Measurements were taken of the height, flower number, floral sex expression, flower size, flower biomass and pollen production of individuals over consecutive years between 2009 and 2012 in seven populations in south-west China.

Key Results

Flowers of L. apertum are either perfect (hermaphroditic) or staminate (male) and, in any given season, plants exhibit one of three sex phenotypes: only hermaphrodite flowers, a mixture of hermaphroditic and male flowers, or only male flowers. Transitions between each of these sex phenotypes were observed over consecutive years and were commonly size-dependent, particularly transitions from small plants bearing only male flowers to those that were taller with hermaphroditic flowers. Hermaphroditic flowers were significantly larger, heavier and produced more pollen than male flowers.

Conclusions

The results for L. apertum are consistent with the ‘size advantage hypothesis’ developed for animal species with sex change. The theory predicts that when individuals are small they should exhibit the sex for which the costs of reproduction are less, and this usually involves the male phase. L. apertum provides an example of gender diphasy, a rare sexual system in flowering plants.  相似文献   

17.

Background and Aims

The pollination biology of very few Chloraeinae orchids has been studied to date, and most of these studies have focused on breeding systems and fruiting success. Chloraea membranacea Lindl. is one of the few non-Andean species in this group, and the aim of the present contribution is to elucidate the pollination biology, functional floral morphology and breeding system in native populations of this species from Argentina (Buenos Aires) and Brazil (Rio Grande do Sul State).

Methods

Floral features were examined using light microscopy, and scanning and transmission electron microscopy. The breeding system was studied by means of controlled pollinations applied to plants, either bagged in the field or cultivated in a glasshouse. Pollination observations were made on natural populations, and pollinator behaviour was recorded by means of photography and video.

Key Results

Both Argentinean and Brazilian plants were very consistent regarding all studied features. Flowers are nectarless but scented and anatomical analysis indicates that the dark, clavate projections on the adaxial labellar surface are osmophores (scent-producing glands). The plants are self-compatible but pollinator-dependent. The fruit-set obtained through cross-pollination and manual self-pollination was almost identical. The main pollinators are male and female Halictidae bees that withdraw the pollinarium when leaving the flower. Remarkably, the bees tend to visit more than one flower per inflorescence, thus promoting self-pollination (geitonogamy). Fruiting success in Brazilian plants reached 60·78 % in 2010 and 46 % in 2011. Some pollinarium-laden female bees were observed transferring pollen from the carried pollinarium to their hind legs. The use of pollen by pollinators is a rare record for Orchidaceae in general.

Conclusions

Chloraea membrancea is pollinated by deceit. Together, self-compatibility, pollinarium texture, pollinator abundance and behaviour may account for the observed high fruiting success. It is suggested that a reappraisal and re-analysis of important flower features in Chloraeinae orchids is necessary.  相似文献   

18.

Background and Aims

Floral variation, pollination biology and mating patterns were investigated in sunbird-pollinated Babiana (Iridaceae) species endemic to the Western Cape of South Africa. The group includes several taxa with specialized bird perches and it has been proposed that these function to promote cross-pollination.

Methods

Pollinator observations were conducted in 12 populations of five taxa (B. ringens subspp. ringens, australis, B. hirsuta, B. avicularis, B. carminea) and geographic variation in morphological traits investigated in the widespread B. ringens. Experimental pollinations were used to determine the compatibility status, facility for autonomous self-pollination and intensity of pollen limitation in six populations of four taxa. Allozyme markers were employed to investigate mating patterns in four populations of three species.

Key Results

Sunbirds were the primary pollinators of the five Babiana taxa investigated. Correlated geographical variation in perch size, flower size and stigma–anther separation was evident among B. ringens populations. Experimental pollinations demonstrated that B. ringens and B. avicularis were self-compatible with variation in levels of autonomous self-pollination and weak or no pollen limitation of seed set. In contrast, B. hirsuta was self-incompatible and chronically pollen limited. Estimates of outcrossing rate indicated mixed mating with substantial self-fertilization in all species investigated.

Conclusions

Despite the possession of specialized bird perches in B. ringens and B. avicularis, these structures do not prevent considerable selfing from occurring, probably as a result of autonomous self-pollination. In eastern populations of B. ringens, smaller flowers and reduced herkogamy appear to be associated with a shift to predominant selfing. Relaxed selection on perch function due to increased selfing may explain the increased incidence of apical flowers in some populations.  相似文献   

19.

Background and Aims

Adaptive explanations for variation in sex allocation centre on variation in resource status and variation in the mating environment. The latter can occur when dichogamy causes siring opportunity to vary across the flowering season. In this study, it is hypothesized that the widespread tendency towards declining fruit-set from first to last flowers on plants can similarly lead to a varying mating environment by causing a temporal shift in the quality (not quantity) of siring opportunities.

Methods

A numerical model was developed to examine the effects of declining fruit-set on the expected male versus female reproductive success (functional gender) of first and last flowers on plants, and of early- and late-flowering plants. Within- and among-plant temporal variation in pollen production, ovule production and fruit-set in 70 Brassica rapa plants was then characterized to determine if trends in male and female investment mirror expected trends in functional gender.

Key Results

Under a wide range of model conditions, functional femaleness decreased sharply in the last flowers on plants, and increased from early- to late-flowering plants in the population. In B. rapa, pollen production decreased more rapidly than ovule production from first to last flowers, leading to a within-plant increase in phenotypic femaleness. Among plants, ovule production decreased from early- to late-flowering plants, causing a temporal decrease in phenotypic femaleness.

Conclusions

The numerical model confirmed that declining fruit-set can drive temporal variation in functional gender, especially among plants. The discrepancy between observed trends in phenotypic gender in B. rapa and expected functional gender predicted by the numerical model does not rule out the possibility that male reproductive success decreases with later flowering onset. If so, plants may experience selection for early flowering through male fitness.  相似文献   

20.

Background and Aims

A plant investing in reproduction partitions resources between flowering and seed production. Under resource limitation, altered allocations may result in floral trait variations, leading to compromised fecundity. Floral longevity and timing of selfing are often the traits most likely to be affected. The duration of corolla retention determines whether fecundity results from outcrossing or by delayed selfing-mediated reproductive assurance. In this study, the role of pollination schedules and soil water availability on floral longevity and seed production is tested in Collinsia heterophylla (Plantaginaceae).

Methods

Using three different watering regimes and pollination schedules, effects on floral longevity and seed production were studied in this protandrous, flowering annual.

Key Results

The results reveal that soil water status and pollination together influence floral longevity with low soil water and hand-pollinations early in the floral lifespan reducing longevity. However, early pollinations under excess water did not extend longevity, implying that resource surplus does not lengthen the outcrossing period. The results also indicate that pollen receipt, a reliable cue for fecundity, accelerates flower drop. Early corolla abscission under drought stress could potentially exacerbate sexual conflict in this protandrous, hermaphroditic species by ensuring self-pollen paternity and enabling male control of floral longevity. While pollination schedules did not affect fecundity, water stress reduced per-capita seed numbers. Unmanipulated flowers underwent delayed autonomous selfing, producing very few seeds, suggesting that inbreeding depression may limit benefits of selfing.

Conclusions

In plants where herkogamy and dichogamy facilitate outcrossing, floral longevity determines reproductive success and mating system. Reduction in longevity under drought suggests a strong environmental effect that could potentially alter the preferred breeding mode in this mixed-mated species. Extrapolating the findings to unpredictable global drought cycles, it is suggested that in addition to reducing yield, water stress may influence the evolutionary trajectory of plant mating system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号