首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
We present an immunochemical technique for the detection of 5-bromo-2'-deoxyuridine (BrdU) incorporated discontinuously into the chromosomal DNA. A monoclonal anti-BrdU antibody and a protein A-gold complex were used to produce chromosome banding of human and equine chromosomes, specific for electron microscopy (EM). Well-defined bands, symmetry of sister chromatids, concordance between homologues, and band patterns similar to those observed by light microscopy facilitate chromosome identification and karyotyping. From prophase to late metaphase, chromosomes condense and bands appear to fuse. The fusion appears to be owing to chromatin reorganization. Our results underline the value of using immunogold reagents, which are ideal probes for antigen localization on chromosomes.  相似文献   

2.
Replication kinetics of X chromosomes in fibroblasts and lymphocytes   总被引:1,自引:1,他引:0  
Summary The kinetics of replication for early and late replicating X chromosomes in karyotypically normal fibroblasts and lymphocytes was studied using terminal bromodeoxyuridine (BrdU) treatment followed by Hoechst/light/Giemsa staining. Although the order of band appearance differs between the two tissues, the programme (order and interval between band appearances) for early replicating bands (dark R-bands) is identical in the two homologues. This is probably also the case for later replicating bands (dark G-bands) though the criteria for derermining mean band appearance times are less reliable for these bands when terminal BrdU treatment is used. This means that the late X has a delayed start but thereafter proceeds at the same pace as its early counterpart.  相似文献   

3.
Summary A high-resolution replication banding technique, dynamic GBG banding (G-bands after 5-bromodeoxyuridine [BrdUrd] and Giemsa), showed that, at a resolution of 850 bands/genome, GBG banding and GTG banding (G-bands after trypsin and Giemsa) produce almost identical patterns. RBG band (R-bands after BrdUrd and Giemsa) and RHG band (R-bands after heat denaturation and Giemsa) patterns were previously shown to be only 75%–85% coincident; thus GTG banding more accurately reflects replication patterns than does RHG banding. BrdUrd synchronization uses high concentrations of BrdUrd both to substitute early replicating DNA and to arrest cells before the late bands replicate. Release from the block is via a low thymidine concentration. The banding is revealed by the fluorochrome-photolysis-Giemsa (FPG) technique and produces the GBG banding that includes concomitant staining of constitutive heterochromatin. As opposed to other replication G-banding procedures, BrdUrd synchronization and GBG banding produces a reproducible replication band pattern. The discordance between homologs after GBG banding is similar to that after GTG banding and no lateral asymmetry of the constitutive heterochromatin has been observed. Also, BrdUrd synchronization neither significantly depresses the mitotic index, nor induces chromosome breaks. Thus, GBG banding seems as clinically useful as GTG banding and provides important information regarding replication time.  相似文献   

4.
The schematic representation of RHG-banded chromosomes (R-banding was produced by heat denaturation followed by Giemsa staining (RHG) in the 850-band range per haploid set, was prepared showing the relative position, the specific size, and the characteristic staining intensity for each band. To this idiogram was adapted the new International Standard Cytogenetic Nomenclature. Our aim was to produce a realistic idiogram which could help in the preparation of R-banded prophase karyotypes and in the localization of chromosomal rearrangements. A comparative analysis of bands at prophase and metaphase revealed certain aspects of the dynamics involved in chromosome condensation and in R-band organization. The effect of chromosome elongation on the appearance of R-bands within heterochromatic regions has also been discussed.  相似文献   

5.
Both dynamic G-banding and cell synchronization produced by bromodeoxyuridine (BrdU), were applied to equine chromosomes. BrdU incorporated during the first half of the S-phase is taken up into the R-bands that are early replicating. These bands, which have incorporated BrdU, cannot contract as usual and remain elongated; only the other regions of the chromosome, i.e., the G-bands, contract normally and are sharply defined. BrdU also can be used for cell synchronization. The addition of BrdU in a high concentration, 15 hours before harvest, and its removal 11 hours later, has two effects: initially the BrdU is incorporated during the first part of the S-phase and then it blocks the cells at mid-S-phase. Within the cell cycle, mid-S-phase appears to be the most vulnerable time to various blocking agents. To differentiate the regions of BrdU incorporation from those that have not been substituted, the fluorescence-photolysis-Giemsa (FPG) technique was applied as modified for horse chromosomes. This dynamic technique, which produces many prometaphase and prophase chromosomes showing very sharp G-bands, is certain to enhance the accuracy of cytogenetic analysis and aid in the standardization of equine chromosomes.  相似文献   

6.
OHNUKI's method for demonstrating coils in human metaphase chromosomes also reveals a fine G-band pattern on prophase chromosomes of sufficient clarity to justify an attempt at mapping. Maps are provided for each chromosome to show the maximum number of prophase bands observed, and an intermediate stage in chromosome contraction, tracing the pathways of apparent band fusion as the cell progresses to metaphase, is presented. The prophase bands on many chromosomes tend to occur in distinct groups, the members of which ultimately merge to give the dark G-bands of metaphase chromosomes. Every G-band of the standard metaphase chromosomes. Every G-band of the standard metaphase pattern is compounded from two or more prophase bands. In at least contracted prophase chromosomes examined, some bands are seen which have no obvious metaphase counterpart. There are marked similarities between banded prophases and the chromoomere pattern seen at meiotic prophase. However, since chromosome contraction is a dynamic process, agreement between maps will be expected only for corresponding degrees of chromosome contraction.  相似文献   

7.
The reaction to C-banding was investigated throughout the mitotic cycle ofCrepis capillaris (2n=6): (1) 18–22 C-bodies or C-bands were found during mid telophase and interphase to prophase and metaphase, and also 12–14 at late anaphase to early telophase in the mitotic cycle. Fewer C-bands in late anaphase to early telophase were due to the absence of minute bands; (2) large and medium sized C-bands were strongly stained by Giemsa, while small and minute bands stained palely. It is suggested that inCrepis capillaris the difference of color in C-banded segments following Giemsa staining is referable to the amount of constitutive heterochromatin rather than to the difference in the condensation and decondensation; (3) the size of C-bodies changed during telophase to interphase and prophase. It is inferred that the extent of C-bodies is regulated by both the length of DNA sequences of constitutive heterochromatin and the amount of proteins combined with C-banded DNA. It was shown that the reaction to C-banding is neither due to the differential condensation of chromatin nor to a higher concentration of DNA in the C-banded regions, in the C-banding mechanism as has been suggested so far at least.  相似文献   

8.
BrdU处理的鱼类染色体高分辨G-带带型分析   总被引:12,自引:6,他引:6  
本文应用鱼类染色体高分辨G-带技术,重点将黄鳝培养细胞具不同长度染色体的正中期分裂相做成G-带核型加以比较分析。随着染色体长度的增加,带纹数目也增加。但增加是有限度的。染色体带纹数目的增加,明显地表现在深染带再分为若干亚带。当染色体从前期向中、后期过渡收缩变短时,一些亚带融合为原来数目的带。染色体上各个带的收缩程度、收缩时间是不均等的。实验证明大剂量的BrdU不仅能阻断鱼类细胞于中S期,也可使染色体伸长、小剂量的伸长作用不明显。最后讨论了BrdU处理与G-显带的关系、染色体带纹数目相对恒定以及染色体伸长缩短问题。  相似文献   

9.
Chromosome replication was studied without synchronization in human lymphocyte and amniotic cell cultures visualizing very short 5-bromodeoxyuridine (BrdU) pulses by an immunologic technique (BAT). The findings agree in general with those facts known from earlier BrdU staining techniques. The very high sensitivity of BAT was shown to allow the detection of replication in a band where 1 in 200 nucleotides is replaced by BrdU. The main observations are: though the replication patterns after BAT appear strange the bands correspond to those described by the Paris Conference (1971). At the beginning of the S-phase a stepwise onset of replication in only a subset of R-bands is confirmed. There is a considerable difference in the sensitivity between early and late S (SE and SL) for the detection of BrdU pulses. This difference probably reflects a different spatial arrangement of chromatin in R-bands as compared with G-bands below the level of cytogenetic analysis. The use of short pulses did not reveal any additional subdivision of SE or SL. The correspondence between chromosomal bands and replicon clusters is discussed briefly with respect to the different time they need for replication.  相似文献   

10.
Late-replicating chromatin in vertebrates is repressed. Housekeeping (constitutively active) genes always replicate early and are in the early-replicating R-bands. Tissue-specific genes are usually in the late-replicating G-bands and therein almost always replicate late. Within the G-bands, however, a tissue-specific gene does replicate early in those cell types that express that particular gene. While the condition of late replication may simply be coincident with gene repression, we review evidence suggesting that late replication may actively determine repression. As mammals utilize a developmental program to Lyonize (facultatively heterochromatinize) whole X chromosomes to a late-replicating and somatically heritable repressed state, similarly another program seems to Lyonize individual replicons. In frogs, all genes begin embryogenesis by replicating during a very short interval. As the developmental potency of embryonic cells becomes restricted, late-replicating DNA gradually appears. This addition to the repertoire of gene control--i.e., repression via Lyonization of individual replicons--seems to have evolved in vertebrates with G-bands being a manifestation of the mechanism.  相似文献   

11.
Four different methods including trypsin urea, SDS and NaOH are presented for the in situ induction of G-bands and macrocoils on the chromosomes of Secale cereale, Hordeum vulgare and Vicia faba. The bands obtained were numerous and along the whole chromosome, the number of the G-bands was much interrelated with the condensation of chromosomes. The bands of homologous chromosomes in some cells were matchable. The G-banded chromosomes in late prophase have nearly reached high resolution level. When incubation periods were beyond critical time for G-banding, macrocoils were often revealed. Gyre number changed with chromosome condensation and the direction of coils has showed different patterns. Transformation of G-bands into macrocoils was first reported in plant chromosomes. Some chromosomes showing G-bands under light microscope appeared spiral patterns under scanning electron microscope. In this paper the relationship between G-bands and macrocoils in plant chromosomes is also discussed.  相似文献   

12.
The G-banding technique has not yet been broken through in studying plant chromosomes. in this paper, we have described a new banding method in Secale cereale. The rye root tips were treated with actinomycin D (40-100 μg/ml) for two hours and with colchicine (0.01%) for 0.5 hour and then fixed with methanol-acetic acid (3:1). After cell wall degradation by cellulase and pectinase, the chromosome sample were made by a hypotonic and flame-drying method (hypotonic treatment→preparation of cell suspension→dropping suspension on slide flame-drying). Following an air-drying period of about a week, the slides were incubated in trypsin-EDTA solution (0.01–0.05%) at 30℃ for 10–15 sec. and subsequently stained with Giemsa. Lots of deep stained bands along the arms of many prophase and late prophase chromosomes were seen. The position of them was obviously different from that of the C-band and the number of them was approximately in proportion to the longitude of chromosomes. Such bands were not seen in metaphase chromosomes. We thought it preferable to use prophase chromosomes to probe G-banding technique in plant and this paper has proposed a possible way for studying G-banding technique in plant chromosome. We also discuss why metaphase chromosomes of plant do not show G-bands.  相似文献   

13.
Current models of mitotic chromosome structure are based largely on the examination of maximally condensed metaphase chromosomes. Here, we test these models by correlating the distribution of two scaffold components with the appearance of prophase chromosome folding intermediates. We confirm an axial distribution of topoisomerase IIalpha and the condensin subunit, structural maintenance of chromosomes 2 (SMC2), in unextracted metaphase chromosomes, with SMC2 localizing to a 150-200-nm-diameter central core. In contrast to predictions of radial loop/scaffold models, this axial distribution does not appear until late prophase, after formation of uniformly condensed middle prophase chromosomes. Instead, SMC2 associates throughout early and middle prophase chromatids, frequently forming foci over the chromosome exterior. Early prophase condensation occurs through folding of large-scale chromatin fibers into condensed masses. These resolve into linear, 200-300-nm-diameter middle prophase chromatids that double in diameter by late prophase. We propose a unified model of chromosome structure in which hierarchical levels of chromatin folding are stabilized late in mitosis by an axial "glue."  相似文献   

14.
A N Stroud  R Nathan  S Harami 《In vitro》1975,11(2):61-68
Early chromatin condensation in interphase cells (G1) of human peripheral blood lymphocytes has been induced without virus or cell fusion by exposure to allogeneic or xenogeneic mitotic cells. The event, although similar in some ways to the phenomenon described as "premature chromosome condensation," "chromosome pulverization," and "prophasing," differs in that it does not require the presence of viruses and cell fusion before mitosis proceeds in the G1 cell. Early chromatin condensation in interphase cells induced by mitotic cells only, consists of chromatids in the early or late G1 phase of the cell cycle that are not pulverized or fragmented at mitosis. Some of the chromosomes are twice as long as the metaphase chromosomes and exhibit natural bands. Almost twice as many of these bands are produced as by trypsin treatment of metaphase chromosomes. The nuclear membrane is intact and nucleoli are present, to which some chromosomes are attached. The DNA content of the precocious chromosomes in G1 is half the amount of the metaphase complement.  相似文献   

15.
The characterization of high-resolution G-banded chromosomes of man   总被引:26,自引:0,他引:26  
The detailed characterization of G-banding patterns of high resolution human chromosomes has been possible with the utilization of a refined cell synchronization technique which routinely yields a large number of excellent quality cells in late prophase, prometaphase, early metaphase, and mid-metaphase. These mitotic cells exhibit up to a 400% increase in the number of bands previously visualized by standard methods. From studies of the banding patterns, it has become evident that the G-positive and, to some extent, the G-negative bands of mid-metaphase results from a coalescence of finer subbands of earlier stages and that each band and its corresponding subbands maintain a constant location throughout the process of chromosome condensation. A precise schematic representation of the number, position, height and staining intensity of bands is presented for the five largest chromosomes of the complement at the four mitotic stages.  相似文献   

16.
玉米染色体G-带ASG法显带的研究   总被引:10,自引:4,他引:6  
两个自交系的根尖染邑体经ASG法处理显出了G-带。王米G-带沿整个染色体长轴分布,是一些密切邻近的多重带纹。无论有丝分裂的晚前期、早中期或中期染色体都有这类带纹。每一对同源染色体的两成员G-带带型基本相似,不同染色体或同一染色体的不同区域带纹具有一定的差异。ASG处理前用α-溴萘或放线菌素D预处理都可显出G-带。本文讨论了玉米G-带与哺乳动物G-带的相似点以及用ASG法进行玉米G-带显带应注意的技术问题。  相似文献   

17.
Muntjac prophase and metaphase chromosomes were G-banded following methotrexate-mediated synchronization of peripheral lymphocytes. Bands and subbands were characterized from prophase through metaphase, and the progression of band patterns from late prophase to mid-metaphase was analyzed. Extended prophase chromosomes exhibited more bands and subbands, a number of which became fused with each other, giving rise to fewer and thicker bands in the condensed metaphase chromosomes. It appeared that the dark bands condensed relatively more than the light bands. Precise delineation of the bands and subbands on extended prophase chromosomes and the usage of a proposed banding pattern nomenclature should aid in better detection and localization of induced chromosomal rearrangements with this extremely useful experimental material.  相似文献   

18.
本文用BrdU风油精法进行了荞麦染色体G带显带研究,在其有丝分裂晚前期,早中期和中期的染色体上均显示出了G带带纹。但是,随着分裂时期的进展,染色体上出现的带纹数目依次减少。BrdU和风油精在染色体显带中的作用是使染色体伸长,并增大染色体线性区段间的差异,故显示出G带。  相似文献   

19.
Structural investigation and morphometry of meiotic chromosomes by scanning electron microscopy (in comparison to light microscopy) of all stages of condensation of meiosis I + II show remarkable differences during chromosome condensation in mitosis and meiosis I of rye (Secale cereale) with respect to initiation, mode and degree of condensation. Mitotic chromosomes condense in a linear fashion, shorten in length and increase moderately in diameter. In contrast, in meiosis I, condensation of chromosomes in length and diameter is a sigmoidal process with a retardation in zygotene and pachytene and an acceleration from diplotene to diakinesis. The basic structural components of mitotic chromosomes of rye are "parallel fibers" and "chromomeres" which become highly compacted in metaphase. Although chromosome architecture in early prophase of meiosis seems similar to mitosis in principle, there is no equivalent stage during transition to metaphase I when chromosomes condense to a much higher degree and show a characteristic "smooth" surface. No indication was found for helical winding of chromosomes either in mitosis or in meiosis. Based on measurements, we propose a mechanism for chromosome dynamics in mitosis and meiosis, which involves three individual processes: (i) aggregation of chromatin subdomains into a chromosome filament, (ii) condensation in length, which involves a progressive increase in diameter and (iii) separation of chromatids.  相似文献   

20.
RHG-bands (heat-denatured Giemsa R-bands) of human prophase chromosomes were analyzed at high resolution, and the banding patterns at prophase and metaphase are presented. The bands were compared with those of the International Standard Cytogenetic Nomenclature idiograms and of the G-band idiograms proposed by J. J. Yunis. The number, size, and position of the RHG-bands correspond rather well with their equivalent G-negative bands, but some differences were noted in the zones of preferential stretching, the juxtacentromeric regions, and the telomeres. Variations in the centromere index and the banding pattern in heterochromatin were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号