首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells. To study this phenomenon in breast cancer cells, we selected methionine-independent-resistant cell lines derived from MDAMB468 breast cancer cells. Resistant cells grew normally in Met-Hcy+ media, whereas their parental MDAMB468 cells rapidly arrest in the G1 phase. Remarkably, supplementing Met-Hcy+ growth media with S-adenosylmethionine suppressed the cell proliferation defects, indicating that methionine stress is a consequence of SAM limitation rather than low amino acid concentrations. Accordingly, mTORC1 activity, the primary effector responding to amino acid limitation, remained high. However, we found that levels of the replication factor Cdc6 decreased and pre-replication complexes were destabilized in methionine-stressed MDAMB468 but not resistant cells. Our study characterizes metabolite requirements and cell cycle responses that occur during methionine stress in breast cancer cells and helps explain the metabolic uniqueness of cancer cells.  相似文献   

2.
S-adenosylmethionine (SAM) has been shown to provoke repression of some methionine-specific enzymes in wild-type cells, namely, adenosine triphosphate sulfurylase, sulfite reductase, and homocysteine synthetase. Repressive effects observed in SAM-supplemented cultures should be due to SAM per se, since the intracellular pool of SAM increases while the intracellular pool of methionine remains low and constant. Derepression brought about by methionine limitation is accompanied by a severe decrease in SAM as well as methionine pool sizes, although methionine adenosyl transferase is slightly derepressed. Different hypotheses have been considered to account for the previously reported implication of methionyl transfer ribonucleic acid and the presently reported SAM effects in this regulatory process.  相似文献   

3.
《Autophagy》2013,9(2):386-387
Cells respond to the deprivation of nutrients by inducing autophagy. However, mechanisms through which cells coordinately regulate autophagy with metabolic state remain incompletely understood. We previously observed that prototrophic strains of yeast induce autophagy upon switch from a rich to minimal medium in the absence of severe nitrogen starvation. We determined that the sulfur-containing amino acid methionine and its downstream metabolite S-adenosylmethionine (SAM) are sufficient to strongly inhibit such autophagy. These metabolites function through Ppm1, an enzyme that methylates the catalytic subunit of the protein phosphatase PP2A. As such, methionine and SAM act as critical signals of amino acid sufficiency that reciprocally regulate autophagy and cell growth by modulating the methylation status of PP2A.  相似文献   

4.
Cells respond to the deprivation of nutrients by inducing autophagy. However, mechanisms through which cells coordinately regulate autophagy with metabolic state remain incompletely understood. We previously observed that prototrophic strains of yeast induce autophagy upon switch from a rich to minimal medium in the absence of severe nitrogen starvation. We determined that the sulfur-containing amino acid methionine and its downstream metabolite S-adenosylmethionine (SAM) are sufficient to strongly inhibit such autophagy. These metabolites function through Ppm1, an enzyme that methylates the catalytic subunit of the protein phosphatase PP2A. As such, methionine and SAM act as critical signals of amino acid sufficiency that reciprocally regulate autophagy and cell growth by modulating the methylation status of PP2A.  相似文献   

5.
Using a minimal medium containing a methionine analog together with a small amount of S-adenosylmethionine (SAM), many SAM requiring mutants which responded only to SAM and not to methionine, S-adenosylhomocysteine, or homocysteine were efficiently isolated from Corynebacterium glutamicum TLD-140 after mutagenesis. Among them, SAM-14 and SAM-19 selected from selenomethionine resistant mutants were subjected to further investigation. Both mutants were unable to grow in a minimal medium and had no detectable activity of SAM synthetase. Both mutants acquired higher resistance to methionine hydroxamate and ethionine as well as to selenomethionine than TLD-140 and produced l-methionine in a medium.

Homoserine-O-transacetylase in SAM-19 was subject to full repression by the addition of excess SAM to the growth medium and was not repressed under SAM limitation, whereas addition of excess l-methionine under SAM limitation caused a partial repression of the enzyme. SAM synthetase as well as l-methionine biosynthetic enzymes in a methionine auxotroph of C. glutamicum was repressed by the addition of l-methionine to the growth medium.

These results suggest that SAM is implicated in the repression of l-methionine synthesizing enzymes in C. glutamicum.  相似文献   

6.
甲硫氨酸(methionine)作为人体必需氨基酸,生理功能多样,在肿瘤代谢重编程过程中具有重要意义。研究发现,多种肿瘤细胞对外源性甲硫氨酸存在依赖性,该效应被称为Hoffman效应。在人体内,甲硫氨酸经甲硫氨酸循环代谢,参与一碳单位代谢、叶酸循环,以及多胺、谷胱甘肽、半胱氨酸和核苷酸等多种物质的合成。肿瘤中常出现甲硫氨酸代谢的改变,并伴随甲硫氨酸代谢相关酶基因表达的异常,其中以甲硫氨酸腺苷转移酶(methionine adenosyltransferase, MAT)相关基因表达改变及甲硫腺苷磷酸化酶(methylthioadenosine phosphorylase,MTAP)基因的缺失最为常见,二者可分别引起甲硫氨酸循环及甲硫氨酸补救合成途径的异常,进而导致甲基供体S-腺苷甲硫氨酸(S-adenosylmethionine, SAM)的生成减少和甲硫腺苷(methylthioadenosine, MTA)的堆积,其与肿瘤的发生、发展和转移等活动密切相关。由甲硫氨酸的代谢改变和代谢酶的基因表达异常,分别衍生出2种不同的治疗策略,即甲硫氨酸限制疗法和靶向治疗。本文将从甲硫氨酸代谢出发,阐述肿瘤中甲硫氨酸依懒性、肿瘤细胞MAT和MTAP相关基因的表达调控,并概述甲硫氨酸相关肿瘤治疗方案的新进展与新问题,为肿瘤治疗方案的进一步探索提供新思路。  相似文献   

7.
Whether long interspersed nuclear element‐1 (LINE‐1) hypomethylation induced by reactive oxygen species (ROS) was mediated through the depletion of S‐adenosylmethionine (SAM) was investigated. Bladder cancer (UM‐UC‐3 and TCCSUP) and human kidney (HK‐2) cell lines were exposed to 20 μM H2O2 for 72 h to induce oxidative stress. Level of LINE‐1 methylation, SAM and homocysteine (Hcy) was measured in the H2O2‐exposed cells. Effects of α‐tocopheryl acetate (TA), N‐acetylcysteine (NAC), methionine, SAM and folic acid on oxidative stress and LINE‐1 methylation in the H2O2‐treated cells were explored. Viabilities of cells treated with H2O2 were not significantly changed. Intracellular ROS production and protein carbonyl content were significantly increased, but LINE‐1 methylation was significantly decreased in the H2O2‐treated cells. LINE‐1 methylation was restored by TA, NAC, methionine, SAM and folic acid. SAM level in H2O2‐treated cells was significantly decreased, while total glutathione was significantly increased. SAM level in H2O2‐treated cells was restored by NAC, methionine, SAM and folic acid; while, total glutathione level was normalized by TA and NAC. Hcy was significantly decreased in the H2O2‐treated cells and subsequently restored by NAC. In conclusion, in bladder cancer and normal kidney cells exposed to H2O2, SAM and Hcy were decreased, but total glutathione was increased. Treatments with antioxidants (TA and NAC) and one‐carbon metabolites (SAM, methionine and folic acid) restored these changes. This pioneer finding suggests that exposure of cells to ROS activates glutathione synthesis via the transsulfuration pathway leading to deficiency of Hcy, which consequently causes SAM depletion and eventual hypomethylation of LINE‐1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and sensitive assay for S-adenosylmethionine (SAM) synthetase is described which depends on the quantitative separation of the product, [14CH3]S-adenosylmethionine, from the substrate, L-[14CH3]methionine, on a Bio-Rex 70 column. L-Methionine protects the enzyme during preparation of cell extracts by sonic treatment but causes repression of enzyme activity during growth of Candida utilis. The presence of 5 mM methionine in the growth medium repressed SAM synthetase specific activity threefold compared to the specific acitivity of the enzyme isolated from cells grown in unsupplemented medium. Conversely, the presence of methionine in the growth medium resulted in an 80-fold increase in the intracellular concentration of SAM as compared to the Sam accumulated intracellularly in unsupplemented cultures.  相似文献   

9.
We have investigated the enzymatic formation of S-adenosylmethionine in extracts of a variety of normal and oncogenically-transformed human and rat cell lines which differ in their ability to grow in medium in which methionine is replaced by its immediate precursor homocysteine. We have localized the bulk of the S-adenosylmethionine synthetase activity to the post-mitochondrial supernatant. We show that in all cell lines a single kinetic species exists in a dialyzed extract with a Km for methionine of about 3-12 microM. In selected lines we have demonstrated a requirement for Mg2+ in addition to that needed to form the Mg X ATP complex for enzyme activity and have shown that the enzyme can be regulated by product feedback inhibition. Because we detect no differences in the enzymatic ability of these cell extracts to utilize methionine for S-adenosylmethionine formation in vitro, we suggest that the failure of oncogenically-transformed cell lines to grow in homocysteine medium may result from the decreased methionine pools in these cells or from the loss of ability of these cells to properly metabolize homocysteine, adenosine, or their cellular product S-adenosylhomocysteine.  相似文献   

10.
A pantothenate-methionine auxotroph (J741) of Pseudomonas denitrificans was isolated whose growth requirement for methionine could not be satisfied by known precursors of the amino acid, including homocysteine. However, some "methyl rich" compounds such as betaine and dimethylacetothetin (DMT) could satisfy the requirement. S-Methyl-methionine and S-adenosylmethionine were ineffective. Extracts were found to contain an enzyme, betaine-homocysteine transmethylase (BHTase), that uses betaine or DMT as a methyl donor and homocysteine as an acceptor to produce methionine. Growth of J741 in methionine leads to a total repression of the BHTase, whereas the use of DMT leads to a three- to sixfold stimulation of enzyme synthesis compared to betaine-grown cells. The pantothenate requirement is unrelated to the methionine auxotrophy, since the growth of other single auxotrophic mutants as well as revertants of J741 still have their methionine requirement satisfied by betaine or DMT. Another methionine auxotroph that could not use betaine for growth was devoid of BHTase activity.  相似文献   

11.
This paper deals with the confirmation of the existence of a cobalamin-dependent terminal step in the methionine synthesis, that is, the methyl transfer from N5-CH3-H4-folate to homocysteine to form methionine, in the cell-free extracts of Streptomyces olivaceus 605.

This transmethylation reaction required a reducing system and S-adenosylmethionine (SAM) as cofactors.

Methionine formation from serine was observed in the cell-free system and thus this reaction is considered to participate in a series of one-carbon metabolism from serine.  相似文献   

12.
Our aim was to determine if the selection of human tumor cells with enhanced anchorage-independent growth capacity was associated with alterations in methionine auxotrophy. Cells with an increased ability to form colonies on soft agarose were selected from human melanoma (MeWo) and neuroepithelioma (SK-N-MC) cell lines. In contrast to their respective parental lines, a high proportion of the agarose-selected variants were completely unable to proliferate in methionine-free medium containing its immediate precursor homocysteine. The variants exhibited no significant change in their total DNA 5-methylcytosine content and showed no stimulation of either RNA or DNA synthesis upon the addition of homocysteine when the cells were cultured in methionine-free medium. These variants were unable to synthesize [3H]S-adenosylmethionine from [3H]adenine and homocysteine. The failure to detect the accumulation of [3H]S-adenosylmethionine in these variant lines was not likely due to the enhanced turnover of S-adenosylmethionine but rather to a reduced ability to synthesize methionine from homocysteine and 5-methyltetrahydrofolic acid. These results support our hypothesis that alterations in the metabolism of methionine and/or intracellular transmethylating activities may contribute to, or be associated with, the autonomous growth of malignant human tumor cells.  相似文献   

13.
Abstract. Folate deficiency will induce abnormal deoxynucleoside triphosphate (dNTP) metabolism because folate-derived one-carbon groups are essential for de novo synthesis of purines and the pyrimidine, thymidylate. Under conditions of methionine deprivation, a functional folate deficiency for deoxynucleoside triphosphate synthesis is induced as a result of the irreversible diversion of available folates toward endogenous methionine resynthesis from homocysteine. The purpose of the present study was to examine the effect of nutritional folate and/or methionine deprivation in vitro on intracellular dNTP pools as related to DNA synthesis activity and cell cycle progression. Primary cultures of mitogen-stimulated rat splenic T-cells were incubated in complete RPMI 1640 medium or in custom-prepared RPMI 1640 medium lacking in folic acid and/or methionine. Parallel cultures, initiated from the same cell suspension, were analysed for deoxyribonucleotide pool levels and for cell proliferation. The distribution of cells within the cell cycle was quantified by dual parameter flow cytometric bromodeoxyuridine/propidium iodide DNA analysis which allows more accurate definition of DNA synthesizing S-phase cells than the traditional DNA-specific staining with propidium iodide alone. Relative to cells cultured in complete RPMI 1640 media, the cells cultured in media deficient in folate, methionine or in both nutrients manifested increases in the deoxythymidylate pool and an apparent depletion of the deoxyguanosine triphosphate pool. Both adenosine triphosphate and nicotinamide adenine diphosphate levels were significantly reduced with single or combined deficiencies of folate and methionine. These nucleotide pool alterations were associated with a decrease in the proportion of cells actively synthesizing DNA and an increase in cells in G2+ M phase of the cell cycle. Folate deprivation in the presence of adequate methionine produced a moderate decrease in DNA synthesizing cells over the 68 h incubation. However, methionine deprivation, in the presence or absence of folate, severely compromised DNA synthesis activity. These results are consistent with the established ‘methyl trap’ diversion of available folates towards the resynthesis of methionine from homocysteine and away from nucleotide synthesis. The data confirm the metabolic interdependence of folic acid and methionine and emphasize the pivotal role of methionine on the availability of folate one-carbon groups for deoxynucleotide synthesis. The decrease in DNA synthesis activity under nutrient conditions that negatively affect nucleotide biosynthesis suggest a possible role for abnormal dNTP metabolism in the regulation of cell cycle progression and DNA synthesis.  相似文献   

14.
Methylenetetrahydrofolate reductase (MTHFR; EC 1.5.1.20) is the sole enzyme responsible for generation of 5-methyltetrahydrofolate, which is required for methionine synthesis and provision of methyl groups via S-adenosylmethionine. Genome analysis showed that Leishmania species, unlike Trypanosoma brucei and Trypanosoma cruzi, contain genes encoding MTHFR and two distinct methionine synthases. Leishmania MTHFR differed from those in other eukaryotes by the absence of a C-terminal regulatory domain. L. major MTHFR was expressed in yeast and recombinant enzyme was produced in Escherichia coli. MTHFR was not inhibited by S-adenosylmethionine and, uniquely among folate-metabolizing enzymes, showed dual-cofactor specificity with NADH and NADPH under physiological conditions. MTHFR null mutants (mthfr(-)) lacked 5-methyltetrahydrofolate, the most abundant intracellular folate, and could not utilize exogenous homocysteine for growth. Under conditions of methionine limitation mthfr(-) mutant cells grew poorly, whereas their growth was normal in standard culture media. Neither in vitro MTHFR activity nor the growth of mthfr(-) mutants or MTHFR overexpressors were differentially affected by antifolates known to inhibit parasite growth via targets beyond dihydrofolate reductase and pteridine reductase 1. In a mouse model of infection mthfr(-) mutants showed good infectivity and virulence, indicating that sufficient methionine is available within the parasitophorous vacuole to meet the needs of the parasite.  相似文献   

15.
The effects of media vitamin B12(CNB12), l-methionine, folic acid, dl-5-methyltetrahydrofolate (5-MeH4folate), homocysteine, and other nutrients on four one-carbon enzymes in cultured Chinese hamster ovary (CHO) cells were examined. Excess 10 mm methionine elevates the amount of B12 methyltransferase 1.8 – 2.3-fold at media folate concentrations of 0.2 – 2.0 μm. Conversely, excess 100 μm folic acid increases the amount of B12 holoenzyme by 2.4 – 3.0-fold when the medium contains 0.01 – 0.1 mm methionine. These increases in B12 methyltransferase promoted by 100 μm media folate and 10 mm methionine are inhibited by cycloheximide. 5-MeH4folate will support growth and induce methyltransferase synthesis more efficiently than folic acid.Upon transfer to methionine-free media, wild-type CHO cells will survive and can be repeatedly subcultured in the absence of exogenous methionine, provided it is supplemented with 1.0 μm CNB12, 0.1 mm homocysteine, and 100 μm folic acid or 10 μm dl-5-MeH4folate. No growth occurs if homocysteine is omitted, but a requirement for added CNB12 does not become evident until the cells have undergone at least two or three divisions. Survival upon transfer from 0.1 mm methionine-containing to methionine-free media is dependent upon the B12 holomethyltransferase content of the cells used as an inoculum. Inoculum cells must have been previously grown in media supplemented with 1.0 μm CNB12 to stabilize and convert apo- to holomethyltransferase, and 100 μm folate (or 10 μm dl-5-MeH4folate) to induce maximal enzyme-protein synthesis. Transfer to methionine-deficient medium does not result in more than a 20–25% increase in the cellular B12 enzyme content over the level already induced by 100 μm folate in 0.1 mm methionine-supplemented media. A mutant auxotroph CHO AUXB1 with a triple growth requirement for glycine + adenosine + thymidine (McBurney, M. W., and Whitmore, G. F. (1974) Cell, 2, 173) cannot survive in media lacking exogenous methionine. High concentrations of media folic acid or dl-5-MeH4folate fail to induce elevated amounts of B12 methyltransferase in this mutant. Excess 10 mm medium methionine does, however, elevate its B12 enzyme as in the parent CHO cells. An additional mutant AUXB3 that requires glycine + adenosine (McBurney, M. W., and Whitmore, G. F. (1974) Cell, 2, 173) barely survives in methionine-deficient media. It has a folate-induced B12 enzyme level intermediate between wild-type CHO cells and AUXB1. The level of B12 methyltransferase induced by high media folate concentrations is a critical determinant of CHO cell survival in methionine-free media.  相似文献   

16.
The enzyme N5-methyltetrahydrofolate:homocysteine methyltransferase (methionine synthetase) catalyzes the synthesis of methionine from homocysteine. Methylcobalamin is a cofactor for the reaction. The effects of methionine deprivation and methylcobalamin supplementation on the growth of normal and transformed rat liver epithelial cell lines were determined using growth constants to quantitate cell proliferation. No marked specific requirement by the transformed cell lines for methionine relative to leucine was observed. A sigmoidal relationship, however, was found to exist between growth constants and the logarithms of the amino acid concentrations for both normal and transformed cells. Methylcobalamin stimulated the growth rates of the normal and transformed liver cells in methionine-deficient, homocysteine-containing medium. Growth on methionine was not increased by the addition of methylcobalamin. The growth constants for two normal, two spontaneously transformed, one chemically transformed, and one tumor cell line grown in medium in which methionine was replaced by homocysteine were found to be proportional to the level of methionine synthetase. The results demonstrate the utility of growth quantitation to study the methionine dependency of transformed cells.  相似文献   

17.
The methionine (MET) derivative, S-adenosylmethionine (SAM), provides methyl-groups for methylation reactions in many neural processes. In rats made diabetic with streptozotocin (SZ), brain SAM levels were generally lower (10–20%) than in controls, with a constant decrease being observed five weeks after onset of diabetes. This decrease in SAM levels may be due to reduced precursor (MET) availability because greatly elevating plasma MET concentrations in SZ diabetic rats by dietary manipulation increased their neural SAM concentrations to be approximately or even greater than (5–20%) those of controls. In contrast, neural levels of SAM's demethylated product, S-adenosylhomocysteine (SAH), were reduced to a greater extent (17–44%) than SAM levels in all groups of SZ diabetic rats independent of their plasma MET concentrations or brain SAM levels. This indicates that the decrease in SAH levels is not simply due to substrate (SAM) restriction. These changes in MET metabolites appear to be a general effect of diabetes rather than a non-pancreatic side-effect of SZ, because genetically diabetic BB Wistar rats also exhibited reduced brain SAM (25%) and brain SAH (46%) levels. These results indicate that methyl-groups from MET are handled differently in the brain of the diabetic rat, which considering the variety and importance of neural methylation reactions, could have important consequences for the diabetic.Abbreviations MET methionine - SAM S-adenosylmethionine - SAH S-adenosylhomocysteine - SZ streptozotocin - BBW BB Wistar - LNAA large neutral amino acids - BCAA branchedchain amino acids - MET:BCAA methionine to branched-chain amino acid ratio - MET:LNAA methionine to large neutral amino acid ratio  相似文献   

18.
Three metE mutations of Bacillus subtilis, which cause cells to have a 25- to 200-fold decrease in L-methionine S-adenosyltransferase (EC 2.5.1.6) activity, were mapped between bioB and thr. The corresponding three metE mutants contained three- to fourfold less intracellular S-adenosylmethionine (SAM) but at least sevenfold more methionine than the metE+ strain when grown in synthetic medium. This indicates a strong feedback control of SAM on its synthesis. However, only the metE2 strain, with the lowest SAM concentration, grew at a slightly lower rate than the parent, which showed that an intracellular concentration of about 25 microM SAM was critical for growth at the normal rate. Neither DNA methylation (measured by bacteriophage luminal diameter 105 restriction) nor sporulation was affected at this low SAM concentration. Addition of methionine to the growth medium caused an increase in the pool of SAM in some but not all metE mutants. Coaddition of adenine did not change this result. However, the extent of sporulation (induced by mycophenolic acid) was decreased 50-fold in all mutants by the addition of methionine and adenine. Therefore, the combination of methionine and adenine suppresses sporulation regardless of whether it causes an increase in the level of SAM.  相似文献   

19.
Summary ATP-sulfurylase, cysteine synthase, homocysteine synthase, arylsulfatase and -cystathionase in Saccharomycopsis lipolytica are repressed on the addition of methionine, homocysteine or cysteine to the growth medium. The use of appropriate mutants enabled us to demonstrate that the synthesis of these enzymes is regulated by the system involving at least two low-molecular weight effectors — most likely cysteine and methionine (or their close derivatives).Abbreviations SAM S-adenosylmethionine - OAS O-acetyl-L-serine - OAH O-acetyl-L-homoserine  相似文献   

20.
S-Adenosylmethionine (SAM, AdoMet) is the most important methyl donor used for synthesis of nucleic acids, phospholipids, creatine, and polyamines and for methylation of many bioactive molecules. The metabolic response of the lung to oxidative stress of hyperoxia requires increased RNA and protein synthesis for energy metabolism, growth arrest, and antioxidant defense. We studied the production of SAM and other aspects of methionine metabolism in lung epithelial cells exposed to hyperoxia. Human lung epithelial-like (A549) and primary small airway epithelial (SAE) cells were exposed to normoxia (21% O(2)) or hyperoxia (95% O(2)). Cell methionine and S-adenosylmethionine content increased in response to hyperoxia in SAE and A549 cells. Because methionine adenosyl transferase (MAT) is the rate-limiting enzyme of the pathway, we examined the expression of a lung epithelial isoform of MAT 2A in hyperoxia. Western blots revealed a novel MAT 2A isoform expressed in both cell types, with a lower molecular mass than that described in Jurkat cells. Cloning and sequencing of the MAT 2A cDNA revealed one silent nucleotide substitution compared to that expressed in Jurkat. The lower mass of MAT 2A in both lung epithelial cells indicated that the absence of the major posttranslational modification of MAT 2A found in Jurkat. MAT 2A protein progressively increased during hyperoxic exposure in both transformed and primary lung epithelium. Increased flux of (13)C-labeled methionine to S-adenosylhomocysteine (SAH) in A549 demonstrated that SAM's methyl group was utilized, and increased formation of cystathionine indicated that at least part of SAM generated was directed toward cysteine/GSH in the transsulfuration pathway. These results indicate activation of MAT 2A and the transmethylation pathway in the metabolic response to hyperoxia in lung epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号