首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
While herbivory is recognized as a fundamental process structuring coral reef communities, herbivore assemblages and processes are poorly described for reefs in the Indian Ocean region. We quantified herbivorous fish assemblage structure (abundance and diversity) in Laamu Atoll, Republic of Maldives, in four reef habitat types: faro reef flats, faro reef slopes, inner and outer atoll reef slopes (20 sites in total). Herbivorous fish assemblages, representing a total of 30 species, grouped strongly by habitat type, with the highest absolute abundance observed on faro reef flats and lowest abundance on inside atoll rim reef slopes. Removal of Thalassia seagrass blades by ambient herbivore assemblages was used in a bioassay to assess relative herbivory pressure among four habitat types (eight sites). Also, at one site a choice herbivory assay was performed to assess herbivore preference among four benthic plants across three depth zones. Relative herbivory, as indicated by Thalassia assays, was highest on inside atoll rim reef slopes and lowest on outside atoll rim reef slopes. Thalassia consumption did not correspond to overall herbivorous fish abundance, but corresponded more closely with parrotfish abundance. In the choice assays, herbivores showed strong preferences among plant types and consumption of most plant types was higher at mid-depth than in the shallow reef flat or deep reef knoll zones.  相似文献   

2.
Macroalgal phase shifts on Caribbean reefs have been reported with increasing frequency, and recent reports of these changes on mesophotic coral reefs have raised questions regarding the mechanistic processes behind algal population expansions to deeper depths. The brown alga Lobophora variegata is a dominant species on many shallow and deep coral reefs of the Caribbean and Pacific, and it increased in percent cover (>50%) up to 61 m on Bahamian reefs following the invasion of the lionfish Pterois volitans. We examined the physiological and ecological constraints contributing to the spread of Lobophora on Bahamian reefs across a mesophotic depth gradient from 30 to 61 m, pre‐ and post‐lionfish invasion. Results indicate that there were no physiological limitations to the depth distribution of Lobophora within this range prior to the lionfish invasion. Herbivory by acanthurids and scarids in algal recruitment plots at mesophotic depths was higher prior to the lionfish invasion, and Lobophora chemical defenses were ineffective against an omnivorous fish species. In contrast, Lobophora exhibited significant allelopathic activity against the coral Montastraea cavernosa and the sponge Agelas clathrodes in laboratory assays. These data indicate that when lionfish predation on herbivorous fish released Lobophora from grazing pressure at depth, Lobophora expanded its benthic cover to a depth of 61 m, where it replaced the dominant coral and sponge species. Our results suggest that this chemically defended alga may out‐compete these species in situ, and that mesophotic reefs may be further impacted in the near future as Lobophora continues to expand to its compensation point.  相似文献   

3.
We examined coral reef communities at 11 sites within Mafia Island Marine Park using a point count method for substrate and visually censused belt transects for fish populations. Multivariate ordinations showed that the benthic habitat differed among reefs. The patterns were mainly attributed to variations in depth, hydrodynamics and benthic composition. In total, the substratum was dominated by dead coral (49%) and algae (25%), with a live coral cover of only 14%. Three hundred and ninety-four fish species belonging to 56 families were recorded. According to MDS-ordinations and RELATE procedures, fish assemblage composition varied among sites in concordance with the habitats provided. Sites with highest proportion of dead coral exhibited highest degree of dispersion in the multivariate ordinations of fish assemblages. Stepwise multiple regression was used to determine the proportion of variance among sites which could be explained by depth, exposure, rugosity, substrate diversity, branching substrate, live coral cover, dead coral cover and different types of algae. The results showed that habitat variables explained up to 92% of the variation in species numbers and in total, and taxon-specific, abundance. Live coral cover was the foremost predictor of both numerical and species abundance, as well as of corallivores, invertivores, planktivores and of the families Pomacentridae, Chaetodontidae and Pomacanthidae. Our results suggest that habitat characteristics play a dominant role in determining fish assemblage composition on coral reefs.  相似文献   

4.
Collections of fish assemblages from streams in the midwestern United States were used to examine assemblage-level effects of spatial variation in relative abundance of the red shiner, Cyprinella lutrensis, a widespread and highly abundant minnow species. This species has been widely introduced outside its native range and is suspected to have impacted local assemblages where it has become established. Given its overall dominance of midwest fish assemblages, and its suspected impact on assemblage structure, we asked if structure of the residual fish assemblages (red shiners excluded) was a function of the relative abundance of red shiners throughout the native range of C. lutrensis in the USA. Although red shiner ranked first in abundance in half of the assemblages and numerically dominated 28% of the assemblages, red shiner relative abundance in an assemblage had no detectable effect on richness, diversity, evenness, or complexity of other (residual) species in the assemblage. Relative abundance of red shiners did have a positive effect on the abundance of benthic minnows in the residual assemblage, but not on water column minnows that are ecologically most like red shiners. Environmental factors did not explain a significant amount of the variation in relative abundance of red shiners, but did explain some variation in residual assemblage structure. Although widespread and numerically dominant at many localities, red shiners do not appear to have a strong impact on local fish assemblage structure within their native range. This is in sharp contrast to the reported negative effects of red shiners on fish assemblages where they have been introduced outside their native range.  相似文献   

5.
6.

The green macroalga Caulerpa filiformis has been spreading on shallow soft sediment habitats along the Peruvian coast, colonizing previously unvegetated sediments to create monospecific meadows. We examined the nature of the impact of C. filiformis meadows on the density, taxonomic richness and assemblage structure of epifaunal and infaunal benthic macroinvertebrates. Specifically, we tested whether the spread of C. filiformis has resulted in different macroinvertebrate assemblages than those formed by the dominant native macroalgae (i.e., Rhodymenia spp.) and unvegetated sediments. Surveys were undertaken in two bays in each of two locations, in central and southern Peru, during winter 2017 and summer 2018. In general, our results show that macroinvertebrate assemblages were similar across all three habitats, although there were some differences, related to location and time, but with no clear patterns observed. Taxonomic richness and density was generally higher in the vegetated habitats than the unvegetated habitat, and where there were differences between the two vegetated habitats there was no consistent pattern of which habitat supported the highest richness or density. Given invading C. filiformis is primarily colonizing unvegetated habitats it would appear that this species is creating a new niche which supports similar assemblages, but higher taxonomic richness and density than unvegetated habitats. While our study suggests that C. filiformis is having a limited ecological impact we recommend that actions be put in place to limit the spread of this invasive species at the same time as increasing monitoring of the ecological impacts of this species as lags in the ecological impacts of invasive species are common.

  相似文献   

7.
The abundance and size structure of wild fishes aggregated around the sea‐cages of two commercial Thunnus thynnus farms, including control locations, were assessed and compared over a 1 year period. The T. thynnus farms were located in the eastern Adriatic Sea, offshore of the islands of Ugljan and Bra?. Fish assemblages were evaluated through visual census using scuba at 2 month intervals at two sites within each farm. The data suggest that wild fish assemblages at the study sites differed greatly; 20 species occurred at the Ugljan farm and 17 at the Bra? farm, while only seven species were observed at the control locations. The abundance and diversity of wild fish assemblages were greater at the farms in comparison to control locations. The most abundant families were Sparidae and Belonidae (>80% of aggregated fishes). At both farms, the abundance and diversity of wild fishes were highest during summer, while diversity was lowest in winter and was mainly characterized by schools of bogue Boops boops and garfish Belone belone. Variability was also detected in spatial assemblages between farms; B. boops and B. belone were the most abundant species for the overall study at the Bra? farm, while B. belone and saddled bream Oblada melanura were the most abundant at the Ugljan farm. The settlement also played a significant role in farm‐associated fish assemblages, as both juveniles and advanced juveniles were common residents at farms. The majority of species which settled at the farms belonged to the sparids. Results indicate that aggregations of wild fishes at T. thynnus farms are persistent year‐round, though the assemblage compositions and size structures of dominant species vary in respect to location and season.  相似文献   

8.
In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5 years) and old (>6 years) shell and rock substrate reefs. Using crab traps, gill‐nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5 m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.  相似文献   

9.
1. Quantitative palaeolimnology has traditionally sought to quantify species‐environment relationships to use alterations in biological assemblages to reflect past environmental change. Transfer functions have used regression techniques, such as weighted averaging, to define taxon optima and tolerance for a single chemical or biological variable. 2. Cladoceran assemblages and their sub‐fossil remains in shallow lakes are shaped by a combination of interacting factors. Partial constrained ordination of sub‐fossil cladoceran assemblages from 39 shallow lakes (29 in Norfolk, U.K. and 10 in Denmark) indicated that both zooplanktivorous fish (ZF) density and submerged macrophyte abundance significantly influenced community composition. These dual structuring forces precluded the use of a transfer function as one of the key assumptions of this approach was not met, namely that environmental variables apart from the variable being modelled have negligible influence on species distribution or that there is a linear relationship between the two. Separate transfer functions for ZF and macrophyte abundance were developed but had poor performance diagnostics with low bootstrapped r2, high root mean square error of prediction (RMSEP) and large bias. 3. To obviate the problem of multiple structuring forces a multivariate regression tree (MRT) was employed, which allows for more than one explanatory variable within a model. The MRT analysis defined six groups with discrete ranges of ZF and macrophyte densities. The technique identified critical values or ‘break points’ in ZF and macrophyte abundances which result in significant alterations in the sub‐fossil cladoceran assemblage. In addition, the MRT groups had different summer mean values for chlorophyll‐a, Secchi depth, total phosphorus and nitrate‐nitrogen. 4. The predictive abilities of the model were assessed by comparing the observed versus predicted MRT group membership. In general group membership was reliably predicted, suggesting sub‐fossil cladoceran assemblages reliably reflect ZF and macrophyte density in shallow lakes. For a relatively small number of sites there were differences between the observed and predicted MRT group membership. These failures of prediction may result, at least in part, from the disparity of the time period represented by the environmental data and the surface sediment cladoceran assemblage.  相似文献   

10.
Since the introduction of Undaria into Nuevo Gulf, Argentina, around 1992, this alien seaweed has now colonized different sites over 700 km of coast, forming dense seasonal forests in waters from 0 to 15 meters in depth. In the spring it is common for plants of Undaria to break away from the substrate and be transported by sea currents. As Undaria gets stuck onto reefs it has the potential to reduce habitat quality for reef fish by physically obstructing refuges. This study aims to assess the impact of Undaria on the abundance of four species of rocky-reef fishes by an observational experiment. Fish abundance on reefs with and without Undaria was estimated by underwater visual census methods. Sites were classified according to their topographical relief, as this was expected to influence the effect of Undaria on the abundance of reef fishes. Fish abundance decreased markedly in low-relief reefs that had been covered by Undaria. In contrast, the drifting Undaria had no effect on the abundance of any of the fish species considered in high-relief reefs, where it tends to cover only the lowest-lying areas, leaving much of the refuges for fish unaffected. In conclusion, the presence of Undaria off the coast of Argentina results in transitory habitat loss for reef fishes inhabiting low-relief reefs during late spring and early summer. Although we do not know how much of a threat this habitat loss represents for the conservation of reef fish populations of northern Patagonia, the documented local impact of Undaria within the gulfs is strong and may affect a number of recreational and commercial activities which are centered on the reefs and their fish assemblages.  相似文献   

11.
12.
13.
Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.  相似文献   

14.
The main goal of the study was to investigate changes in reef fish species abundance and its correlation with selected environmental variables. Three main questions guided the analyses: (i) Do the analytical methods have a significant influence on the results; (ii) What are the main assemblage variation axes; and (iii) What are the factors correlating best with assemblage composition. Highly territorial fish assemblages of several coral reefs along the northwestern region of Cuba were assessed using a stationary point visual census technique. A total of 39 701 individuals of 26 species from the families Chaetodontidae, Labridae and Pomacentridae were counted in 841 censuses; almost 80% of the fish belonged to just four species: bluehead (Thalassoma bifasciatum), bicolor damselfish (Stegastes partitus), slippery dick (Halichoeres bivittatus) and blue chromis (Chromis cyanea). Several multivariate techniques (cluster analysis, non‐metric multidimensional scaling and canonical correspondence analysis) were used to explore main patterns in assemblage composition variation. It was found that the results did not differ significantly when analyzing the same data set. Furthermore, it was shown that the combined use of different multivariate techniques enhanced the interpretation of fish assemblage composition changes. Depth was the main variable explaining variation in the composition of fish assemblages in the studied reefs. The densities of corals and gorgonians were also strongly associated with depth. Sponge density made an additional significant contribution to the explanatory model. Results of this research could be used as a baseline reference for future analyses of the impact of human actions in the study area. (e.g. oil spills, change in fishing intensity, other pollution events, tourism development).  相似文献   

15.
Derelict ships are commonly deployed as artificial reefs in the United States, mainly for recreational fishers and divers. Despite their popularity, few studies have rigorously examined fish assemblages on these structures and compared them to natural reefs. Six vessel-reefs off the coast of southeast Florida were censused quarterly (two ships per month) to characterize their associated fish assemblages. SCUBA divers used a non-destructive point-count method to visually assess the fish assemblages over 13- and 12-month intervals (March 2000 to March 2001 and March 2002 to February 2003). During the same intervals, fish assemblages at neighboring natural reefs were also censused. A total of 114,252 fishes of 177 species was counted on natural and vessel-reefs combined. Mean fish abundance and biomass were significantly greater on vessel-reefs in comparison to surrounding natural reef areas. Haemulidae was the most abundant family on vessel-reefs, where it represented 46% of total fish abundance. The most abundant family on natural reefs was Labridae, where it accounted for 24% of total fish abundance. Mean species richness was significantly greater on vessel-reefs than neighboring natural reefs and also differed among vessel-reefs. Both mean fish abundance and mean species richness were not significantly different between natural reefs neighboring vessel-reefs and natural reefs with no artificial structures nearby. This suggests the vessel-reefs are not, in general, attracting fish away from neighboring natural reefs in our area. Additionally, economically important fish species seem to prefer vessel-reefs, as there was a greater abundance of these species on vessel-reefs than surrounding natural reef areas. Fish assemblage structure on natural versus artificial reefs exhibited a low similarity (25.8%). Although no one species was responsible for more than 6% of the total dissimilarity, fish assemblage trophic structure differed strikingly between the two reef types. Planktivores dominated on vessel-reefs, accounting for 54% of the total abundance. Conversely, planktivores only made up 27% of total abundance on natural reefs. The results of this study indicate vessel-reef fish assemblages are unique and that these fishes may be utilizing food resources and habitat characteristics not accessible from or found at natural reefs in our area. Production may also be occurring at vessel-reefs as the attraction of fish species from nearby natural reefs seems to be minimal. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users  相似文献   

16.
Direct evaluation of macroalgal removal by herbivorous coral reef fishes   总被引:5,自引:5,他引:0  
Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.  相似文献   

17.
We quantify the relative importance of multi‐scale drivers of reef fish assemblage structure on isolated coral reefs at the intersection of the Indian and Indo‐Pacific biogeographical provinces. Large (>30 cm), functionally‐important and commonly targeted species of fish, were surveyed on the outer reef crest/front at 38 coral reef sites spread across three oceanic coral reef systems (i.e. Christmas Island, Cocos (Keeling) Islands and the Rowley Shoals), in the tropical Indian Ocean (c. 1.126 x 106 km2). The effects of coral cover, exposure, fishing pressure, lagoon size and geographical context, on observed patterns of fish assemblage structure were modelled using Multivariate Regression Trees. Reef fish assemblages were clearly separated in space with geographical location explaining ~53 % of the observed variation. Lagoon size, within each isolated reef system was an equally effective proxy for explaining fish assemblage structure. Among local‐scale variables, ‘distance from port’, a proxy for the influence of fishing, explained 5.2% of total variation and separated the four most isolated reefs from Cocos (Keeling) Island, from reefs with closer boating access. Other factors were not significant. Major divisions in assemblage structure were driven by sister taxa that displayed little geographical overlap between reef systems and low abundances of several species on Christmas Island corresponding to small lagoon habitats. Exclusion of geographical context from the analysis resulted in local processes explaining 47.3% of the variation, highlighting the importance of controlling for spatial correlation to understand the drivers of fish assemblage structure. Our results suggest reef fish assemblage structure on remote coral reef systems in the tropical eastern Indian Ocean reflects a biogeographical legacy of isolation between Indian and Pacific fish faunas and geomorphological variation within the region, more than local fishing pressure or reef condition. Our findings re‐emphasise the importance that historical processes play in structuring contemporary biotic communities.  相似文献   

18.
Patterns of distribution of reef fishes were examined across three spatial scales and related to habitat traits along 25 km of the northern Portuguese coast. Response variables included the multivariate assemblage structure, the total number of taxa and individuals, and the abundance of single groups categorized according to their preference for the benthic, proximo-benthic or pelagic environment, feeding and reproductive behaviour. Habitat traits included topographic elements (small and large ‘drops’ like cracks and crevices) and the extent of dominant morpho-functional types of macroalgae (kelp, large foliose, small erect, turf-forming filamentous, and encrusting). All fish responses were characterized by the largest variance at the smallest scale (among transects tens m apart), followed by that among reefs (hundreds m to 1 km apart) and almost null variance among sites (some km apart). Small and large ‘drops’ of the substratum explained, respectively, considerable variation of assemblage structure and the total abundance of individuals, while the extent of bare rock influenced the richness of taxa and that of benthic fishes, fishes feeding on sessile invertebrates and fishes laying benthic eggs or having nesting behaviour. Combinations of abiotic and biotic structural attributes of reefs influenced proximo-benthic fishes, the predators of mobile animals and fishes releasing pelagic eggs. The here reported associations between patterns of distribution of reef fishes and habitat traits have implications for the design of future protection schemes suitable to guarantee the conservation of reef fish communities and of the processes responsible for their variation. Within the SLOSS (single-large vs. several-small) debate in the design of marine reserves, for example, effective protection to the studied reef fishes would be provided by a set of small reserves, rather than a single large which might be appropriate for fishes having wider home ranges.  相似文献   

19.
We performed an experimental manipulation of trahira Hoplias aff. malabaricus in a series of isolated lakes of the upper Paraná River floodplain to evaluate its short-term impact on the structure of fish assemblages. The effects of trahira density (treatment groups: addition, removal, and reference) in two habitat categories (open and macrophyte-covered areas) on attributes of the fish assemblage structure were evaluated (using rm-ANOVA) over 120 days. Reductions in species richness were recorded in all assemblages and were more pronounced at the end of the experiment within macrophyte-covered areas of the lakes where H. aff. malabaricus was removed. In these lakes, the number of fish was also significantly smaller and evenness was significantly higher than in those in which trahira were added or maintained at natural densities. The increase of the relative abundance of all size classes over the first 60 days on the assemblages where trahira was present, and the decrease of the small-sized fish where trahira was absent contributed to the lack of pronounced alterations in total biomass. The absence of the predator from its preferred habitat was found to negatively affect the less abundant species, which seemed to be highly sensitive to the effects of interspecific competition among prey species. In addition to the well-known effects of hydrological seasonality, the role played by native predators might be important in determining the persistence of local species in the fish assemblages of Neotropical floodplains.  相似文献   

20.
Anthropogenic impacts at isolated and inaccessible reefs are often minimal, offering rare opportunities to observe fish assemblages in a relatively undisturbed state. The remote Rowley Shoals are regarded as one of the healthiest reef systems in the Indian Ocean with demonstrated resilience to natural disturbance, no permanent human population nearby, low visitation rates, and large protected areas where fishing prohibitions are enforced. We used baited remote underwater video systems (BRUVS) to quantify fish assemblages and the relative abundance of regionally fished species within the lagoon, on the slope and in the mesophotic habitat at the Rowley Shoals at three times spanning 14 years and compared abundances of regionally fished species and the length distributions of predatory species to other isolated reefs in the northeast Indian Ocean. Fish assemblage composition and the relative abundance of regionally fished species were remarkably stable through time. We recorded high abundances of regionally fished species relative to other isolated reefs, including globally threatened humphead Maori wrasse (Cheilinus undulatus) and bumphead parrotfish (Bolbometopon muricatum). Length distributions of fish differed among habitats at the Rowley Shoals, suggesting differences in ontogenetic shifts among species. The Cocos (Keeling) Islands typically had larger‐bodied predatory species than at the Rowley Shoals. Differences in geomorphology, lagoonal habitats, and fishing history likely contribute to the differences among remote reefs. Rowley Shoals is a rare example of a reef system demonstrating ecological stability in reef fish assemblages during a time of unprecedented degradation of coral reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号