首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tree monocultures of native and exotic species are frequently used as tools to catalyze forest recovery throughout the tropics. Although plantations may rapidly develop a canopy cover, they need to be evaluated as habitat for other organisms. We compared samples of leaf‐litter arthropods from two elevations in restored forest in the Colombian Andes. At the upper elevation (2,430 m), we compared native Andean alder (Alnus acuminata) plantation and secondary forest, and at the lower elevation (1,900 m) exotic Chinese ash (Fraxinus chinensis) plantation and secondary forest. Samples were obtained in two periods, March–April and September 1995. Species richness and abundance of arthropods were highest in secondary forest at the lower elevation. There were no differences in richness between both plantations and high‐elevation forest. Arthropod richness and abundance increased in the second sampling period in both secondary forest types and the ash plantation but not in the alder plantation, reflecting population recovery after the dry season. Alder leaf litter apparently buffered seasonal variations in arthropod richness and abundance. Composition of morphospecies was different among forest types. Although arthropod richness was lower in ash plantations compared to secondary forest, plantations still provided habitat for these organisms. On the other hand, the alder plantation was not different from secondary forest at the same elevation. At our site, plantations are embedded in a forested landscape. Whether our results apply to different landscape configurations and at different spatial scales needs to be established. The use of plantations as a restoration tool depends on the objectives of the project and on local conditions of forest cover and soils.  相似文献   

2.
Some understory insectivorous birds manage to persist in tropical forest fragments despite significant habitat loss and forest fragmentation. Their persistence has been related to arthropod biomass. In addition, forest structure has been used as a proxy to estimate prey availability for understory birds and for calculating prey abundance. We used arthropod biomass and forest structural variables (leaf area index [LAI] and aerial leaf litter biomass) to explain the abundance of White‐breasted Wood‐Wrens (Henicorhina leucosticta), tropical understory insectivorous birds, in six forests in the Caribbean lowlands of Costa Rica. To estimate bird abundance, we performed point counts (100‐m radius) in two old‐growth forests, two second‐growth forests, and two selectively logged forests. Arthropod abundance was the best predictor of wood‐wren abundance (wi = 0.75). Wood‐wren abundance increased as the number of arthropods increased, and the estimated range of bird abundance obtained from the model varied from 0.51 (0.28 – 0.93 [95%CI]) to 3.70 (1.68 – 5.20 [95%CI]) within sites. LAI was positively correlated to prey abundance (P = 0.01), and explained part of the variation in wood‐wren abundance. In forests with high LAI, arthropods have more aerial leaf litter as potential habitat so more potential prey are available for wood‐wrens. Forests with a greater abundance of aerial leaf litter arthropods were more likely to sustain higher densities of wood‐wrens in a fragmented tropical landscape.  相似文献   

3.
Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7‐ to 8‐year‐old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50‐m plots in four former pasture sites in southern Costa Rica: plantation – trees planted throughout the plot; applied nucleation/islands – trees planted in patches of different sizes; and natural regeneration – no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource‐intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.  相似文献   

4.
ABSTRACT.   Little is known about how insectivorous bird diets are influenced by arthropod availability and about how these relationships vary seasonally. We captured birds in forest-canopy gaps and adjacent mature forest during 2001 and 2002 at the Savannah River Site in Barnwell County, South Carolina, and flushed their crops to gather information about arthropods eaten during four periods: spring migration, breeding, postbreeding, and fall migration. Arthropod availability for foliage- and ground-gleaning birds was examined by leaf clipping and pitfall trapping. Coleopterans and Hemipterans were used by foliage- and ground-gleaners more than expected during all periods, whereas arthropods in the orders Araneae and Hymenoptera were used as, or less than, expected based on availability during all periods. Ground-gleaning birds used Homopterans and Lepidopterans in proportions higher than availability during all periods. Arthropod use by birds was consistent from spring through fall migration, with no apparent seasonal shift in diet. Based on concurrent studies, heavily used orders of arthropods were equally abundant or slightly less abundant in canopy gaps than in the surrounding mature forest, but bird species were most frequently detected in gaps. Such results suggest that preferential feeding on arthropods by foliage-gleaning birds in gap habitats reduced arthropod densities or, alternatively, that bird use of gap and forest habitat was not determined by food resources. The abundance of arthropods across the stand may have allowed birds to remain in the densely vegetated gaps where thick cover provides protection from predators.  相似文献   

5.
Pselaphine beetles (Coleoptera: Staphylinidae: Pselaphinae) are cosmopolitan, species‐rich, and yet poorly studied, particularly in the tropics. We sampled beetles in three types of primary forest and two types of disturbed forest habitats in eastern Thailand to assess the utility of pselaphine beetles as bioindicators of forest disturbance. We simultaneously measured leaf litter mass, soil moisture, soil acidity and canopy cover at each site to infer which environmental factors affect pselaphine beetle diversity and abundance. At each site, pselaphine beetles were extracted from ten 1 m2 samples of leaf litter and soil with Tullgren funnels. We sampled 1867 adult beetles representing six supertribes, 51 genera and 114 morphospecies; 7% of the genera and 92% of the species were undescribed. Forest types differed significantly in species richness, abundance, diversity and evenness. Primary forest had greater numbers of species and individuals, and higher diversity indices (H′). Teak plantation and secondary forest had substantially fewer individuals and species of pselaphine beetles. Species composition differed between primary and degraded forests. Canopy cover, soil moisture, and leaf litter mass positively correlated with beetle species richness and abundance. Leaf litter mass and soil moisture were the two most important factors affecting the diversity of pselaphine beetle assemblages. Among the 114 morphospecies collected, 43 morphospecies were specific to two or three habitats and 64 morphospecies were found only in a single habitat. Thus pselaphine beetles appear to have rather narrow habitat requirements and their presence/absence was correlated with environmental differences. These traits make pselaphine beetles a suitable bioindicator taxon for assessing forest litter diversity and monitoring habitat change.  相似文献   

6.
This study applies a novel, vertically stratified fogging protocol to document arthropod abundance, density, and biomass across a vertical gradient in a primary, lowland dipterocarp forest canopy in Borneo. We fogged arthropods at 5 m vertical intervals and 20 m horizontal intervals along six full‐canopy transects and measured leaf surface areas along the same transects. The results show that arthropod biomass in the aboveground regions was 23.6 kg/ha, the abundance was 23.9 million individuals/ha, and the density on leaf surfaces was 280 individuals/m2 leaf area. All three numbers are five to ten times higher than estimated by previous surveys of tropical lowland rain forest canopies using mass‐collection techniques. Arthropod abundance and biomass were analyzed in relation to canopy structure, composition, vapor pressure deficit (VPD), photosynthetic photon flux density (PPFD), and height. Using stepwise regression we found that 13 of 14 arthropod groups had significant positive relationships with one‐sided leaf area, 11 had significant negative relationships with VPD, 3 had significant relationships with height, and none showed positive relationships with light. Classifying the 14 taxa based on their responses to leaf area and VPD created three groups that corresponded roughly to the biology of these taxa. This study suggests that the biomass and abundance, and perhaps therefore—by extrapolation—the biodiversity, of tropical canopy arthropods may be very much higher than previously estimated.  相似文献   

7.
The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw-the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha(-1)): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity.  相似文献   

8.
Invasive species significantly contribute to biological change and threaten biodiversity, with a growing body of evidence that plant invasions affect higher trophic levels. We explored the relative importance of plant invasion and forest structure on aerial arthropod abundance, diversity, and composition on Robinson Crusoe Island, Chile. We used flight intercept traps to sample aerial arthropods within distinct canopy strata of native and invaded forests over 3-mo periods in 2006 and 2007. Arthropod abundance and diversity were higher in native than invaded forest, and arthropod communities were distinct between forest types. In both forest types, arthropod abundance was highest in the lower canopy, and canopy strata exhibited some differences in arthropod community composition. Several morphospecies were distinctly associated with each forest type. The strong differences in aerial arthropod communities associated with the invasion of native forest by non-native plants may affect other trophic levels, such as insectivorous birds. Steps to stop invasive plant spread and to restore native forest composition and structure are needed to safeguard the integrity of native communities, from plants to higher-level consumers.  相似文献   

9.
1. Inputs of terrestrial arthropods (number and mass m–2 d–1) from riparian corridors to three streams representing different orders were highly variable among seasons and sites, with significantly greater ( P < 0.05) inputs at the headwater stream during summer months, compared with other sites and seasons.
2. No significant differences in estimates of stream retention of terrestrial arthropods (number and mass m–2 d–1) were observed among sites; however, retention of terrestrial arthropods at all sites was significantly greater during summer months, compared with other periods.
3. The gravimetric proportion of terrestrial arthropods present in the stomachs of redbreast sunfish ( Lepomis auritus ) and bluegill ( L. macrochirus ) was equivalent among sites. However, estimates of the dietary importance of terrestrial arthropods at all study sites were significantly greater in the summer, compared with other seasons.
4. Estimates of the potential annual energetic contribution (kJ m–2 d–1) of terrestrial arthropod inputs to the stream system were comparable with published rates of total annual production of aquatic macroinvertebrates in other Virginia headwater streams.
5. Results of this study supported the hypothesis that terrestrial arthropods represented an important energetic subsidy to stream fish during periods of low aquatic macroinvertebrate availability, and suggest that this component of allochthonous input is a potentially significant, but poorly understood energetic linkage between riparian landscapes and stream ecosystems.  相似文献   

10.
Past studies have found a heterogeneous distribution of the amphibian chytrid fungal pathogen, Batrachochytrium dendrobatidis (Bd). Recent studies have accounted for some of this heterogeneity through a positive association between canopy cover and Bd abundance, which is attributed to the cooling effect of canopy cover. We questioned whether leaf litter inputs that are also associated with canopy cover might also alter Bd growth. Leaf litter inputs exhibit tremendous interspecific chemical variation, and we hypothesized that Bd growth varies with leachate chemistry. We also hypothesized that Bd uses leaf litter as a growth substrate. To test these hypotheses, we conducted laboratory trials in which we exposed cultures of Bd to leachate of 12 temperate leaf litter species at varying dilutions. Using a subset of those 12 litter species, we also exposed Bd to pre-leached litter substrate. We found that exposure to litter leachate and substrate reduced Bd spore and sporangia densities, although there was substantial variation among treatments. In particular, Bd densities were inversely correlated with concentrations of phenolic acids. We conducted a field survey of phenolic concentrations in natural wetlands which verified that the leachate concentrations in our lab study are ecologically relevant. Our study reinforces prior indications that positive associations between canopy cover and Bd abundance are likely mediated by water temperature effects, but this phenomenon might be counteracted by changes in aquatic chemistry from leaf litter inputs.  相似文献   

11.
1. Traps for litterfall and for lateral transport of organic matter were sampled over a 1-year period along longitudinal and lateral transects in a glacial stream system (Val Roseg, Swiss Alps), which is characterized by single-thread reaches and a large subalpine floodplain.
2. Allochthonous inputs to the glacier stream were low close to the glacier terminus but increased as woody riparian vegetation and forests develop. Annual inputs varied from 0.4 g ash free dry matter (AFDM) m–2 year–1 (direct input) and 0.7 g AFDM m–2 year–1 (lateral input) in the proglacial area to 23.0 g AFDM m–2 year–1 (direct input) and 10.7 g AFDM m–2 year–1 (lateral input) in the lowest reach with adjacent subalpine forests.
3. Direct inputs of organic matter decreased exponentially from forests at the floodplain edge to the floodplain centre, while lateral inputs of organic matter correlated linearly with distance to trees. Direct litterfall dominated litter input close to the forest, while lateral transport was the major pathway for channels more than 20 m away from the forest.
4. A conceptual framework is developed illustrating the influence of terrestrial vegetation and fluvial morphology on organic matter input along the continuum of glacial streams.  相似文献   

12.
Effects of habitat complexity on ant assemblages   总被引:10,自引:0,他引:10  
We investigated responses of ant communities to habitat complexity, with the aim of assessing complexity as a useful surrogate for ant species diversity. We used pitfall traps to sample ants at twenty-eight sites, fourteen each of low and high habitat complexity, spread over ca 12 km in Sydney sandstone ridge-top woodland in Australia. Ant species richness was higher in low complexity areas, and negatively associated with ground herb cover, tree canopy cover, soil moisture and leaf litter. Ant community composition was affected by habitat complexity, with morphospecies from the genera Monomorium, Rhytidoponera and Meranoplus being the most significant contributors to compositional differences. Functional group responses to anthropogenic disturbance may be facilitated by local changes in habitat complexity. Habitat complexity, measured as a function of differences in multiple strata in forests, may be of great worth as a surrogate for the diversity of a range of arthropod groups including ants.  相似文献   

13.
Patch size of forest openings and arthropod populations   总被引:4,自引:0,他引:4  
Summary Five sizes of canopy openings (0.016 ha to 10 ha) were established in the Southern Appalachian Mountains in early 1982 to examine the initial patterns of plant and arthropod establishment across a size range of forest disturbances. Vegetation standing crop after the first growing season was considerably higher in large than small openings in apparent response to greater resource release (e.g., sunlight) in larger openings. Woody stump and root sprouts were the dominant mode of revegetation in each patch size. Forest dominants such as Quercus rubra, Q. prinus and Carya spp. were less important as sprouters in openings than several minor forest components (e.g., Robinia pseudo-acacia, Acer rubrum, Halesia carolina and Cornus florida). Arthropod abundance and community composition varied across the size range of forest openings. Arthropods from the surrounding forest readily utilized the smallest canopy openings (0.016 ha). All feeding guilds were well represented in these small openings and herbivore biomass and load (mg of herbivores/g of foliage) were much higher than in larger patches. In contrast, arthropod abundance and species richness were significantly lower in mid-size than smaller patches. The relatively sparse cover and high sunlight in mid-size openings may have promoted surface heat buildups or soil surface/litter moisture deficits which restricted arthropod entry from the surrounding forest. Arthropod abundance and species richness were higher in large than mid-size patches. The greater vegetation cover in larger openings may have minimized the deleterious effects on arthropod populations. However, the absence of population increases among these arthropod species maintained herbivore loads at very low levels in large patches. Our results suggest that arthropod abundance and diversity in sprout-dominated forest openings are highly dependent on the extent of environmental differences between patch and surrounding forest.  相似文献   

14.
1. The extent of spatial and temporal variation of microbial respiration was determined in a first-order, sand-bottomed, blackwater stream on the coastal plain of south-eastern Virginia, U.S.A.
2. Annual mean respiration rates (as g O2 m–3 h–1) differed significantly among substrata: leaf litter, 12.9; woody debris, 2.4; surface sediment, 0.8; hyporheic sediment, 0.4; water column, 0.003. Rates associated with wood were higher than those with leaves when expressed per unit surface area.
3. Highest respiration rates on leaves, wood and in the water column occurred during the summer, whereas rates in the sediments were greatest during the late autumn and winter. Water temperature, as well as particulate organic matter and nitrogen content of the substrata, was correlated positively with respiration rates.
4. A stepwise multiple regression showed that temperature and nitrogen content together explained 88% of the variation in respiration rates of leaves and wood. In contrast, particulate organic matter content and nitrogen content explained 89–90% of the variation in respiration in the sediments. Although water temperature was a significant factor in the sediment multiple regressions, its addition as an independent variable improved the regression models only slightly.
5. Annual mean respiration in the stream channel, based on the proportional amount of respiration occurring associated with each type of substratum during each month, was 1.1 kg O2 m–2 yr–1. Seventy per cent of respiration in the stream occurred in the hyporheic zone, 8–13% occurred in the surface sediment, leaf litter or woody debris, and < 1% occurred in the water column. Approximately 16% of total detritus, or 40% of non-woody detritus, stored in the stream during the year was lost to microbial respiration.  相似文献   

15.
Abstract.  1. We used structural equation models to discriminate direct and indirect effects of soil structure on the abundance of the antlion Myrmeleon crudelis , a neuropteran larva that digs conical pits in soil to capture small arthropods. We proposed that soil structure may modify antlion density indirectly through its influence on tree cover, which in turn directly alters the amount of sun and rain that can reach the forest floor and the amount of litter fall.
2. The proportion of finer soils positively affected antlion density directly, but negatively tree cover. Tree cover positively affected both the amount of leaf litter and antlion density. Leaf litter negatively affected antlion density. The indirect effects of soils varied in strength and sign depending on whether trees are considered shelters against sun and rain, or leaf litter sources. The relative importance of these effects might also vary between years and seasons.
3. Antlions may select patches of finer soils not only because they are easy substrates in which to build pits, but also for their indirect benefit as sites with low leaf litter, illustrating how indirect interactions may affect the local abundance of semi-sedentary insects.  相似文献   

16.
We describe a complex vertical stratification of collembolan assemblages from rainforest leaf litter samples and identify distinct assemblages associated with forest floor, lower canopy and upper canopy samples. Leaf litter samples were collected from the forest floor and deposits of leaf litter suspended in epiphytes in the canopy of a subtropical rainforest site at Lamington National Park in southeast Queensland. The patterns of relationship among assemblages of Collembola extracted from these samples were examined using a variety of analyses of a matrix of similarities between samples. The results of ANOSIM analyses showed that forest floor, lower canopy and tipper canopy samples formed discrete groups. These results permit a discussion of these groups as three distinct collembolan assemblages. Analysis of the dissimilarities between these assemblages revealed a gradient of similarity from the forest floor through the lower to the upper canopy. This gradient represents a more complex vertical stratification than has previously been identified in rainforest canopy arthropods. We suggest that limitations on the dispersal of some forest floor species into the canopy may be responsible for this pattern. We also identify a second gradient of similarities among these assemblages. We show that dissimilarity among samples from forest floor is significantly lower than dissimilarity among samples from within the lower canopy, and that the level of dissimilarity between samples from within the upper canopy is significantly higher again. We suggest that dispersal barriers and higher probabilities of extinction in upper canopy collembolan colonies may be responsible for higher heterogeneity of species composition and abundance among samples from the upper canopy. We outline a number of testable hypotheses aimed at determining the importance of these processes in producing the patterns we have observed.  相似文献   

17.
Abstract.
  • 1 Arthropod densities and apparent leaf damage were compared within the canopy ecotone and the shrub layer of a lowland rain forest in Cameroon, using a branch clipping method.
  • 2 Most of the individuals collected consisted of ants (average 44%) and various herbivores (31%). Overall arthropod densities amounted to 17 individuals per sample, which, on average, consisted of 0.85 m2 of foliage area. Arthropod densities were lower than on temperate foliage.
  • 3 Arthropod densities were about 3 times higher in the canopy than within the shrub layer. In particular, ants and herbivores were significantly more abundant in the canopy than within the shrub layer. Usually, layer effects rather than site effects appeared to cause greater variance in arthropod abundance.
  • 4 Arthropod species-richness, as estimated by the number of operational taxonomic units sorted, was higher in canopy samples than in samples obtained from the shrub layer. However, apparent leaf damage was higher within the shrub layer (10.9%) than on the canopy (5.2%).
  • 5 Possible factors responsible for the high densities of ants and herbivores on the canopy and for the high leaf damage within the shrub layer are discussed.
  相似文献   

18.
This study, conducted in the Santa Cruz Mountains of California, provides data on the abundance and diversity of litter spiders and other arthropods in three redwood forest conditions: old growth, second growth, and tree farm. Litter spiders are linked to and reflect habitat structure and prey abundance and can act as indicators for redwood forest restoration and monitoring. There were significant declines in spider and other arthropod diversity and abundance with increased logging and decreased herb cover. The absolute and relative increase in nocturnal spiders and detritivores in unlogged sites suggests that guild structures of spiders and other arthropods can indicate forest recovery from logging disturbance. Furthermore, selectively harvested stands do not retain old‐growth levels of litter arthropod diversity or abundance. This study identifies potential indicator redwood litter spiders that show higher abundances in old‐growth areas, Zelotes sp. (Gnaphosidae), Xysticus sp. (Thomisidae), and Ceratinops inflata (Linyphiidae) and a possible old‐growth specialist, Phrurotimpus sp. (Liocranidae). These findings strengthen the case for including soil arthropods in redwood forest monitoring and assessment and for the preservation of undisturbed forest areas.  相似文献   

19.
Arthropod abundance and diversity are remarkable in tropical forests, but are also spatially patchy. This has been attributed either to resources, predators, abiotic conditions or disturbances, but whether such factors may simultaneously shape arthropod assemblage structure is little known. We used cockroaches to test for multiple environmental controls on assemblage structure in 25 km2 of Amazonian forest. We performed nocturnal, direct searches for cockroaches in 30 plots (250 m × 2 m) during two seasons, and gathered data on biotic and abiotic factors from previous studies. Cockroach abundance increased with dry litter mass, a measure of resource amount, while species richness increased with litter phosphorus content, a measure of resource availability. Cockroach abundance and species richness decreased with ant relative abundance. Cockroach species composition changed along the gradient of: (1) soil clay content, which correlates with a broad differentiation between flood‐prone and non‐flooded forest; (2) soil relative moisture, consistent with known interspecific variation in desiccation tolerance; and (3) according to the abundance of ants, a potential predator. Turnover in species composition was correlated with abiotic conditions—sorting species according to physiological requirements and to disturbance‐related life history traits—and to ants' selective pressure. Cockroach abundance, diversity, and composition seem to be controlled by distinct sets of environmental factors, but predators which were represented by ants, emerged as a common factor underlying cockroach distribution. Such patterns of community structure may have been previously overlooked by undue focus on single or a few factors, and may be common to tropical forest arthropods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号