首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The suprachiasmatic nuclei (SCN) host a robust, self-sustained circadian pacemaker that coordinates physiological rhythms with the daily changes in the environment. Neuronal clocks within the SCN form a heterogeneous network that must synchronize to maintain timekeeping activity. Coherent circadian output of the SCN tissue is established by intercellular signaling factors, such as vasointestinal polypeptide. It was recently shown that besides coordinating cells, the synchronization factors play a crucial role in the sustenance of intrinsic cellular rhythmicity. Disruption of intercellular signaling abolishes sustained rhythmicity in a majority of neurons and desynchronizes the remaining rhythmic neurons. Based on these observations, the authors propose a model for the synchronization of circadian oscillators that combines intracellular and intercellular dynamics at the single-cell level. The model is a heterogeneous network of circadian neuronal oscillators where individual oscillators are damped rather than self-sustained. The authors simulated different experimental conditions and found that: (1) in normal, constant conditions, coupled circadian oscillators quickly synchronize and produce a coherent output; (2) in large populations, such oscillators either synchronize or gradually lose rhythmicity, but do not run out of phase, demonstrating that rhythmicity and synchrony are codependent; (3) the number of oscillators and connectivity are important for these synchronization properties; (4) slow oscillators have a higher impact on the period in mixed populations; and (5) coupled circadian oscillators can be efficiently entrained by light–dark cycles. Based on these results, it is predicted that: (1) a majority of SCN neurons needs periodic synchronization signal to be rhythmic; (2) a small number of neurons or a low connectivity results in desynchrony; and (3) amplitudes and phases of neurons are negatively correlated. The authors conclude that to understand the orchestration of timekeeping in the SCN, intracellular circadian clocks cannot be isolated from their intercellular communication components.  相似文献   

3.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the pacemaker that controls circadian rhythms of a variety of physiological functions. Data strongly indicate the majority of the SCN neurons express self-sustaining oscillations that can be detected as rhythms in the spontaneous firing of individual neurons. The period of single SCN neurons in a dissociated cell culture is dispersed in a wide range (from 20h to 28h in rats), but that of the locomotor rhythm is close to 24h, suggesting individual oscillators are coupled to generate an averaged circadian period in the nucleus. Electrical coupling via gap junctions, glial regulation, calcium spikes, ephaptic interactions, extracellular ion flux, and diffusible substances have been discussed as possible mechanisms that mediate the interneuronal rhythm synchrony. Recently, GABA (γ-aminobutyric acid), a major neurotransmitter in the SCN, was reported to regulate cellular communication and to synchronize rhythms through GABAA receptors. At present, subsequent intracellular processes that are able to reset the genetic loop of oscillations are unknown. There may be diverse mechanisms for integrating the multiple circadian oscillators in the SCN. This article reviews the knowledge about the various circadian oscillations intrinsic to the SCN, with particular focus on the intercellular signaling of coupled oscillators. (Chronobiology International, 18(3), 371–387, 2001)  相似文献   

4.
5.
Circadian (ca. 24 hr) oscillations in expression of mammalian "clock genes" are found not only in the suprachiasmatic nucleus (SCN), the central circadian pacemaker, but also in peripheral tissues. Under constant conditions in vitro, however, rhythms of peripheral tissue explants or immortalized cells damp partially or completely. It is unknown whether this reflects an inability of peripheral cells to sustain rhythms, as SCN neurons can, or a loss of synchrony among cells. Using bioluminescence imaging of Rat-1 fibroblasts transfected with a Bmal1::luc plasmid and primary fibroblasts dissociated from mPer2(Luciferase-SV40) knockin mice, we monitored single-cell circadian rhythms of clock gene expression for 1-2 weeks. We found that single fibroblasts can oscillate robustly and independently with undiminished amplitude and diverse circadian periods. Cells were partially synchronized by medium changes at the start of an experiment, but due to different intrinsic periods, their phases became randomly distributed after several days. Closely spaced cells in the same culture did not have similar phases, implying a lack of functional coupling among cells. Thus, like SCN neurons, single fibroblasts can function as independent circadian oscillators; however, lack of oscillator coupling in dissociated cell cultures leads to a loss of synchrony among individual cells and damping of the ensemble rhythm at the population level.  相似文献   

6.
7.
Spontaneous synchronization of coupled circadian oscillators   总被引:1,自引:0,他引:1       下载免费PDF全文
In mammals, the circadian pacemaker, which controls daily rhythms, is located in the suprachiasmatic nucleus (SCN). Circadian oscillations are generated in individual SCN neurons by a molecular regulatory network. Cells oscillate with periods ranging from 20 to 28 h, but at the tissue level, SCN neurons display significant synchrony, suggesting a robust intercellular coupling in which neurotransmitters are assumed to play a crucial role. We present a dynamical model for the coupling of a population of circadian oscillators in the SCN. The cellular oscillator, a three-variable model, describes the core negative feedback loop of the circadian clock. The coupling mechanism is incorporated through the global level of neurotransmitter concentration. Global coupling is efficient to synchronize a population of 10,000 cells. Synchronized cells can be entrained by a 24-h light-dark cycle. Simulations of the interaction between two populations representing two regions of the SCN show that the driven population can be phase-leading. Experimentally testable predictions are: 1), phases of individual cells are governed by their intrinsic periods; and 2), efficient synchronization is achieved when the average neurotransmitter concentration would dampen individual oscillators. However, due to the global neurotransmitter oscillation, cells are effectively synchronized.  相似文献   

8.
9.
The dynamics of circadian rhythms needs to be adapted to day length changes between summer and winter. It has been observed experimentally, however, that the dynamics of individual neurons of the suprachiasmatic nucleus (SCN) does not change as the seasons change. Rather, the seasonal adaptation of the circadian clock is hypothesized to be a consequence of changes in the intercellular dynamics, which leads to a phase distribution of electrical activity of SCN neurons that is narrower in winter and broader during summer. Yet to understand this complex intercellular dynamics, a more thorough understanding of the impact of the network structure formed by the SCN neurons is needed. To that effect, we propose a mathematical model for the dynamics of the SCN neuronal architecture in which the structure of the network plays a pivotal role. Using our model we show that the fraction of long-range cell-to-cell connections and the seasonal changes in the daily rhythms may be tightly related. In particular, simulations of the proposed mathematical model indicate that the fraction of long-range connections between the cells adjusts the phase distribution and consequently the length of the behavioral activity as follows: dense long-range connections during winter lead to a narrow activity phase, while rare long-range connections during summer lead to a broad activity phase. Our model is also able to account for the experimental observations indicating a larger light-induced phase-shift of the circadian clock during winter, which we show to be a consequence of higher synchronization between neurons. Our model thus provides evidence that the variations in the seasonal dynamics of circadian clocks can in part also be understood and regulated by the plasticity of the SCN network structure.  相似文献   

10.
Physiological and behavioral circadian rhythms in mammals are orchestrated by a central circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Photic input entrains the phase of the central clock, and many peripheral clocks are regulated by neural or hormonal output from the SCN. We established cell lines derived from the rat embryonic SCN to examine the molecular network of the central clock. An established cell line exhibited the stable circadian expression of clock genes. The circadian oscillation was abruptly phase-shifted by forskolin, and abolished by siBmal1. These results are compatible with in vivo studies of the SCN.  相似文献   

11.
The mammalian SCN contains a biological clock that drives remarkably precise circadian rhythms in vivo and in vitro. Recent advances have revealed molecular and cellular mechanisms required for the generation of these daily rhythms and their synchronization between SCN neurons and to the environmental light cycle. This review of the evidence for a cell-autonomous circadian pacemaker within specialized neurons of the SCN focuses on 6 genes implicated within the pace making mechanism, an additional 4 genes implicated in pathways from the pacemaker, and the intercellular and intracellular mechanisms that synchronize SCN neurons to each other and to solar time.  相似文献   

12.

Background

The suprachiasmatic nucleus (SCN), the master circadian clock, is a heterogeneous oscillator network, yet displays a robust synchronization dynamics. Recent single-cell bioluminescent imaging revealed temporal gradients in circadian clock gene expression in the SCN ex vivo. However, due to technical difficulty in biological approaches to elucidate the entire network structure of the SCN, characteristics of the gradient, which we refer to as phase wave, remain unknown.

Methodology/Principal Findings

We implemented new approaches, i.e., quantitative analysis and model simulation to characterize the phase waves in Per2::Luciferase clock reporter gene expression of the rat SCN slice. Our quantitative study demonstrated not only a high degree of synchronization between the neurons and regular occurrence of the phase wave propagation, but also a significant amount of phase fluctuations contained in the wave. In addition, our simulations based on local coupling model suggest that the intercellular coupling strength estimated by the model simulations is significantly higher than the critical value for generating the phase waves. Model simulations also suggest that heterogeneity of the SCN neurons is one of the main factors causing the phase wave fluctuations. Furthermore, robustness of the SCN network against dynamical noise and variation of the natural frequencies inherent in these neurons was quantitatively assessed.

Conclusions/Significance

To our knowledge, this is the first quantitative evaluation of the phase wave and further characterization of the SCN neuronal network features generating the wave i.e., intercellular synchrony, phase fluctuation, strong local coupling, heterogeneous periodicity and robustness. Our present study provides an approach, which will lead to a comprehensive understanding of mechanistic and/or biological significance of the phase wave in the central circadian oscillatory system.  相似文献   

13.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the pacemaker that controls circadian rhythms of a variety of physiological functions. Data strongly indicate the majority of the SCN neurons express self-sustaining oscillations that can be detected as rhythms in the spontaneous firing of individual neurons. The period of single SCN neurons in a dissociated cell culture is dispersed in a wide range (from 20h to 28h in rats), but that of the locomotor rhythm is close to 24h, suggesting individual oscillators are coupled to generate an averaged circadian period in the nucleus. Electrical coupling via gap junctions, glial regulation, calcium spikes, ephaptic interactions, extracellular ion flux, and diffusible substances have been discussed as possible mechanisms that mediate the interneuronal rhythm synchrony. Recently, GABA (γ-aminobutyric acid), a major neurotransmitter in the SCN, was reported to regulate cellular communication and to synchronize rhythms through GABAA receptors. At present, subsequent intracellular processes that are able to reset the genetic loop of oscillations are unknown. There may be diverse mechanisms for integrating the multiple circadian oscillators in the SCN. This article reviews the knowledge about the various circadian oscillations intrinsic to the SCN, with particular focus on the intercellular signaling of coupled oscillators. (Chronobiology International, 18(3), 371-387, 2001)  相似文献   

14.
15.
In vivo monitoring of peripheral circadian clocks in the mouse   总被引:1,自引:0,他引:1  
The mammalian circadian system is comprised of a central clock in the suprachiasmatic nucleus (SCN) and a network of peripheral oscillators located in all of the major organ systems. The SCN is traditionally thought to be positioned at the top of the hierarchy, with SCN lesions resulting in an arrhythmic organism. However, recent work has demonstrated that the SCN and peripheral tissues generate independent circadian oscillations in Per1 clock gene expression in vitro. In the present study, we sought to clarify the role of the SCN in the intact system by recording rhythms in clock gene expression in vivo. A practical imaging protocol was developed that enables us to measure circadian rhythms easily, noninvasively, and longitudinally in individual mice. Circadian oscillations were detected in the kidney, liver, and submandibular gland studied in about half of the SCN-lesioned, behaviorally arrhythmic mice. However, their amplitude was decreased in these organs. Free-running periods of peripheral clocks were identical to those of activity rhythms recorded before the SCN lesion. Thus, we can report for the first time that many of the fundamental properties of circadian oscillations in peripheral clocks in vivo are maintained in the absence of SCN control.  相似文献   

16.
17.
Molecular mechanisms of the mammalian circadian clock have been studied primarily by genetic perturbation and behavioral analysis. Here, we used bioluminescence imaging to monitor Per2 gene expression in tissues and cells from clock mutant mice. We discovered that Per1 and Cry1 are required for sustained rhythms in peripheral tissues and cells, and in neurons dissociated from the suprachiasmatic nuclei (SCN). Per2 is also required for sustained rhythms, whereas Cry2 and Per3 deficiencies cause only period length defects. However, oscillator network interactions in the SCN can compensate for Per1 or Cry1 deficiency, preserving sustained rhythmicity in mutant SCN slices and behavior. Thus, behavior does not necessarily reflect cell-autonomous clock phenotypes. Our studies reveal previously unappreciated requirements for Per1, Per2, and Cry1 in sustaining cellular circadian rhythmicity and demonstrate that SCN intercellular coupling is essential not only to synchronize component cellular oscillators but also for robustness against genetic perturbations.  相似文献   

18.
The circadian system controls the timing of behavioral and physiological functions in most organisms studied. The review addresses the question of when and how the molecular clockwork underlying circadian oscillations within the central circadian clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and the peripheral circadian clocks develops during ontogenesis. The current model of the molecular clockwork is summarized. The central SCN clock is viewed as a complex structure composed of a web of mutually synchronized individual oscillators. The importance of development of both the intracellular molecular clockwork as well as intercellular coupling for development of the formal properties of the circadian SCN clock is also highlighted. Recently, data has accumulated to demonstrate that synchronized molecular oscillations in the central and peripheral clocks develop gradually during ontogenesis and development extends into postnatal period. Synchronized molecular oscillations develop earlier in the SCN than in the peripheral clocks. A hypothesis is suggested that the immature clocks might be first driven by external entraining cues, and therefore, serve as "slave" oscillators. During ontogenesis, the clocks may gradually develop a complete set of molecular interlocked oscillations, i.e., the molecular clockwork, and become self-sustained clocks.  相似文献   

19.
20.
We extend the study of a computational model recently proposed for the mammalian circadian clock (Proc. Natl Acad. Sci. USA 100 (2003) 7051). The model, based on the intertwined positive and negative regulatory loops involving the Per, Cry, Bmal1, and Clock genes, can give rise to sustained circadian oscillations in conditions of continuous darkness. These limit cycle oscillations correspond to circadian rhythms autonomously generated by suprachiasmatic nuclei and by some peripheral tissues. By using different sets of parameter values producing circadian oscillations, we compare the effect of the various parameters and show that both the occurrence and the period of the oscillations are generally most sensitive to parameters related to synthesis or degradation of Bmal1 mRNA and BMAL1 protein. The mechanism of circadian oscillations relies on the formation of an inactive complex between PER and CRY and the activators CLOCK and BMAL1 that enhance Per and Cry expression. Bifurcation diagrams and computer simulations nevertheless indicate the possible existence of a second source of oscillatory behavior. Thus, sustained oscillations might arise from the sole negative autoregulation of Bmal1 expression. This second oscillatory mechanism may not be functional in physiological conditions, and its period need not necessarily be circadian. When incorporating the light-induced expression of the Per gene, the model accounts for entrainment of the oscillations by light-dark (LD) cycles. Long-term suppression of circadian oscillations by a single light pulse can occur in the model when a stable steady state coexists with a stable limit cycle. The phase of the oscillations upon entrainment in LD critically depends on the parameters that govern the level of CRY protein. Small changes in the parameters governing CRY levels can shift the peak in Per mRNA from the L to the D phase, or can prevent entrainment. The results are discussed in relation to physiological disorders of the sleep-wake cycle linked to perturbations of the human circadian clock, such as the familial advanced sleep phase syndrome or the non-24h sleep-wake syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号