首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A rise in cytosolic free Ca in capillary endothelia leads to increased permeability. It has been proposed that this Ca(2+)-regulated modulation of junctional permeability of vascular endothelia involves structural elements comparable to those involved in stimulus-contraction coupling in smooth muscle. To explore this analogy the three-dimensional organization of smooth-surfaced cisternae, vesicular membrane profiles, and tight junctions was examined in endothelia of diaphragm and heart capillaries of the rat. Three-dimensional reconstructions, based on consecutive sections of the capillaries, have demonstrated a population of small, irregular membrane profiles, occurring in individual thin sections of the endothelial cytoplasm. These profiles represent an elaborate system of smooth-surfaced cisternae, structurally similar to the sarcoplasmic reticulum (SR) of smooth muscle cells. Slender processes from the cisternae are often situated in parallel to the tight junctions at a distance of about 100 nm. The great majority of the characteristic circular membrane profiles represents caveolae and racemose invaginations of the endothelial plasma membrane, often in close relation to the cisternae. It is hypothesized that the endothelial cisternae and invaginations of the cell membrane are involved in regulation of free cytosolic calcium in the same way as the SR and caveolae in smooth muscle cells. The junction-related cisternal processes may play a role in the Ca(2+)-regulated modulation of junctional permeability.  相似文献   

2.
Summary The organization of vesicular profiles in the endothelium of cerebral capillaries of the hagfish, Myxine glutinosa, has been reinvestigated. Judged from random thin sections the endothelial cells contain numerous vesicles and tubules, in contrast to brain endothelia of most other vertebrates. However, three-dimensional reconstructions based on ultrathin serial sections (thickness 18 nm) showed that the profiles represent a system of irregular tubular invaginations of the cell membrane, comparable to the vesicular invaginations demonstrated in extracerebral capillary endothelia of frogs and rats. In addition, smooth-surfaced cisternae were present in close relation to the invaginations. The function of endothelial invaginations is unknown. They do not transport macromolecules, because the blood-brain barrier is practically impermeable to proteins. However, since the system of the invaginations and smooth-surfaced cisternae is structurally similar to the system of caveolae and sarcoplasmic reticulum in smooth muscle cells, a common function seems likely. It is proposed that endothelial invaginations and smooth-surfaced cisternae are involved in regulation of cytosolic Ca++-concentration.  相似文献   

3.
The oral mucosa is a highly specialised, stratified epithelium that confers protection from infection and physical, chemical and thermal stimuli. The non-keratinised junctional epithelium surrounds each tooth like a collar and is easily attacked by foreign substances from the oral sulcus. We found that TRPV2, a temperature-gated channel, is highly expressed in junctional epithelial cells, but not in oral sulcular epithelial cells or oral epithelial cells. Dual or triple immunolabelling with immunocompetent cell markers also revealed TRPV2 expression in Langerhans cells and in dendritic cells and macrophages. Electron microscopy disclosed TRPV2 immunoreactivity in the unmyelinated and thinly myelinated axons within the connective tissue underlying the epithelium. TRPV2 labelling was also observed in venule endothelial cells. The electron-dense immunoreaction in junctional epithelial cells, macrophages and neural axons occurred on the plasma membrane, on invaginations of the plasma membrane and in vesicular structures. Because TRPV2 has been shown to respond to temperature, hypotonicity and mechanical stimuli, gingival cells expressing TRPV2 may act as sensor cells, detecting changes in the physical and chemical environment, and may play a role in subsequent defence mechanisms.  相似文献   

4.
Caveolae are vesicular invaginations of the plasma membranes that regulate signal transduction and transcytosis, as well as cellular cholesterol homeostasis. Our previous studies indicated that the removal of cholesterol from aortic endothelial cells and smooth muscle cells in the presence of HDL is associated with plasmalemmal invaginations and plasmalemmal vesicles. The goal of the present study was to investigate the location and distribution of caveolin-1, the main structural protein component of caveolae, in cholesterol-loaded aortic endothelial cells after HDL incubation. Confocal microscopic analysis demonstrated that the caveolin-1 appeared to colocalize with HDL-fluorescein 1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) conjugates on the cell surface. No free HDL-DiI conjugates were revealed in the cytoplasm. Immunoelectron microscopy further demonstrated that caveolin-1 gold (15 nm) conjugates colocalized with HDL gold (10 nm) conjugates in the plasmalemmal invaginations. These morphological results indicated that caveolae are the major membrane domains facilitating the transport of excess cholesterol to HDL on the cell surface of aortic endothelial cells.  相似文献   

5.
Actin-immunoreactive sites have been localized at the electron microscope level by the protein A-gold technique in striated and smooth muscle cells as well as in epithelial and secretory cells. The combination of the highly sensitive protein A-gold technique with the good ultrastructural preservation and retention of antigenicity obtained using low-temperature embedding conditions has allowed a very precise identification of the labelled structures with high resolution. In striated muscle cells the labelling was obtained over the myofilaments and the Z-band, mainly at its periphery. Labelling was also observed at the edge of the intercalated discs of the cardiac muscle cells. In smooth muscle cells the labelling was present over the myofilaments; the dense plaques associated with the plasma membrane were labelled at their periphery where actin filaments have been reported to anchor. In epithelial cells of the duodenum and the renal convoluted proximal tubule, the labelling occurred over the filamentous core of the microvilli and over the cell web. Gold particles were often present over, or closely associated with, the cell membrane at the tip of the microvilli or of invaginations and vesicular structures. At the level of the junctional complexes the gold particles were aligned at the edge of the dense zones. In pancreatic endocrine and exocrine secretory cells, actin-immunoreactive sites were revealed over the Golgi apparatus, mainly at the level of the inner cisternae in the maturing face over or closely associated with the membranes of the condensing vacuoles and secretory granules, and also over the plasma membrane. Microvilli and cell web were also labelled. Finally, in fibroblasts, gold particles were associated with the membrane of vesicular structures. The consistent finding of actin-immunoreactive sites closely associated with membranes of secretory granules and vesicular structures brings support to the proposal that contractile proteins might play an important role in transcellular transport and protein secretion.  相似文献   

6.
By ultrathin serial sectioning of frog mesenteric capillaries it was recently demonstrated that the many apparently free vesicles in electron microscope (EM) sections of endothelial cells may be artefacts due to conventional (500–700 Å thick) sectioning (Frøkjaer-Jensen, 1980). The vesicles were found to be part of two sets of invaginations of the cell surfaces; one set connected to the lumen, the other to the interstitium. The present study extends this view to comprise the vesicle organization in frog striated muscle capillaries. By analysis of the three-dimensional organization of the plasmalemmal vesicles in 21 ultrathin serial sections (120–150 Å) of two muscle capillaries it is demonstrated that less than 1% of the about 70% apparently free vesicles seen in conventional thin sections of the same capillaries in fact represent truly free vesicular units. By analysis of 15 conventional EM cross-sections of capillaries from the frog cutaneous-pectoris muscle containing plasmaproteins in high concentration it is furthermore demonstrated that 48% of the total vesicle population connect to the lumen at the time of fixation. This organization of the vesicular system seems incompatible with the concept that macromolecules are transferred across the capillary wall by vesicular transport or by a series of fusions and fissions between individual cytoplasmic vesicles but is compatible with the notion that macromolecules exchange across capillary walls by means of passive processes such as diffusion and convection through rare ‘large pores’. The study emphasizes that any attempts to classify vesicles in conventional thin sections as ‘luminal’, ‘cytoplasmic’ and ‘abluminal’ is impossible and may lead to erroneous interpretations of vesicle involvement in transcapillary exchange of macromolecules. The rare occurrence of transendothelial channels compared to the number of vesicle invaginations suggests that the main function of the vesicular system relates to functions other than transport.  相似文献   

7.
Vesicular transport in capillary endothelium: does it occur?   总被引:7,自引:0,他引:7  
A revised picture of the organization of endothelial plasmalemmal vesicles is presented. Three-dimensional reconstructions of endothelial segments from frog mesenteric capillaries and rat heart capillaries based on ultrathin serial sectioning have shown that plasmalemmal vesicles are not true vesicles but parts of an elaborate system of invaginations of the surface membrane. The revised picture probably applies to capillary endothelia in general. The absence of free cytoplasmic vesicles implies that vesicular transport is unlikely to occur. A reinterpretation of previous studies of vesicular transport shows that they are equally compatible with the present view that plasmalemmal vesicles are static elements of invaginations of the endothelial surface membrane.  相似文献   

8.
The distributions of substance P (SP) and the neurokinin-1 receptor (NK1-R), the receptor preferentially activated by SP, were examined in rat gingiva by immunocytochemical methods with light and electron microscopy. SP-immunoreactive nerve fibers were located preferentially in the junctional epithelium (JE) but few in the other oral and oral sulcular epithelia. NK1-R immunoreactivity was found in the endothelial cells (capillaries and postcapillary venules underlying the JE). NK1-R-labeled and -unlabeled unmyelinated nerve fibers were located close to the blood vessels and partially or completely covered by a Schwann cell sheath. In the JE, labeled naked axons without Schwann cell sheaths were observed. Neutrophils and macrophages in the connective tissue underlying the JE and in the JE were also labeled with NK1-R. Furthermore, NK1-R was found in the JE cells. Basically, immunoreaction products for NK1-R were found throughout various cells (endothelial cells, neutrophils, and JE cells) at invaginations of the plasma membrane and in vesicular and granular structures that are probably endosomes and are found close to both the plasma membrane and the nucleus. This is a first report, demonstrating the presence of NK1-R in the gingival tissue in the normal nonstimulated condition. Furthermore, it is thought that SP may modulate the permeability of blood vessels beneath the JE, the production of antimicrobial agents in neutrophils, and the proliferation and endocytotic ability of JE cells through NK1-R.  相似文献   

9.
Neurotransmitter receptors are formed during chick embryo development in the amnion, an avascular extraembryonic membrane devoid of innervation. Carbachol induces phasic and tonic contractions mediated by M3 cholinoceptors in an amniotic membrane strip isolated from 11–14-day-old chick embryo. The carbachol effect on the amnion contractile activity was studied in normal physiological salt solution, during depolarization by K+, exposure to nifedipine, and in calcium-free medium. Voltage-dependent and receptor-operated Ca2+ channels as well as calcium from intracellular stores are involved in the contractile response to carbachol. Phasic contractions of the amnion are mainly induced by calcium ions entering through voltage-dependent calcium channels, while tonic contractions are also maintained by receptor-operated channels. Ca2+-activated potassium channels can serve as a negative feedback factor in regulation of the amnion contractile responses.  相似文献   

10.
Cellularization of the Drosophila embryo requires the establishment of a hexagonal network of actin and myosin filaments that are interconnected around the nuclei in the cortex of the syncytial blastoderm. This cytoskeletal network provides the framework and possibly the contractile force for the membrane invaginations that synchronously subdivide the syncytial embryo into individual cells. Zygotic expression of the nullo locus is essential for the preservation of an intact actin-myosin network. Embryos deleted for the nullo locus have a disrupted network, resulting in the formation of many multinucleate cells. We show that nullo is not required for the initial formation of the actin-myosin network, but is necessary for the maintenance of its hexagonal shape during cellularization. The phenotype of embryonic mosaics is nonautonomous, indicating that nullo does not have to be expressed in every nucleus for proper cellularization. Examination of nullo mutant clones in adults reveals that nullo activity is not required for cell division in imaginal discs. Furthermore, germline clone experiments suggest that maternal expression of the nullo locus is not essential for either germline proliferation or the cellularization of progeny. We propose a model in which nullo functions specifically at cellularization to stabilize the actin-myosin network during contraction.  相似文献   

11.
Endothelial cells subjected to cyclic stretching change orientation so as to be aligned perpendicular to the direction of applied strain in a magnitude and time-dependent manner. Although this type of response is not the same as motility, it could be governed by motility-related factors such as substratum adhesiveness and actin-myosin contractile level. To examine this possibility, human aortic endothelial cells (HAEC) were uniaxially, cyclically stretched on silicone rubber membranes coated with various concentrations of fibronectin, collagen type IV and laminin to produce differing amounts of adhesiveness (measured using a radial flow detachment assay). Cells were subjected to 10% pure cyclic uniaxial stretching for three hours at a rate of 10%/sec. Time-lapse images revealed that cells underwent large morphological changes without moving. For each type of protein there was a parabolic dependence on initial adhesiveness with optimal cell orientation occurring at very similar adhesive strengths. The effect of actin-myosin contractile level was examined by stretching cells treated with different doses of 2,3-butanedione monoxime (BDM) and Blebbistatin. Each drug induced a dose-dependent decrease in orientation angles after three hours of cyclic stretching. Furthermore, cell and stress fiber orientations were tightly coupled for untreated and Blebbistatin-treated cells but were uncoupled for BDM-treated cells. Even though orientation response to cyclic stretching is not a spontaneous motile response, it is determined, in large part, by the same factors that affect spontaneous motility--the cell-substratum adhesiveness and actin-myosin contractile level.  相似文献   

12.
Summary Ultrathin serial sectioning and labeling with tannic acid have demonstrated that most plasmalemmal vesicles of rat vascular endothelial cells are not free, but rather are conjoined in three dimensions to form racemose invaginations from the cell surfaces. To elucidate the distribution of vesicles in these microvascular endothelial cells, we have examined terminal arterioles, capillaries and post-capillary venules of rat skeletal muscle and brain cortex, using tannic acid labeling and stereological methods, and have determined the proportions of free vesicles and the vesicles of luminal and abluminal invaginations, as well as the numerical density of vesicles. In the case of capillaries, regional differences in distribution have also been studied. The ratio of free vesicles is 6–7% and is constant throughout the muscle microvasculature. The distribution (proportions and numerical densities) of vesicles in the brain and muscle microvascular endothelial cells shows regionally distinctive patterns. In rapid-frozen, freeze-substituted endothelial cells, there are almost as many fused vesicles as seen in chemically fixed cells. Therefore, aldehydes do not seem to induce membrane fusion, and the distribution of vesicles seems to be preserved by chemical fixation. The structure and function of plasmalemmal vesicles are discussed.  相似文献   

13.
The existence of a surface-connected canalicular system in the splenic sinus endothelial cells of the rat has been demonstrated by transmission electron microscopy with lanthanum nitrate acting as a tracer for the extracellular space. In addition, the three-dimensional arrangement of the canaliculi has been revealed by computer-aided reconstruction. The surface-connected canalicular system of the sinus endothelial cells consists of slender canaliculi that are branched, anastomosed, and that show continuity with the plasma membrane. They twist in and out among the organelles and are often found in close apposition to the spherical invaginations of the plasma membrane and run alongside them. Canaliculi which are not infiltrated by lanthanum nitrate take the form of electron-lucent tubules and are accompanied by numerous spherical invaginations of the plasma membrane. From a computer-aided reconstruction, the canaliculi, which invaginate from various sites of the plasma membrane, have been found to be continuous with each other and to penetrate to the surface of the sinus endothelial cell; they also branch and anastomose to form a complex network in the cytoplasm. Although the surface-connected canalicular system in blood platelets and thrombocytes is believed to function as the main route for the discharge of granules and the uptake of foreign materials and also to take part in the storage and transport of calcium, it is unclear at present whether the network of the surface-connected canalicular system in splenic sinus endothelial cells has any physiological significance.  相似文献   

14.
M Christ  M Wehling 《Steroids》1999,64(1-2):35-41
The genomic theory of steroid action has been the unquestioned dogma for the explanation of steroid effects over the past four decades. Despite early observations on rapid steroid effects being clearly incompatible with this theory, only recently has nongenomic steroid action been recognized more widely and led to a critical reappraisal of unsolved questions about this dogma. Evidence for nongenomic steroid effects come from all fields of steroid research now, and mechanisms of agonist action are studied with regard to membrane receptors and second messengers involved. A prominent example of a receptor/effector-cascade for nongenomic steroid effects has been described for rapid aldosterone effects in various cell types, including lymphocytes, cultured vascular smooth muscle, and endothelial cells involving nonclassical membrane receptors with a high affinity for aldosterone, but not for cortisol, and phosphoinositide turnover. As another important second messenger, [Ca2+]i is consistently increased by aldosterone within 1-2 min. In vascular smooth muscle cells, calcium is released from perinuclear stores, while in endothelial cells a predominant increase of subplasmalemmal calcium is seen. Effects are half maximal at physiological concentrations of free aldosterone (0.1 nmol/L), while cortisol is inactive up to 0.1 micromol/L; the classical mineralocorticoid antagonist canrenone is ineffective in blocking the action of aldosterone. The data show that intracellular signaling for nongenomic aldosterone effects also involves calcium, but pathways of cell activation may vary between different cell types. Future research will have to target the cloning of the first membrane receptor for steroids, and the evaluation of the clinical relevance of these rapid steroid effects.  相似文献   

15.
Fine filaments in lymphatic endothelial cells   总被引:2,自引:1,他引:1       下载免费PDF全文
Several and various types of cells contain fine cytoplasmic filaments closely resembling the myofilaments of muscle cells (2, 18, 23, 24). In many of these cells and especially when cultured, it has been demonstrated that some of these filaments react with heavy meromyosin (HMM) in the same way as do the actin filaments of muscle cells (3, 6 7). This suggests that these filaments may be actinoid and form part of a contractile system. As fine intracytoplasmic filaments do occur in lymphatic endothelial cells (2, 14), we undertook an electron microscope investigation of their fine structure and their reaction on incubation with HMM and EDTA. We postulated that lymphatic endothelial cells possess a contractile filamentous system to which these filaments belong.  相似文献   

16.
The object of this theme is to offer new perspectives on the effect of aging on signal-transduction pathways associated with agonist-induced contraction of smooth muscle cells from the colon. Smooth muscle cells from old rats (32 mo old) exhibit limited cell length distribution and diminished contractility. The observed reduced contractile response may be due to the effect of aging on signal-transduction pathways, especially an inhibition of the tyrosine kinase-Src kinase pathway, a reduced activation of the PKC pathway, and a reduced association of contractile proteins [heat shock protein 27 (HSP27)-tropomyosin, HSP27-actin, actin-myosin]. Levels of HSP27 phosphorylation are also reduced compared with adult rats.  相似文献   

17.
The fusion mechanism of cells in myogenesis of skeletal muscle is proposed on the basis of capacity of forming intercellular contacts with pentalamellar structure to invaginate up to the formation of free vesicles, i.e. the intercellular pinocytosis. This process leads to a "loss" of the membrane material with the following perforation and rupture of the membrane at the site of cell contact. The formation of invaginations is connected with the clusterization of proteins on the cytoplasmic surface of plasmalemma, accompanied by an alteration of Gibbs' surface energy with the appearance of chemically induced and bending moments. The transition from the invagination to the vesicle depending on osmotic gradient of pressure between the fusing cells was estimated quantitatively. This gradient is determined by the mechanism of polymerization of protein subunits during the assembly of contractile elements in one of fusing cells.  相似文献   

18.
In smooth muscle cells, the electrophysiological properties of potential-dependent calcium channels are similar to those described in other excitable cells. The calcium current is dependent on the extracellular calcium concentration; it is insensitive to external sodium removal and tetrodotoxin application. Other ions (Ba2+, Sr2+, Na+) can flow through the calcium channel. This channel is blocked by Mn2+, Co2+, Cd2+ and by organic inhibitors. The inactivation mechanism is mediated by both the membrane potential and the calcium influx. Ca2+ ions can also penetrate into the cell through receptor-operated channels. These channels show a low ionic selectivity and are generally less sensitive to organic Ca-blockers than the potential-dependent calcium channels. The finding of specific channel inhibitors as well as the study of the biochemical pathways between receptor activation and channel opening are prerequisites to further characterization of receptor-operated channels.  相似文献   

19.
Cytokinesis involves two phases: 1) membrane ingression followed by 2) membrane abscission. The ingression phase generates a cleavage furrow and this requires co-operative function of the actin-myosin II contractile ring and septin filaments. We demonstrate that the actin-binding protein, EPLIN, locates to the cleavage furrow during cytokinesis and this is possibly via association with the contractile ring components, myosin II, and the septin, Sept2. Depletion of EPLIN results in formation of multinucleated cells and this is associated with inefficient accumulation of active myosin II (MRLCS19) and Sept2 and their regulatory small GTPases, RhoA and Cdc42, respectively, to the cleavage furrow during the final stages of cytokinesis. We suggest that EPLIN may function during cytokinesis to maintain local accumulation of key cytokinesis proteins at the furrow.  相似文献   

20.
The present paper examines the ultrastructure of the sarcoplasmic recitulum (SR) and the T system in the striated muscle of the lamprey. The pyroantimonate method was used to visualise the sites of intracellular calcium localisation. Characteristic for the muscle studied are the presence of numerous intricately shaped invaginations on the surface membrane of muscle fibres and peripheral contacts between SR cisternae and the sarcolemma. In addition to calcium localised in the terminal cisternae of SR and N-bands of the I-disk, as typical of vertebrate muscles, a great amount of calcium is present in the subsarcolemmal region, corresponding to the area of invaginations, and in longitudinal elements of SR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号