首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estrogen has been proposed as a negative risk factor for development of peripheral vascular disease yet mechanisms of this protection are not known. This study examines the hypothesis that estrogen stimulates rat aortic endothelial cell (RAEC) release of PGI2. Male Sprague-Dawley rat abdominal aortic 1-mm rings were placed on 35 mm matrigel plates, and incubated for 1 week. The cells were transferred to a Primaria 60-mm dish and maintained from passage 3 in RAEC complete media and experiments performed between passages 4–10. Cells were incubated with Krebs-Henseleit buffer (pH 7.4) containing carrier or increasing concentrations of β-estradiol or testosterone for 60 min. The effluent was analyzed for eicosanoid release of 6-keto-PGF (6-keto, PGI2 metabolite), PGE2 and thromboxane B2 (TXB2) by EIA (hormone stimulated — basal). Cells were analyzed for total protein by the Bradford method and for cyclooxygenase-1 (COX-1) and prostacyclin synthase (PS) content by Western blot analysis and densitometry. Testosterone did not alter RAEC 6-keto-PGF release, whereas estrogen increased RAEC 6-keto-PGF release in a dose-related manner. Estrogen preincubation (10 ng/ml) decreased COX-1 and PS content by 40% suggesting that the estrogen-induced increase in male RAEC PGI2 release was not due to increased synthesis of COX-1 or PS. These data support the hypothesis that estrogen stimulation can increase endogenous male RAEC release of PGI2.  相似文献   

2.
The mechanism by which extracellular alkalosis inhibits hypoxic pulmonary vasoconstriction is unknown. We investigated whether the inhibition was due to intrapulmonary production of a vasodilator prostaglandin such as prostacyclin (PGI2). Hypoxic vasoconstriction in isolated salt-solution-perfused rat lungs was blunted by both hypocapnic and NaHCO3_induced alkalosis (perfusate pH increased from 7.3 to 7.7). The NaHCO3-induced alkalosis was accompanied by a significant increase in the perfusate level of 6-keto-prostaglandin F (6-keto-PGF), an hydrolysis product of PGI1. Meclofenamate, an inhibitor of cyclooxygenase, counteracted both the blunting of hypoxic vasoconstriction and the increased level of 6-keto-PGF. In intact anesthetized dogs, hypocapnic alkalosis (blood pH increased from 7.4 to 7.5) blunted hypoxic pulmonary vasoconstriction before but not after administration of meclofenamate. In separate cultures of bovine pulmonary artery endothelial and smooth muscle cells stimulated by bradykinin, the incubation medium levels of 6-keto-PGF were increased by both hypocapnia and NaHCO3-induced alkalosis (medium pH increased from 7.4 to 7.7). These results suggest that inhibition of hypoxic pulmonary vasoconstriction by alkalosis is mediated at least partly by PGI2.  相似文献   

3.
The role of prostacyclin (PGI2) on amphibian adrenal steroidogenesis was studied in perifused interrenal fragments from adult male frogs. Exogenous PGI2 (3×10−8 M to 3×10−5 M) and, in a lesser extent, 6-keto-PGF increased both corticosterone and aldosterone production in a dose-related manner. Short pulses (20 min) of 0.88 μM PGI2 administered at 90 min intervals within the same experiment did not induce any desensitization phenomenon. A prolonged administration (6 h) of PGI2 gave rise to an important increase in steroid production followed by a decline of corticosteroidogenesis. Indomethacin (IDM, 5 μM) induced a marked reduction of the spontaneous secretion of corticosteroid which confirmed the involvement of endogenous PGs in the process of corticosteroid biosynthesis. The IDM-induced blockade of corticosterone and aldosterone secretion was totally reversed by administration of exogenous PGI2 in our model. Angiotensin II (AII) induced a massive release of 6-keto-PGF, the stable metabolite of PGI2. The increase of 6-keto-PGF preceded the stimulation of corticosterone and aldosterone secretions. In contrast, the administration of ACTH did not modify the release of 6-keto-PGF. These results indicate that PGI2 might be an important mediator of adrenal steroidogenesis in frog. They confirm that the corticosteroidogenic actions of ACTH and AII are mediated by different mechanisms.  相似文献   

4.
Incubation of [1-14C]arachidonic acid (AA) with homogenates of bovine gallbladder muscle generated a large amount of radioactive material having the chromatographic mobility of 6-keto-PGF (stable product of PGI2) and smaller amounts of products that comigrated with PGF and PGE2. Formation of these products was inhibited by the cyclooxygenase inhibitor indomethacin. The major radioactive product identified by thin-layer chromatographic mobility and by gas chromatography - mass spectrometric analysis was found to be 6-keto-PGF. The quantitative metabolic pattern of [1-14C]PGH2 was virtually identical to that of [1-14C]AA. Incubation of arachidonic acid with slices of bovine gallbladder muscle released labile anti-aggregatory material in the medium, which was inhibited by aspirin or 15-hydroperoxy-AA.These results indicate that bovine gallbladder muscle has a considerable enzymatic capacity to produce PGI2 from arachidonic acid.  相似文献   

5.
This study examines the hypothesis that acute thermal injury decreases renal and splanchnic blood flow which correlates with altered endogenous vasodilator eicosanoid release. Anesthetized male Wistar rats were subjected to sham or a non-resuscitated 30% total body surface area burn. At 1, 2, 4, 8, and 24 h post-burn mean arterial pressure as well as superior mesenteric and renal artery in vivo blood flow were measured. The superior mesenteric and renal arteries were cannulated and perfused in vitro with their end organs with Krebs buffer (pH 7.4, 37°C). Renal and splanchnic 6-keto-PGF (PGI2), PGE2, and thromboxane B2 (TXB2) release were measured by EIA at 15 min of perfusion. Renal and superior mesenteric artery blood flow decreased by 40% or more at 1 and 2 h post-burn despite mean arterial pressure remaining unchanged. The major eicosanoids released were PGI2 from the splanchnic bed and PGI2 and PGE2 from the kidney. Splanchnic PGI2 and TXB2 release and renal TXB2 increased 2–3 fold at 1 h post-burn but returned to the sham level at 2 h post-burn. By 24 h post-burn the vasodilator eicosanoids were increased in both the splanchnic and renal vascular beds. These data show that decreased renal and splanchnic blood flow was associated with increased endogenous release of the potent vasoconstrictor TXB2. By 2 h post-burn, renal and splanchnic blood flow began returning toward the sham level as endogenous release of TXB2 from both organs fell to sham levels. These data suggest that increased endogenous release of TXB2 may contribute to the short-term decrease in renal and splanchnic blood flow in the immediate post-burn period and thus may contribute to ischemia of both vascular beds.  相似文献   

6.
Prostacyclin alternatively called prostaglandin (PG) I2 is an unstable metabolite synthesized by the arachidonate cyclooxygenase pathway. Earlier studies have suggested that prostacyclin analogues can act as a potent effector of adipose differentiation. However, biosynthesis of PGI2 has not been determined comprehensively at different life stages of adipocytes. PGI2 is rapidly hydrolyzed to the stable product, 6-keto-PGF, in biological fluids. Therefore, the generation of PGI2 can be quantified as the amount of 6-keto-PGF. In this study, we attempted to develop a solid-phase enzyme-linked immunosorbent assay (ELISA) using a mouse antiserum specific for 6-keto-PGF. According to the typical calibration curve of our ELISA, 6-keto-PGF can be quantified from 0.8 pg to 7.7 ng in an assay. The evaluation of our ELISA revealed the higher specificity of our antiserum without the cross-reaction with other related prostanoids while it exhibited only the cross-reaction of 1.5 % with PGF. The resulting ELISA was applied to the quantification of 6-keto-PGF generated endogenously by cultured 3T3-L1 cells at different stages. The cultured cells showed the highest capability to generate 6-keto-PGF during the maturation phase of 4–6 days, which was consistent with the coordinated changes in the gene expression of PGI synthase and the IP receptor for PGI2. Following these events, the accumulation of fats was continuously promoted up to 14 days. Thus, our immunological assay specific for 6-keto-PGF is useful for monitoring the endogenous levels of the unstable parent PGI2 at different life stages of adipogenesis and for further studies on the potential association with the up-regulation of adipogenesis in cultured adipocytes.  相似文献   

7.
Physiologic concentrations of insulin completely inhibited the norepinephrine-induced increment in the production of 6-keto-prostaglandin (PG) F, the stable derivative of prostacyclin (PGI2), by isolated rat adipocytes. The inhibition of PGI2 production by insulin in isolated rat adipocytes supports the view that the elevated plasma level of 6-keto-PGF in rats with non-ketotic diabetes mellitus and diabetic ketoacidosis is derived at least in part from production of PGI2 by the adipocyte cell mass.  相似文献   

8.
The pulmonary formation of prostacyclin (PGI2), as reflected by the difference in concentration of pulmonary and systematic arterial radioimmunoassayed 6-keto-PGF, was determined in six healthy waking subjects. The systematic arterial 6-keto-PGF levels were low (50 pg/ml), and no evidence of pulmonary formation and release of the compound was noted. In other experiments systemic arterial 6-keto-PGF levels were determined in patients prior to and during artificial ventilation, as well as during and after occlusion of the pulmonary circulation (extra-corporeal circulation, ECC). The arterial 6-keto-PGF concentration prior to artificial ventillation was 17±4 pg/ml, i.e. within the range observed in the healthy subjects. During artificial ventilation the arterial levels of 6-keto-PGF increased to 191±21 pg/ml, suggesting that pulmonary formation of PGI2 was stimulated. In the patients subjected to ECC with occluded pulmonary circulation the arterial content of 6-keto-PGF was stabilised at an elevated level (120−170 pg/ml). Following re-establishment of the pulmonary circulation the arterial concentrations of 6-keto-PGF increased markedly, to 284±50 pg/ml. It is suggested that the basal pulmonary formation of PGI2 in man is low or non-existent, and that enhanced formation of the compound in the lungs is a consequence of intervention with normal pulmonary ventilation or perfusion.  相似文献   

9.
Prostaglandin synthesis by fetal rat bones was examined by thin-layer chromatography of culture media after preincubation with labeled arachidonic acid. Cultures in rabbit complement (non-heat inactivated serum) were compared with cultures in heat-inactivated serum or cultures treated with indomethacin. The major complement-dependent products were PGE2, PGF and 6-keto-PGF, the metabolite of prostacyclin (PGI2). Since PGI2 had not been previously identified in bone its ability to stimulate bone resorption was tested. Repeated addition of PGI2 stimulated release of previously incorporated 45Ca from fetal rat long bones in both short-term and long-term cultures at concentrations of 10−5 to 10−9M. Because of the short half life of PGI2 in solution at neutral pH, we tested a sulfur analog, thiaprostacyclin (S-PGI2) which was found to be a stimulator of bone resorption at concentrations of 10−5 to 10−6M. These studies suggest that endogenous PGI2 production may play a role in bone metabolism. Since vessels produce PGI2 it is possible that PGI2 release may be responsible for the frequent association between vascular invasion and resorption of bone or calcified cartilage in physiologic remodeling and pathologic osteolysis.  相似文献   

10.
Conversion of 1-14C-arachidonic acid (AA) to 6-keto-PGF, the stable metabolite of prostacyclin (PGI2) was assayed kinetically by employing an aqueous sampling technique. In this way, one can arrive at a kinetic view of PGI2 synthesis from AA in intact tissue. The assay appears to be particularly suitable to tissues such as the aorta where PGI2 constitutes the major metabolite of AA. The assay avoids the need for organic solvent extraction and relies on the essential absence of tissue binding of 6-keto-PGF. The disappearance of AA can also be followed in this system but quantitation is complicated by avid tissue binding of the fatty acid. The assay, as described should be applicable to other vascular tissues and should greatly simplify kinetic analyses of prostacyclin synthesis.  相似文献   

11.
Staurosporine and K-252a, known inhibitors of several protein kinases, stimulated PGI2 production (measured as 6-keto-PGF in rat liver cells (the C-9 cell line). Preincubation of the rat liver cells with staurosporine or K-252a enhanced the PGI2 production stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), platelet activating factor (PAF) and the Ca2+-ionophore a-23187, but not the PGI2 synthesis stimulated by exogeneous arachidonic acid. These results suggest that phosphorylation of some proteins or certain amino acids on a protein can regulate arachidonic acid metabolism probably in the pathway leading to deesterification of phospholipids.  相似文献   

12.
Dose-response curves for several prostaglandins (PGI2; PGD2; PGF2 and PGE2); BaCl2 or prostaglandin metabolites (15-keto-PGF; 13, 14-diOH-15-keto-PGF; 6-keto-PGF and 6-keto-PGE1 in quiescent (indomethacin-treated) uterine strips from ovariectomized rats, were constructed. All PGs tested as well as BaCl2, triggered at different concentrations, evident phasic contractions. Within the range of concentrations tested the portion of the curves for the metabolites of PGF was shifted to the right of that for PGF itself; the curve for 6-keto-PGF was displaced to the right of the curve for PGI2 and that for 6-keto-PGE1 to the left.It was also demonstrated that the uterine motility elicited by 10−5 M PGF and its metabolites was long lasting (more than 3 hours) and so it was the activity evoked by PGI2; 6-keto-PGF and BaCl2, but not the contractions following 6-keto-PGE1, which disappeared much earlier. The contractile tension after PGF; 15-keto-PGF; 13, 14-diOH-15-keto-PGF and PGI2, increased as time progressed whilst that evoked by 6-keto-PGF or BaCl2 fluctuated during the same period around more constant levels.The surprising sustained and gradually increasing contractile activity after a single dose of an unstable prostaglandin such as PGI2, on the isolated rat uterus rendered quiescent by indomethacin, is discussed in terms of an effect associated to its transformation into more stable metabolites (6-keto-PGF, or another not tested) or as a consequence of a factor which might protects prostacyclin from inactivation.  相似文献   

13.
Arteries are capable of producing significantly larger quantities of protacyclin than are veins. To test the hypothesis, whether prostacyclin production by the vessel wall is related to blood pressure and flow, we measured the amounts of PGI2 released and synthesized by venous segments transplanted for 6 weeks into the arterial circulation. These results were compared with the production of prostacyclin by normal veins and arteries. In 20 dogs a segment of jugular vein was interposed into the carotid system; a sham dissection was done on the opposite side. “Arterialized” vein grafts showed prominent intima lined by endothelium, medial smooth muscle cell proliferation and fibrotic proliferation in adventitia. Spontaneous and arachidonic acid- stimulated prostacyclin production (measured by radioimmunoassay for 6-keto-PGF) was not significantly different between arterialized venous autografts and jugular veins. Significantly larger amounts of prostacyclin were synthesized by the carotid artery. Thus, histologic changes and rheologic effects occurring in vein grafts transposed to the arterial site do not affect prostacyclin production.  相似文献   

14.
Cultured pulmonary artery endothelial cells produce PGI2 as their primary prostaglandin. Conditions which inhibit cell division have been shown to accelerate the synthesis of this compound. Exposure of endothelial cells to γ raidation results in an irreversible cessation of growth and enhanced production of PGI2. The level of PGI2 measured after radiation exposure exceeds that observed in cultures rendered quiescent by serum reduction. This indicates a role for γ radiation in the elevation of PGI2 levels which is distinct from its effect on cell division. Result presented indicate that exposure to γ radiation does not, in and of itself, elevate PG levels but capacitates cells for enhanced production when presented with appropriate stimuli. Increased PGI2 synthesis appears to be a result of an observed increase in arachidonic acid release and an activation of cyclooxygenase.  相似文献   

15.
Washed rabbit red blood cells (RBCs) were suspended in electrolyte solution containing 3H-labeled prostacyclin (PGI2), thromboxane (TxB2) or 6-keto-PGF and 14C-labeled sucrose or thiourea. Following 1 to 30 min incubation with 14C-sucrose, 3H-TxB2 or 3H-6-keto-PGF, the 14C or 3H space of packed RBCs remained essentially constant, yielding mean values (±S.E.) for all time periods of 6.1 ± 0.3, 9.5 ± 0.5 and 6.5 ± 0.4%, respectively. After 1 min of incubation at 4° or 23°C at a pH of 7.4 or 8.5 with trace amounts (10−9M) of 3H-PGI2 or in the presence of added PGI2 (10−5M) or ethacrynic acid (1.6 × 10−4M), the apparent PGI2 space of packed RBCs ranged from 16 to 27%, decreasing to about 7% by 30 min. When RBCs were resuspended in fresh 3H-PGI2 every 5 min, their 3H content increased very slowly (apparent PGI2 space <40% at 30 min) as compared to thiourea (distribution space > 80% within 5 min). Over 90% of this 3H activity was lost from the RBCs in less than 2 min during elution at 4° or 23°C. It is concluded that RBC membranes and thus, presumably, the basic cell membrane in general, is not fundamentally permeable to PGI2, 6-keto-PGF or TxB2. Hence, the effective entry of these cyclooxygenase products into some cells or their passage across tight-junctional capillaries or epithelial membranes must require facilitated or active transport processes as was shown to be the case for E, F and A PGs. This implies that the distribution, pharmacological action and metabolism of these and presumably all related cyclooxygenase products are selective rather than unrestricted.  相似文献   

16.
There is growing evidence that blood vessels generate TXA2 in addition to PGI2. We examined effluents from continously perfused human umbilical vein and supernatants from umbilical vein rings for TXB2 and 6-keto-PGF measurements (stable metabolites of TXA2 and PGI2, respectively). TXB2 and 6-keto-PGF were identified in all samples. 6-keto-PGF to TXB2 ratio was higher in intact vein effluents than in the venous ring supernatants (112:1 and 28:1, respectively, P<0.01). Arachidonate stimulation increased 6-keto-PGF and TXB2 levels similarly in the intact vein effluent. In contrast, stimulation of the venous rings resulted in a relatively larger increase in TXB2 than in 6-keto-PGF. This caused 6-keto-PGF to TXB2 ratio to decline (p<0.01). The identity of TXB2 was confirmed in several different ways. These data suggest that 1) human umbilical veins produce TXA2 in addition to PGI2, 2) TXA2 release is more by venous rings than by the intact vein probably reflecting contribution from non-endothelial layers, and 3) arachidonate stimulation causes relatively greater release of TXA2 than of PGI2 from the venous rings, whereas release of PGI2 and TXA2 is similar from the intact vein.  相似文献   

17.
These experiments were conducted to determine the effects of dipyridemole on human platelet aggregation, platelet thromboxane A2 (TXA2) and human vessel wall prostacyclin (PGI2) generation. Dipyridamole in varying concentrations (5 to 50 μg/ml) had no direct effect on ADP-induced platelet aggregation in vitro, but it potentiated PGI2-induced platelet aggregation inhibition at these concentrations. Dipyridamole also inhibited arachidonic acid-induced platelet TXA2 generation at these concentrations. In continuously perfused umbilical vein segments, dipyridamole treatment resulted in stimulation of PGI2 release determined by bioassay and by measurement of its stable metabolite 6-keto-PGF. Minimum concentration of dipyridamole causing PGI2 release was 50 μg/ml. These in vitro studies suggest that anti-thrombotic effects of dipyridamole in man are mediated mainly by potentiation of PGI2 activity and to some extent by TXA2 suppression. Stimulation of PGI2 release by human vessels may not be seen in usual therapeutic concentrations.  相似文献   

18.
Using PGH2 as substrate, we have previously demonstrated that human placenta synthetizes mainly PGE2, TxB2 and PGD2(1,2). Other reports have shown that placental tissue generates a substance which inhibits ADP-induced platelet aggregation and which was supposed to be PGI2 (3). The present study indicates that the stability of that substance is different from the stability of prostacyclin (released by umbilical artery pieces). By GC-MS and multiple ion-monitoring, we have shown the presence of 6 keto-PGF (the stable metabolite of PGI2) in the umbilical artery incubation medium, while no trace of 6-keto-PGF could be found in the placental medium. No conversion of AA to 6-keto-PGF by placental microsomes was observed, even in the presence of antioxidants. The placenta possesses, in addition to the known 15-OH-PGDH and Δ-13 reductase activities, a weak 9 OH pGDH which is specific for PGF (and not PGI2 nor 6-keto-PGF). GC-MS analysis is showed that the expected metabolites of PGI2 through those three enzymes were not found in the placental medium, indicating that neither PGI2 synthesis nor metabolism could be demonstrated in the placenta.  相似文献   

19.
We studied the effects of two structurally unrelated inhibitors of the fatty acid cyclooxygenase and of alpha and beta adrenergic blockade on the elevated plasma levels of 13,14-dihydro-15-keto-prostaglandin (PG)E2, 6-keto-PGF and thromboxane(TX)B2, the stable derivatives of PGE2, PGI2 (prostacyclin) and TXA2, respectively, in rats with streptozotocin-induced diabetic ketoacidosis (DKA). Meclofenamic acid and indomethacin each produced a significant decrease in the elevated plasma levels of 13,14-dihydro-15-keto-PGE2, 6-keto-PGF and TXB2. Phentolamine significantly reduced the plasma level of TXB2 but had no effect on the elevated circulating levels of glucose, free fatty acids, total ketones, 13,14,-dihydro-15-keto-PGE2 or 6-keto-PGF. Propranolol significantly reduced the elevated circulating levels of glucose, free fatty acids and total ketones but had no effect on the levels of the three prostaglandin derivatives. The ability of meclofenamic acid and indomethacin to reduce the plasma levels of 13,14-dihydro-15-keto-PGE2, 6-keto-PGF and TXB2 confirms that the plasma levels of these three derivatives are elevated in rats with DKA. Since abnormalities in the production of PGI2 and perhaps other cyclooxygenase derivatives may contribute to the pathogenesis of certain important hemodynamic and gastrointestinal features of DKA, cyclooxygenase inhibitors may play a role in the management of selected patients with this disorder. Alpha adrenergic activity is essential for the maintenance of the elevated plasma TXB2 level in rats with DKA. The fall in the plasma TXB2 level during alpha adrenergic blockade appears to reflect inhibition of platelet aggregation and platelet TXA2 production, but other sources of the elevated plasma TXB2 level in DKA are not excluded. Beta adrenergic activity contributes to the maintenance of elevated circulating levels of glucose, free fatty acids and total ketones in experimental DKA but not to the elevated plasma levels of the prostaglandin derivatives.  相似文献   

20.
Homogeneous populations of collecting tubule epithelial cells have been isolated from rabbit renal papillae by a sequence of procedures involving: (a) dissociation of the tissue by mincing and treatment with trypsin; (b) destruction of contaminating non-collecting tubule cells by differential lysis in hypotonic media and (c) collection and washing by repeated centrifugation. The isolated cells have been characterized as being derived from the collecting tubules on the basis of anatomical source, size and histological staining for both NADH diaphorase activity and cyclooxygenase antigenicity. The cells are judged to be viable by several criteria including their ability to exclude both trypsin and vital dyes, their capacity to metabolize glucose and leucine and their ability to retain distinctive morphology following 10–14 days in culture media. Homogenates of freshly isolated collecting tubule cells when incubated with [3H]-arachidonic acid yielded radioactive products identified by thin-layer chromatographic behavior in multiple solvent systems as 6-keto-PGF, PGF, PGE2, PGD2 and a monohydroxy acid, probably HHT. No lipoxygenase-like activity was detected. At arachidonate concentrations of 2 or less, the major product was 6-keto-PGF; while at substrate concentrations of greater than 10 , PGE2 was the major radioactive prostaglandin formed. Similar distributions of products were observed when homogenates of dissociated renal papillae enriched in medullary interstitial cells were incubated with arachidonic acid. Our results indicate that collecting tubule cells do contain significant prostacyclin synthetase activity and suggest that PGI2 plays a role in the function of mammalian collecting tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号