首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor expressed in the hypothalamus where it controls feeding behavior. MC4R cycles constitutively and is internalized at the same rate in the presence or absence of stimulation by the agonist, melanocyte-stimulating hormone (α-MSH). This is different from other G-protein-coupled receptors, such as β(2)-adrenergic receptor (β(2)AR), which internalizes more rapidly in response to agonist stimulation. Here, it is found that in immortalized neuronal Neuro2A cells expressing exogenous receptors, constitutive endocytosis of MC4R and agonist-dependent internalization of β(2)AR were equally sensitive to clathrin depletion. Inhibition of MC4R endocytosis by clathrin depletion decreased the number of receptors at the cell surface that were responsive to the agonist, α-MSH, by 75%. Mild membrane cholesterol depletion also inhibited constitutive endocytosis of MC4R by ~5-fold, while not affecting recycling of MC4R or agonist-dependent internalization of β(2)AR. Reduced cholesterol did not change the MC4R dose-response curve to α-MSH, but it decreased the amount of cAMP generated per receptor number indicating that a population of MC4R at the cell surface becomes nonfunctional. The loss of MC4R function increased over time (25-50%) and was partially reversed by mutations at putative phosphorylation sites (T312A and S329A). This was reproduced in hypothalamic GT1-7 cells expressing endogenous MC4R. The data indicate that constitutive endocytosis of MC4R is clathrin- and cholesterol-dependent. MC4R endocytosis is required to maintain MC4R responsiveness to α-MSH by constantly eliminating from the plasma membrane a pool of receptors modified at Thr-312 and Ser-329 that have to be cycled to the endosomal compartment to regain function.  相似文献   

2.
Agouti-related protein (AGRP) is one of two naturally occurring antagonists of G-Protein coupled receptors (GPCRs) identified to date, and has been physiologically implicated in regulating food intake, body weight, and energy homeostasis. AGRP has been identified in vitro, as competitively antagonizing the brain melanocortin-4 (MC4R) and melanocortin-3 (MC3R) receptors, and when over expressed in transgenic mice, results in an obese phenotype. Emerging data propose that AGRP has additional targets in the hypothalamus and/or physiologically functions via a mechanism in addition to competitive antagonism of alpha-MSH at the brain melanocortin receptors. We report data herein supporting an alternative mechanism for AGRP involvement in feeding behavior. A constitutively active MC4R has been generated which possess EC(50) values for melanocortin agonists (alpha-MSH, NDP-MSH, and MTII) and a pA2 value for the synthetic peptide antagonist SHU9119 identical to the wildtype receptor, but increases basal activity to 50% maximal response. AGRP possesses inverse agonist activity at this constitutively active MC4R. These data support the hypothesis for an additional physiological mechanism for AGRP action in feeding behavior and energy homeostasis.  相似文献   

3.
Abstract: Internalization and recycling of G protein-coupled receptors (GPCRs), such as the μ-opioid receptor, largely depend on agonist stimulation, whereas certain other receptor types recycle constitutively, e.g., the transferrin receptor. To investigate structural domains involved in μ-opioid receptor internalization, we constructed two truncation mutants bracketing a Ser/Thr-rich domain (354ThrSerSerThrIleGluGlnGlnAsn362) unique to the C-terminus of the μ-opioid receptor (mutants Trunc354 and Trunc363). Ligand binding did not differ substantially, and G protein coupling was slightly lower for these μ-receptor constructs, in particular for Trunc363. To permit localization of the receptor by immunocytochemistry, an epitope tag was added to the N-terminus of the wildtype and mutant receptors. Both the wild-type μ-opioid receptor and Trunc363 resided largely at the plasma membrane and internalized into vesicles upon stimulation with the agonist [d -Ala2,N-Me-Phe4,Gly-ol5]-enkephalin. Internalization occurred into vesicles that contain transferrin receptors, as shown previously, as well as clathrin, but not caveolin. In contrast, even without any agonist present, Trunc354 colocalized in intracellular vesicles with clathrin and transferrin receptors, but not caveolin. On blocking internalization by hyperosmolar sucrose or acid treatment, Trunc354 translocated to the plasma membrane, indicating that the mutant internalized into clathrin-coated vesicles and recycled constitutively. Despite agonist-independent internalization of Trunc354, basal G protein coupling was not elevated, suggesting distinct mechanisms for coupling and internalization. Furthermore, a portion of the C-terminus, particularly the Ser/Thr domain, appears to suppress μ-receptor internalization, which can be overcome by agonist stimulation. These results demonstrate that a mutant GPCR can be constructed such that internalization, normally an agonist-dependent process, can occur spontaneously without concomitant G protein activation.  相似文献   

4.
As G protein-coupled receptors (GPCRs) are the target of numerous signaling molecules, including about half of the therapeutic drugs currently used, it is important to understand the consequences of homologous (ligand-induced) receptor regulation. Continuous exposure of GPCRs to agonist in vitro most frequently results in receptor down-regulation, but receptor up-regulation may occur as well. These phenomena are expected to play a role in the physiological adaptation to endogenous ligands and also in the response to repetitive administration of drugs in the clinic. However, there is little information on homologous regulation of GPCRs in vivo. Here, we report on the regulation of melanocortin-1 receptor (MC1R) expression in melanoma cells implanted into mice. Two melanoma cell lines were investigated, D10 and B16F1, which in vitro had previously been shown to undergo homologous receptor up- and down-regulation, respectively. After implantation into mice and exposure to the natural MC1R agonist alpha-melanocyte-stimulating hormone (alpha-MSH), cell-surface MC1R expression was evaluated by competition binding experiments in tumor membrane preparations. In B 16F1 cells, a single injection of 50 to 500 microg alpha-MSH induced a rapid but moderate dose-dependent MC1R down-regulation which could be totally reverted within 16-24 h. By continuous administration of alpha-MSH via osmotic minipumps, MC1R down-regulation was considerably amplified and reached the level observed in vitro, demonstrating that prolonged receptor interaction was necessary to induce a maximal effect in vivo. Similar results were obtained in vitro, which demonstrates that homologous MC1R regulation in B16F1 cells is essentially independent of the physiological environment. In D10 cells, however, up-regulation could not be reproduced in vivo, suggesting that MC1R up-regulation is more dependent on the physiological environment. These results demonstrate the importance of in vivo receptor regulation studies, in particular in view of the potential use of MC1R as a target for melanoma therapy.  相似文献   

5.
The central melanocortin (MC) system has been demonstrated to act downstream of leptin in the regulation of body weight. The system comprises alpha-MSH, which acts as agonist, and agouti-related protein (AgRP), which acts as antagonist at the MC3 and MC4 receptors (MC3R and MC4R). This property suggests that MCR activity is tightly regulated and that opposing signals are integrated at the receptor level. We here propose another level of regulation within the melanocortin system by showing that the human (h) MC4R displays constitutive activity in vitro as assayed by adenylyl cyclase (AC) activity. Furthermore, human AgRP(83-132) acts as an inverse agonist for the hMC4R since it was able to suppress constitutive activity of the hMC4R both in intact B16/G4F melanoma cells and membrane preparations. The effect of AgRP(83-132) on the hMC4R was blocked by the MC4R ligand SHU9119. Also the hMC3R and the mouse(m)MC5R were shown to be constitutively active. AgRP(83-132) acted as an inverse agonist on the hMC3R but not on the mMC5R. Thus, AgRP is able to regulate MCR activity independently of alpha-MSH. These findings form a basis to further investigate the relevance of constitutive activity of the MC4R and of inverse agonism of AgRP for the regulation of body weight.  相似文献   

6.
7.
Wilbanks AM  Laporte SA  Bohn LM  Barak LS  Caron MG 《Biochemistry》2002,41(40):11981-11989
The DRY motif is a triplet amino acid sequence (aspartic acid, arginine, and tyrosine) that is highly conserved in G protein-coupled receptors (GPCRs). Recently, we have shown that a molecular determinant for nephrogenic diabetes insipidus, the vasopressin receptor with a substitution at the DRY motif arginine (V2R R137H), is a constitutively desensitized receptor that is unable to couple to G proteins due to its constitutive association with beta-arrestin [Barak, L. S. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 93-98]. Additionally, the mutant receptors are localized in endocytic vesicles, identical to wild-type receptors stimulated with agonist. In this study, we asked whether the constitutively desensitized phenotype observed in the V2R R137H represents a general paradigm that may be extended to other GPCRs. We show that arginine substitutions in the DRY motifs of the alpha(1B) adrenergic receptor (alpha(1B)-AR) and angiotensin II type 1A receptor (AT(1A)R) result in receptors that are uncoupled from G proteins, associated with beta-arrestins, and found localized in endocytic vesicles rather than at the plasma membrane in the absence of agonists. The localization of the alpha(1B)-ARs and AT(1A)Rs with arginine substitutions can be restored to the plasma membrane by either using selective antagonists or preventing the endocytosis of the beta-arrestin-receptor complexes. These results indicate that the arginine residue of the DRY motif is essential for preserving the localization of the inactive receptor complex. Furthermore, constitutive desensitization may underlie some loss-of-function receptor phenotypes and represent an unappreciated mechanism of hormonal resistance.  相似文献   

8.
Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor implicated in the regulation of body weight. Genetic studies in humans have identified two frameshift mutations of MC4R associated with a dominantly inherited form of obesity. We have generated and expressed the corresponding MC4R mutants in 293T cells and found that cells transfected with the truncation mutants failed to exhibit agonist binding or responsiveness despite retention of structural motifs potentially sufficient for binding and signaling. Immunofluorescence studies showed that the mutant proteins were expressed and localized in the intracellular compartment but absent from the plasma membrane, suggesting that these mutations disrupted the proper cellular transport of MC4R. Further studies identified a sequence in the cytoplasmic tail of MC4R necessary for the cell surface targeting. We further investigated a possible dominant-negative activity of the mutants on wild-type receptor function. Co-transfection studies showed that the mutants affected neither signaling nor cell surface expression of wild-type MC4R. We also characterized three human sequence variants of MC4R, but these exhibited identical affinities for peptide ligands and identical agonist responsiveness. Thus, unlike the obesity-associated MC4R truncation mutants, the polymorphisms of MC4R are unlikely to be contributors to human obesity.  相似文献   

9.
10.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

11.
The specific melanocortin receptors, MC3R and MC4R, are directly linked to metabolism and body weight control. These receptors are activated by the peptide hormone alpha-MSH and antagonized by the agouti-related protein (AGRP). Whereas alpha-MSH acts broadly on most members of the MCR family (with the exception of MC2R), AGRP is highly specific for only MC3R and MC4R. AGRP is a complex ligand of approximately 100 amino acids. Within AGRP, MCR recognition and antagonism is localized to a 34 residue, cysteine-rich domain that adopts an inhibitor cystine knot (ICK) fold. An oxidatively folded peptide corresponding to this domain, referred to as mini-AGRP, exhibits full antagonist function and selectivity for MC3R and MC4R. Here we investigate a series of chimera proteins based on the mini-AGRP scaffold. Amino acid sequences derived from peptide agonists are grafted into the mini-AGRP active loop, implicated in receptor recognition, with the goal of producing ICK based agonists specific for MC3R and MC4R. Several constructs indeed exhibited potent agonist activity; however, with all chimeras, receptor selectivity is significantly altered. Pharmacologic data indicate that the chimeras do not interact with MC receptors through native AGRP like contacts. A model to explain the data suggest that there is only partial overlap of the agonist versus antagonist binding surfaces within MC receptors. Moreover, accessibility to the binding pocket is highly receptor specific with MC3R being the least tolerant of ligand alterations.  相似文献   

12.
ACTH is the most important stimulus of the adrenal cortex. The precise molecular mechanisms underlying the ACTH response are not yet clarified. The functional ACTH receptor includes melanocortin-2 receptor (MC2R) and MC2R accessory proteins (MRAP). In human embryonic kidney 293/Flp recombinase target cells expressing MC2R, MRAP1 isoforms, and MRAP2, we found that ACTH induced a concentration-dependent and arrestin-, clathrin-, and dynamin-dependent MC2R/MRAP1 internalization, followed by intracellular colocalization with Rab (Ras-like small guanosine triphosphate enzyme)4-, Rab5-, and Rab11-positive recycling endosomes. Preincubation of cells with monensin and brefeldin A revealed that 28% of the internalized receptors were recycled back to the plasma membrane and participated in total accumulation of cAMP. Moreover, certain intracellular Ser and Thr (S/T) residues of MC2R were found to play important roles not only in plasma membrane targeting and function but also in promoting receptor internalization. The S/T residues T131, S140, T204, and S280 were involved in MRAP1-independent cell-surface MC2R expression. Other mutants (S140A, S208A, and S202D) had lower cell-surface expressions in absence of MRAPβ. In addition, T143A and T147D drastically impaired cell-surface expression and function, whereas T131A, T131D, and S280D abrogated MC2R internalization. Thus, the modification of MC2R intracellular S/T residues may positively or negatively regulate its plasma membrane expression and the capacity of ACTH to induce cAMP accumulation. Mutations of T131, T143, T147, and S280 into either A or D had major repercussions on cell-surface expression, cAMP accumulation, and/or internalization parameters, pointing mostly to the second intracellular loop as being crucial for MC2R expression and functional regulation.  相似文献   

13.
The CB1 cannabinoid receptor (CB1R) displays a significant level of ligand-independent (i.e. constitutive) activity, either when heterologously expressed in nonneuronal cells or in neurons where CB1Rs are endogenous. The present study investigates the consequences of constitutive activity on the intracellular trafficking of CB1R. When transfected in HEK-293 cells, CB1R is present at the plasma membrane, but a substantial proportion ( approximately 85%) of receptors is localized in intracellular vesicles. Detailed analysis of CB1-EGFP expressed in HEK-293 cells shows that the intracellular CB1R population is mostly of endocytic origin and that treatment with inverse agonist AM281 traps CB1R at the plasma membrane through a monensin-sensitive recycling pathway. Co-transfection with dominant positive or dominant negative mutants of the small GTPases Rab5 and Rab4, but not Rab11, profoundly modifies the steady-state and ligand-induced intracellular distribution of CB1R, indicating that constitutive endocytosis is Rab5-dependent, whereas constitutive recycling is mediated by Rab4. In conclusion, our results indicate that, due to its natural constitutive activity, CB1R permanently and constitutively cycles between plasma membrane and endosomes, leading to a predominantly intracellular localization at steady state.  相似文献   

14.
To study the peripheral effects of melanocortin on fuel homeostasis in skeletal muscle, we assessed palmitate oxidation and AMP kinase activity in alpha-melanocyte-stimulating hormone (alpha-MSH)-treated muscle cells. After alpha-MSH treatment, carnitine palmitoyltransferase-1 and fatty acid oxidation (FAO) increased in a dose-dependent manner. A strong melanocortin agonist, NDP-MSH, also stimulated FAO in primary culture muscle cells and C2C12 cells. However, [Glu6]alpha-MSH-ND, which has ample MC4R and MC3R agonistic activity, stimulated FAO only at high concentrations (10(-5) M). JKC-363, a selective MC4R antagonist, did not suppress alpha-MSH-induced FAO. Meanwhile, SHU9119, which has both antagonistic activity on MC3R and MC4R and agonistic activity on both MC1R and MC5R, increased the effect of alpha-MSH on FAO in both C2C12 and primary muscle cells. Small interference RNA against MC5R suppressed the alpha-MSH-induced FAO effectively. cAMP analogues mimicked the effect of alpha-MSH on FAO, and the effects of both alpha-MSH and cAMP analogue-mediated FAO were antagonized by a protein kinase A inhibitor (H89) and a cAMP antagonist ((Rp)-cAMP). Acetyl-CoA carboxylase activity was suppressed by alpha-MSH and cAMP analogues by phosphorylation through AMP-activated protein kinase activation in C2C12 cells. Taken together, these results suggest that alpha-MSH increases FAO in skeletal muscle, in which MC5R may play a major role. Furthermore, these results suggest that alpha-MSH-induced FAO involves cAMP-protein kinase A-mediated AMP-activated protein kinase activation.  相似文献   

15.
Seven alleles of the chicken melanocortin (MC) 1 receptor were cloned into expression vectors, expressed in mammalian cells and pharmacologically characterized. Four of the clones e(+R), e(+B&D), e(wh)/e(y), E(Rfayoumi) gave receptors to which melanocortin stimulating hormone (alpha-MSH) and NDP-MSH bound with similar IC50 values and responded to alpha-MSH by increasing intracellular cAMP levels in a dose-dependent manner. Three of the cMC1 receptors; e(b), E and E(R), did not show any specific binding to the radioligand, but were found to be constitutively active in the cAMP assay. The E and E(R) alleles are associated with black feather colour in chicken while the eb allele gives rise to brownish pigmentation. The three constitutively active receptors share a mutation of Glu to Lys in position 92. This mutation was previously found in darkly pigmented sombre mice, but constitutively active MC receptors have not previously been shown in any nonmammalian species. We also inserted the Glu to Lys mutation in the human MC1 and MC4 receptors. In contrast with the chicken clones, the hMC1-E94K receptor bound to the ligand, but was still constitutively active independently of ligand concentration. The hMC4-E100K receptor did not bind to the MSH ligand and was not constitutively active. The results indicate that the structural requirements that allow the receptor to adapt an active conformation without binding to a ligand, as a consequence of this E/K mutation, are not conserved within the MC receptors. The results are discussed in relationship to feather colour in chicken, molecular receptor structures and evolution. We suggest that properties for the 'E92K switch' mechanism may have evolved in an ancestor common to chicken and mammals and were maintained over long time periods through evolutionary pressure, probably on closely linked structural features.  相似文献   

16.
Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.  相似文献   

17.
A variety of physiologically important receptors are internalized and then recycled back to the plasma membrane by the endocytic recycling compartment. These include the transferrin receptor and many G-protein coupled receptors (GPCRs). The internalization of GPCRs is a result of agonist stimulation. A cell-based fluorescent imaging assay is described that detects and quantifies the presence of fluorescently labeled receptors and macromolecules in the recycling compartment. This High Content Screening application is conducted on the ArrayScan II System that includes fluorescent reagents, imaging instrumentation and the informatics tools necessary to screen for compounds that affect receptor internalization, recycling and GPCR activation. We demonstrate the Receptor Internalization and Trafficking application by quantifying (i) the internalization and recycling of the transferrin receptor using a fluorescently labeled ligand and (ii) the internalization of a physiologically functional model GPCR, a GFP-parathyroid hormone receptor chimera. These assays give high signal-to-noise ratios, broad dynamic ranges between stimulated and unstimulated conditions and low variability across different screening runs. Thus, the Receptor Internalization and Trafficking application, in conjunction with the ArrayScan II System, forms the basis of a robust, information-rich and automated screen for GPCR activation.  相似文献   

18.
Melanocortin 4 receptor (MC4R) plays an important role in the regulation of food intake and body weight. To determine the molecular basis of human MC4R (hMC4R) responsible for alpha-melanocortin-stimulating hormone (alpha-MSH) binding, in this study, we utilized both receptor domain exchange and site-directed mutagenesis studies to investigate the molecular determinants of hMC4R responsible for alpha-MSH binding and signaling. alpha-MSH is a potent agonist at hMC4R but not at hMC2R. Cassette substitutions of the second, third, fourth, fifth, and sixth transmembrane regions (TM) of the hMC4R with the homologous regions of hMC2R were performed and alpha-MSH binding and signaling were examined. Our results indicate that each chimeric receptor was expressed at the cell surface and the expression levels remain similar to that of the wild-type receptor. The cassette substitutions of the second, fourth, fifth, and sixth TMs of the hMC4R with homologous regions of the hMC2R did not significantly alter alpha-MSH binding affinity and potency except substitution of the TM3 of the hMC4R, suggesting that the conserved residues in TMs of the hMC4R are crucial for alpha-MSH binding and signaling. Further mutagenesis studies indicate that conserved residues Glu(100) in TM2, Asp(122), Asp(126) in TM3 and Trp(258), Phe(261), His(264) in TM6 are involved in alpha-MSH binding and signaling. In conclusion, our results suggest that the conserved residues in the TM2, TM3, and TM6 of the hMC4R are responsible for alpha-MSH binding and signaling.  相似文献   

19.
In vitro mutagenesis of the mouse melanocortin-4 receptor (mMC4R) has been performed, based upon homology molecular modeling and previous melanocortin receptor mutagenesis studies that identified putative ligand-receptor interactions. Twenty-three mMC4 receptor mutants were generated and pharmacologically characterized using several melanocortin-based ligands [alpha-MSH, NDP-MSH, MTII, DNal (1')(7)-MTII, Nal(2')(7)-MTII, SHU9119, and SHU9005]. Selected mutant receptors possessing significant differences in the melanocortin-based peptide agonist and/or antagonist pharmacology were further evaluated using the endogenous antagonist agouti-related protein fragment hAGRP(83-132) and hAGRP(109-118) molecules. These studies of the mouse MC4R provide further experimental data suggesting that the conserved melanocortin receptor residues Glu92 (TM2), Asp114 (TM3), and Asp118 (TM3) (mouse MC4R numbering) are important for melanocortin-based peptide molecular recognition. Additionally, the Glu92 and Asp118 mMC4R residues are important for molecular recognition and binding of AGRP(83-132). We have identified the Phe176 (TM4), Tyr179 (TM4), Phe254 (TM6), and Phe259 (TM6) receptor residues as putatively interacting with the melanocortin-based ligand Phe(7) by differences between alpha-MSH and NDP-MSH agonist potencies. The Glu92, Asp118, and Phe253 mMC4R receptor residues appear to be critical for hAGRP(83-132) molecular recognition and binding while Phe176 appears to be important for functional antagonism of AGRP(83-132) and AGRP(109-118) but not molecular recognition. The Phe253 mMC4R residue appears to be important for AGRP(83-132) molecular recognition and general mMC4 receptor stimulation. The Phe254 and Phe259 mMC4R amino acids may participate in the differentiation of agonist versus antagonist activity of the melanocortin-based peptide antagonists SHU9119 and SHU9005, but not AGRP(83-132) or AGRP(109-118). The Met192 side chain when mutated to a Phe results in a constitutively active mMC4R that does not effect agonist ligand binding or potency. Melanocortin-based peptides modified at the 7 position of MTII with DPhe, DNal(1'), Nal(2'), and DNal(2') have been pharmacologically characterized at these mutant mouse MC4Rs. These data suggest a revised hypothesis for the mechanism of SHU9119 antagonism at the MC4R which may be attributed to the presence of a "bulky" naphthyl moiety at the 7 position (original hypothesis), and additionally that both the stereochemistry and naphthyl ring position (2' versus 1') are important for positioning of the ligand Arg(8) residue with the corresponding mMC4R amino acids.  相似文献   

20.
Antagonist and agonist activities of chemically synthetized mouse agouti protein fragment (91-131) (AP91-131) at the melanocortin type-1 receptor (MC1-R) were assessed using B 16-F1 mouse melanoma cells in vitro and the following assay systems: (i) receptor binding, (ii) adenylate cyclase, (iii) tyrosinase, (iv) melanin production, and (v) cell proliferation. In competition binding studies AP91-131 was about 3-fold less potent than the natural agonist alpha-melanocyte-stimulating hormone (alpha-MSH) in displacing the radioligand [125I]-[Nle4, D-Phe7]-alpha-MSH (Ki 6.5 +/- 0.8 nmol/l). Alpha-MSH-induced tyrosinase activation and melanin production were completely inhibited by a 100-fold higher concentration of AP9 l -131; the IC50 values for AP91-131 in thetwo assay systems were 91 +/- 22 nM and 95 +/- 15 nM respectively. Basal melanin production and adenylate cyclase activity in the absence of agonist were decreased by AP91-131 with IC50 values of 9.6+/-1.8 nM and 5.0+/-2.4 nM, respectively. This indicates inverse agonist activity of AP91-131 similar to that of native AP. The presence of 10 nM melanin-concentrating hormone (MCH) slightly potentiated the inhibitory activity of AP91-131 in the adenylate cyclase and melanin assays. On the other hand, AP91-131 inhibited cell growth similar to alpha-MSH (IC50 11.0 +/- 2.1 nM; maximal inhibition 1.8-fold higher than that of alpha-MSH). Furthermore, MC1-R was down-regulated by AP91-131 with about the same potency and time-course as with alpha-MSH. These results demonstrate that AP91-131 displays both agonist and antagonist activities at the MC1-R and hence that it is the cysteine-rich region of agouti protein which inhibits and mimics the different alpha-MSH functions, most likely by simultaneous modulation of different intracellular signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号