首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The impact of xylem cavitation and embolism on leaf (K leaf) and stem (K stem) hydraulic conductance was measured in current-year shoots of Cercis siliquastrum L. (Judas tree) using the vacuum chamber technique. K stem decreased at leaf water potentials (ΨL) lower than ?1.0 MPa, while K leaf started to decrease only at ΨL L K leaf changes. Field measurements of leaf conductance to water vapour (g L) and ΨL showed that stomata closed when ΨL decreased below the ΨL threshold inducing loss of hydraulic conductance in the leaf. The partitioning of hydraulic resistances within shoots and leaves was measured using the high-pressure flow meter method. The ratio of leaf to shoot hydraulic resistance was about 0.8, suggesting that stem cavitation had a limited impact on whole shoot hydraulic conductance. We suggest that stomatal aperture may be regulated by the cavitation-induced reduction of hydraulic conductance of the soil-to-leaf water pathway which, in turn, strongly depends on the hydraulic architecture of the plant and, in particular, on leaf hydraulics.  相似文献   

2.
In the last two decades drought and elevated toxic metal concentration phenomena in plants have gained the interest of the scientific world. Nevertheless, up to day relatively little ecophysiological research concerning the effect of water stress and elevated selenium (Se) concentration on plant water relations is available. A pot experiment was conducted in order to evaluate the effects of the implied synergy of drought and Se uptake on water relations of yellow sweetclover (Melilotus officinalis L.). The effects of two different Se concentrations (0 mg Se L?1 irrigation water, 3 mg Se L?1 irrigation water) and two water regimes (full irrigation — limited irrigation) applied to seedlings of yellow sweetclover were detected by measuring changes in water potential, relative water content, stomatal conductance, transpiration rate and tissue Se concentration. The findings suggest that yellow sweetclover, concentrating up to 200 μg Se g?1 dry weight in its tissues, could be considered a secondary Se accumulator. Se effect on water relations was more evident under limited irrigation, as expressed by decreased values of leaf water potential, transpiration rate and stomatal conductance, limiting the flux rate of the water solution in the conducting system of the plant.  相似文献   

3.
Summary Water and nitrogen regimes of Larrea tridentata shrubs growing in the field were manipulated during an annual cycle. Patterns of leaf water status, leaf water relations characteristics, and stomatal behavior were followed concurrently. Large variations in leaf water status in both irrigated and nonirrigated individuals were observed. Predawn and midday leaf water potentials of nonirrigated shrubs were lowest except when measurements had been preceded by significant rainfall. Despite the large seasonal variation in leaf water status, reasonably constant, high levels of turgor were maintained. Pressure-volume curve analysis suggested that changes in the bulk leaf osmotic potential at full turgor were small and that nearly all of the turgor adjustment was due to tissue elastic adjustment. The increase in tissue elasticity with increasing water deficit manifested itself as a decrease in the relative water content at zero turgor and as a decrease in the tissue bulk elastic modulus. Because of large hydration-induced displacement in the osmotic potential and relative water content at zero turgor, it was necessary to use shoots in their natural state of hydration for pressure-volume curve determinations. Large diurnal and seasonal differences in maximum stomatal conductance were observed, but could not easily be attributed to variations in leaf water potential or leaf water relations characteristics such as the turgor loss point. The single factor which seemed to account for most of the diurnal and seasonal differences in maximum stomatal conductance between individual shrubs was an index of soil/root/ shoot hydraulic resistance. Daily maximum stomatal conductance was found to decrease with increasing soil/root/ shoot hydraulic resistance. This pattern was most consistent if the hydraulic resistance calculation was based on an estimate of total canopy transpiration rather than the more commonly used transpiration per unit leaf area. The reasons for this are discussed. It is suggested that while stomatal aperture necessarily represents a major physical resistance controlling transpiration, plant hydraulic resistance may represent the functional resistance through its effects on stomatal aperture.  相似文献   

4.
Salix psammophila and Caragana korshinskii are two common shrubs in the southern Mu Us Desert, China. Their hydraulic strategies for adapting to this harsh, dry desert environment are not yet clear. This study examined the hydraulic transport efficiency, vulnerability to cavitation, and daily embolism refilling in the leaves and stems of these two shrubs during the dry season. In order to gain insight into water use strategies of whole plants, other related traits were also considered, including daily changes in stomatal conductance, leaf mass per area, leaf pressure–volume parameters, wood density and the Huber value. The leaves and stems of S. psammophila had greater hydraulic efficiency, but were more vulnerable to drought-induced hydraulic dysfunction than C. korshinskii. The difference between leaf and stem water potential at 50 % loss of conductivity was 0.12 MPa for S. psammophila and 0.81 MPa for C. korshinskii. Midday stomatal conductance decreased by 74 % compared to that at 8:30 in S. psammophila, whereas no change occurred in C. korshinskii. Daily embolism and refilling occurred in the stems of S. psammophila and leaves of C. korshinskii. These results suggest that a stricter stomatal regulation, daily embolism repair in stems, and a higher stem water capacitance could be partially compensating for the greater susceptibility to xylem embolism in S. psammophila, whereas higher leaf elastic modulus, greater embolism resistance in stems, larger difference between leaf and stem hydraulic safety, and drought-induced leaf shedding in C. korshinskii were largely responsible for its more extensive distribution in arid and desert steppes.  相似文献   

5.
Summary Mediterranean sclerophyll shrubs respond to seasonal drought by adjusting the amount of leaf area exposed and by reducing gas exchange via stomatal closure mechanisms. The degree to which each of these modifications can influence plant carbon and water balances under typical mediterranean-type climate conditions is examined. Leaf area changes are assessed in the context of a canopy structure and light microclimate model. Shifts in physiological response are examined with a mechanistically-based model of C3 leaf gas exchange that simulates progressive reduction of maximum photosynthesis and transpiration rates and increasingly strong midday stomatal closure over the course of drought. The results demonstrate that midday stomatal closure may effectively contribute to drought avoidance, increase water use efficiency, and strongly alter physiological efficiency in the conversion of intercepted light energy to photoproducts. Physiological adjustments lead to larger reductions in water use than occur when comparing leaf area index 3.5 to 1.5, extremes found for natural stands of sclerophyll shrubs in the California chaparral. Reductions in leaf area have the strongest effect on resource capture and use during non-water-stressed periods and the least effect under extreme drought conditions, while shifts in physiological response lead to large savings of water and efficient water use under extreme stress. An important model parameter termed GFAC (proportionality factor expressing the relation of conductance [g] to net photosynthesis rate) is utilized, which changes in response to the integrated water stress experimence of shrubs and alters the degree to which stomata may open for a given rate of carbon fixation. We attempt to interpret this parameter in terms of physiological mechanisms known to modify control of leaf gas exchange during drought. The analysis helps visualize means by which canopy gas exchange behavior may be coupled to physiological changes occurring in the root environment during soil drying.  相似文献   

6.
Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water‐limited, rain‐fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m?2 s?1 higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water‐use efficiencies were higher (2.4–8.1 mmol mol?1) than C3 averages (0.7–6.8 mmol mol?1), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are important for understanding the advantages of C4 photosynthesis under field conditions.  相似文献   

7.
Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential (ΨL), osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance (g S) across species throughout the year, and assessed tissue damage by subzero temperatures during winter. Species behavior was highly dependent on rooting depth. Substantial osmotic adjustment (up to 1.2?MPa) was observed in deep-rooted species exhibiting relatively small seasonal variations in ΨL and with access to a more stable water source, but having a large difference between predawn and midday ΨL. On the other hand, shallow-rooted species exposed to large seasonal changes in ΨL showed limited osmotic adjustment and incomplete stomatal closure, resulting in turgor loss during periods of drought. The bulk leaf tissue elastic modulus (ε) was lower in species with relatively shallow roots. Daily variation in g S was larger in shallow-rooted species (more than 50?% of its maximum) and was negatively associated with the difference between ΨL at the turgor loss point and minimum ΨL (safety margin for turgor maintenance). All species increased ε by about 10?MPa during winter. Species with rigid tissue walls exhibited low leaf tissue damage at ?20?°C. Our results suggest that osmotic adjustment was the main water relationship adaptation to cope with drought during summer and spring, particularly in deep-rooted plants, and that adjustments in cell wall rigidity during the winter helped to enhance freezing tolerance.  相似文献   

8.
We investigated the contribution of internal water storage and efficiency of water transport to the maintenance of water balance in six evergreen tree species in a Hawaiian dry forest. Wood‐saturated water content, a surrogate for relative water storage capacity, ranged from 70 to 105%, and was inversely related to its morphological correlate, wood density, which ranged between 0·51 and 0·65 g cm?3. Leaf‐specific conductivity (kL) measured in stem segments from terminal branches ranged from 3 to 18 mmol m?1 s?1 MPa?1, and whole‐plant hydraulic efficiency calculated as stomatal conductance (g) divided by the difference between predawn and midday leaf water potential (ΨL), ranged from 70 to 150 mmol m?2 s?1 MPa?1. Hydraulic efficiency was positively correlated with kL (r2 = 0·86). Minimum annual ΨL ranged from ? 1·5 to ? 4·1 MPa among the six species. Seasonal and diurnal variation in ΨL were associated with differences among species in wood‐saturated water content, wood density and kL. The species with higher wood‐saturated water content were more efficient in terms of long‐distance water transport, exhibited smaller diurnal variation in ΨL and higher maximum photosynthetic rates. Smaller diurnal variation in ΨL in species with higher wood‐saturated water content, kL and hydraulic efficiency was not associated with stomatal restriction of transpiration when soil water deficit was moderate, but avoidance of low minimum seasonal ΨL in these species was associated with a substantial seasonal decline in g. Low seasonal minimum ΨL in species with low kL, hydraulic efficiency, and wood‐saturated water content was associated with higher leaf solute content and corresponding lower leaf turgor loss point. Despite the species‐specific differences in leaf water relations characteristics, all six evergreen tree species shared a common functional relationship defined primarily by kL and stem water storage capacity.  相似文献   

9.
During the grain filling period we followed diurnal courses in leaf water potential (ψ1), leaf osmotic potential (ψπ), transpiration (E), leaf conductance to water vapour transfer (g) and microclimatic parameters in field-grown spring barley (Hordeum distichum L. cv. Gunnar). The barley crop was grown on a coarse textured sandy soil at low (50 kg ha−1) or high (200 kg ha−1) levels of potassium applied as KCl. The investigation was undertaken at full irrigation or under drought. Drought was imposed at the beginning of the grain filling period. Leaf conductance and rate of transpiration were higher in the flag leaf than in the leaves of lower insertion. The rate of transpiration of the awns on a dry weight basis was of similar magnitude to that of the flag leaves. On clear days the rate of transpiration of fully watered barley plants was at a high level during most part of the day. The transpiration only decreased at low light intensities. The rate of transpiration was high despite leaf water potentials falling to rather low values due to high evaporative demands. In water stressed plants transpiration decreased and midday depression of transpiration occurred. Normally, daily accumulated transpirational water loss was lower in high K leaves than in low K leaves and generally the bulk water relations of the leaves were more favourable in high K plants than in low K plants. The factorial dependency of the flag leaf conductances on leaf water potential, light intensity, leaf temperature, and leaf-to-air water vapour concentration difference (ΔW) was analysed from a set of field data. From these data, similar sets of microclimatic conditions were classified, and dependencies of leaf conductance on the various environmental parameters were ascertained. The resulting mathematical functions were combined in an empirical simulation model. The results of the model were tested against other sets of measured data. Deviations between measured and predicted leaf conductance occurred at low light intensities. In the flag leaf, water potentials below-1.6 MPa reduced the stomatal apertures and determined the upper limit of leaf conductance. In leaves of lower insertion level conductances were reduced already at higher leaf water potentials. Leaf conductance was increased hyperbolically as photosynthetic active radiation (PAR) increased from darkness to full light. Leaf conductance as a function of leaf temperature followed an optimum curve which in the model was replaced by two linear regression lines intersecting at the optimum temperature of 23.4°C. Increasing leaf-to-air water vapour concentration difference caused a linear decrease in leaf conductance. Leaf conductances became slightly more reduced by lowered water potentials in the low K plants. Stomatal closure in response to a temperature change away from the optimum was more sensitive in high K plants, and also the decrease in leaf conductance under the influence of lowered ambient humidity proceeded with a higher sensitivity in high K plants. Thus, under conditions which favoured high conductances increase of evaporative demand caused an about 10% larger decrease in leaf conductance in the high K plants than in the low K plants. Stomatal sizes and density in the flag leaves differed between low and high K plants. In plants with partially open stomata, leaf conductance, calculated from stomatal pore dimensions, was up to 10% lower in the high K plants than in the low K plants. A similar reduction in leaf conductance in high K plants was measured porometrically. It was concluded that the beneficial effect of K supply on water use efficiency reported in former studies primarily resulted from altered stomatal sizes and densities.  相似文献   

10.
为探讨亚低温和干旱对植株水分传输的影响机制,以番茄幼苗为试材,利用人工气候室设置常温(昼25 ℃/夜18 ℃)和亚低温(昼15 ℃/夜8 ℃)环境,采用盆栽进行正常灌水(75%~85%田间持水量)和干旱处理(55%~65%田间持水量),分析了温度和土壤水分对番茄植株水分传输、气孔和木质部导管形态解剖结构的影响。结果表明: 与常温正常灌水处理相比,干旱处理使番茄叶水势、蒸腾速率、气孔导度、水力导度、茎流速率、气孔长度和叶、茎、根导管直径显著减小,而使叶、茎、根导管细胞壁厚度和抗栓塞能力增强;亚低温处理下番茄叶水势、蒸腾速率、气孔导度、水力导度和叶、茎、根导管直径显著降低,但气孔变大,叶、根导管细胞壁厚度和叶、茎、根抗栓塞能力显著升高。亚低温条件下土壤水分状况对番茄叶水势、蒸腾速率、气孔导度、水力导度、气孔形态、叶、根导管结构均无显著影响。总之,干旱处理下番茄通过协同调控叶、茎、根结构使植株水分关系重新达到稳态;亚低温处理下番茄植株水分关系的调控主要通过改变叶和根导管结构实现,且受土壤水分状况的影响较小。  相似文献   

11.
Salinity and drought are important agro-environmental problems occurring separately as well as together with the combined occurrence increasing with time due to climate change. Screening of bread wheat genotypes against salinity or drought alone is common; however, little information is available on the response of wheat genotypes to a combination of these stresses. This study investigates the response of a salt-resistant (SARC-1) and a salt-sensitive (7-Cerros) wheat genotype to drought at different growth stages under non-saline (ECe 2.1 dS m?1) and saline soil (ECe 15 dS m?1) conditions. Drought was applied by withholding water for 21 days at a particular growth stage viz. tillering, booting, and grain filling stages. At booting stage measurements regarding water relations, leaf ionic composition and photosynthetic attributes were made. At maturity grain yield and different yield, components were recorded. Salinity and drought significantly decreased grain yield and different yield components with a higher decrease in the case of combined stress of salinity × drought. The complete drought treatment (drought at tillering + booting + grain filling stages) was most harmful for wheat followed by drought at booting stage and grain filling–tillering stages, respectively. The salt-resistant wheat genotype SARC-1 performed better than the salt-sensitive genotype 7-Cerros in different stress treatments. A decrease in the water and turgor potentials, photosynthetic and transpiration rates, stomatal conductance, leaf K+, and increased leaf Na+ were the apparent causes of growth and yield reduction of bread wheat due to salinity, drought, and salinity × drought.  相似文献   

12.
Diurnal changes of leaf water potential and stomatal conductance were measured for 12 deciduous shrubs and tree saplings in the understorey of a temperate forest. Sunflecks raised the leaf temperature by 4°C, and vapor pressure deficit to 2 kPa. Although the duration of the sunflecks was only 17% of daytime, the photon flux density (PFD) of sunflecks was 52% of total PFD on a sunny summer day. Leaf osmotic potential at full turgor decreased in summer, except in some species that have low osmotic potential in the spring. Plants that endured low leaf water potential had rigid cell walls and low osmotic potential at full turgor. These plants did not have lower relative water content and turgor potential than plants with higher leaf water potential. There were three different responses to an increase in transpiration rate: (i) plants had low leaf water potential and slightly increased soil-to-leaf hydraulic conductance; (ii) plants decreased leaf water potential and increased the hydraulic conductance; and (iii) plants had high leaf water potential and largely increased the hydraulic conductance.  相似文献   

13.
Leaf gas‐exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas‐exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon–juniper Pinus edulisJuniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (?45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas‐exchange rates under well‐watered conditions, leaf‐specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade‐off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA.  相似文献   

14.
 Predawn leaf water potential, stomatal conductance and microclimatic variables were measured on 13 sampling days from November 1995 through August 1996 to determine how environmental and physiological factors affect water use at the canopy scale in a plantation of mature clonal Eucalyptus grandis Hill ex-Maiden hybrids in the State of Espirito Santo, Brazil. The simple ”big leaf” Penman-Monteith model was used to estimate canopy transpiration. During the study period the predawn leaf water potential varied from –0.4 to –1.3 MPa, with the minimum values observed in the winter months (June and August 1996), while the average estimated values for canopy conductance and canopy transpiration fell from 17.3 to 5.8 mm s–1 and from 0.54 to 0.18 mm h–1, respectively. On the basis of all measurements, the average value of the decoupling coefficient was 0.25. During continuous soil water shortage a proportional reduction was observed in predawn leaf water potential and in daily maximum values of stomatal conductance, canopy transpiration and decoupling coefficient. The results showed that water vapour exchange in this canopy is strongly dominated by the regional vapour pressure deficit and that canopy transpiration is controlled mainly by stomatal conductance. On a seasonal basis, stomatal conductance and canopy transpiration were mainly related to predawn leaf water potential and, thus, to soil moisture and rainfall. Good results were obtained with a multiplicative empirical model that uses values of photosynthetically active radiation, vapour pressure deficit and predawn leaf water potential to estimate stomatal conductance. Received: 10 June 1998 / Accepted: 20 July 1998  相似文献   

15.
We assessed the daily time‐courses of CO2 assimilation rate (A), leaf transpiration rate (E), stomatal conductance for water vapour (gs), leaf water potential ( Ψ w) and tree transpiration in a wet and a dry season for three late‐stage canopy rainforest tree species in French Guiana differing in leaf carbon isotope composition ( δ 13C). The lower sunlit leaf δ 13C values found in Virola surinamensis ( ? 29·9‰) and in Diplotropis purpurea ( ? 30·9‰), two light‐demanding species, as compared to Eperua falcata ( ? 28·6‰), a shade‐semi‐tolerant species, were clearly associated with higher maximum gs values of sunlit leaves in the two former species. These two species were also characterized by a high sensitivity of gs, sap flow density (Ju) and canopy conductance (gc) to seasonal soil drought, allowing maintenance of high midday Ψ w values in the dry season. The data for Diplotropis provided an original picture of increasing midday Ψ w with increasing soil drought. In Virola, stomata were extremely sensitive to seasonal soil drought, leading to a dramatic decrease in leaf and tree transpiration in the dry season, whereas midday Ψ w remained close to ? 0·3 MPa. The mechanisms underlying such an extremely high sensitivity of stomata to soil drought remain unknown. In Eperua, gs of sunlit leaves was non‐responsive to seasonal drought, whereas Ju and gc were lower in the dry season. This suggests a higher stomatal sensitivity to seasonal drought in shaded leaves than in sunlit ones in this species.  相似文献   

16.
Dioon edule seedling mortality is mostly attributed to dehydration by prolonged drought, even when they present xeromorphic characteristics like the adult plants. The effect of germination date (GD) and soil water deficit on seedling tolerance to water stress was assessed. The seedlings germinated and grown from mature seeds every month from December to April GD were selected to evaluate the leaf area, photosynthetic pigment content, crassulacean acid metabolism (CAM) activity, stomatal conductance (gs) and leaflet anatomy at soil water potential (Ψs) of 0.0 MPa (day 1), ?0.1 MPa (day 40), ?1.0 MPa (day 90), ?1.5 MPa (day 130), and a control (0.0 MPa at day 130) to recognize differences due to leaf development. The seedlings shifted from C3 to CAM cycling when exposed to water stress at Ψs of ?1.0 MPa, like adult plants. The March–April GD seedlings with undeveloped sclerified hypodermis and stomata, presented reduced leaf area, lower Chlorophyll a/b ratio, higher CAM activity and midday partial stomatal closure when reached Ψs of ?1.0 MPa. These have higher probability of dehydration during severe drought (February–April) than those of the December–February GD with similar Ψs. Plants used for restoration purposes must have full leaf development to increase the survival.  相似文献   

17.
Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.  相似文献   

18.
Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in resource-rich environments.  相似文献   

19.
The objectives of this study were to investigate stomatal regulation in maize seedlings during progressive soil drying and to determine the impact of stomatal movement on photosynthetic activity. In well-watered and drought-stressed plants, leaf water potential (Ψ leaf), relative water content (RWC), stomatal conductance (g s), photosynthesis, chlorophyll fluorescence, leaf instantaneous water use efficiency (iWUEleaf), and abscisic acid (ABA) and zeatin-riboside (ZR) accumulation were measured. Results showed that g s decreased significantly with progressive drought and stomatal limitations were responsible for inhibiting photosynthesis in the initial stages of short-term drought. However, after 5 days of withholding water, non-stomatal limitations, such as damage to the PSII reaction center, became the main limiting factor. Stomatal behavior was correlated with changes in both hydraulic and chemical signals; however, changes in ABA and ZR occurred prior to any change in leaf water status. ABA in leaf and root tissue increased progressively during soil drying, and further analysis found that leaf ABA was negatively correlated with g s (R 2 = 0.907, p < 0.05). In contrast, leaf and root ZR decreased gradually. ZR in leaf tissue was positively correlated with g s (R 2 = 0.859, p < 0.05). These results indicate that ABA could induce stomatal closure, and ZR works antagonistically against ABA in stomatal behavior. In addition, the ABA/ZR ratio also had a strong correlation with g s, suggesting that the combined chemical signal (the interaction between ABA and cytokinin) plays a role in coordinating stomatal behavior. In addition, Ψ leaf and RWC decreased significantly after only 3 days of drought stress, also affecting stomatal behavior.  相似文献   

20.
To understand the response patterns to soil drying and the water use properties of commonly reforested trees in the semiarid Loess Plateau region of China, a glasshouse experiment was carried out with the seedlings of four species, i.e., Robinia pseudoacacia, Armeniaca sibirica, Syringa oblata, and Quercus liaotungensis. Severe water stress induced by withholding water resulted in permanent wilting of most of the seedlings pot-cultured with sandy soil in 8–12 days. Predawn and midday leaf water potentials and gas exchange characteristics (e.g., stomatal conductance) in the seedlings did not show marked changes until the volumetric soil water content decreased to about 0.05. As the soil water content decreased further, these physiological parameters rapidly declined, approaching their minimal levels at the stage of permanent wilting. The response of each parameter to soil water content changes was fitted with a non-linear saturation curve. Though the results suggested that the general pattern of responses to soil drying was identical among the species, quantitative differences in drought tolerance and water use properties were detected. Leaf stomatal conductance in R. pseudoacacia and A. sibirica showed earlier responses to reduced predawn leaf water potentials. However, water use characteristics and specific leaf area indicated that these two species consumed more water and may not be as drought tolerant as S. oblata and Q. liaotungensis. These results may provide important information to compare the reforestation species with respect to soil drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号