首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effect of NaCl and the pathways of the oxidation of reduced inorganic sulfur compounds were studied using resting cells and cell-free extracts of Acidithiobacillus thiooxidans strain SH. This isolate specifically requires NaCl for growth. The oxidation of sulfur and sulfite by resting cells was strongly inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. Carbonylcyanide m-chlorophenyl-hydrazone and monensin were also relatively strong inhibitors. Thiosulfate-oxidizing activity was not inhibited by these uncouplers. Valinomycin did not inhibit the oxidation of sulfur compounds. NaCl stimulated the sulfur- and sulfite-oxidizing activities in resting cells but not in cell-free extracts. The tetrathionate-oxidizing activity in resting cells was slightly stimulated by NaCl, whereas it did not influence the thiosulfate-oxidizing activity. Sulfide oxidation was biphasic, suggesting the formation of intermediate sulfur. The initial phase of sulfide oxidation was not affected by NaCl, whereas the subsequent oxidation of sulfur in the second phase was Na+-dependent. A model is proposed for the role of NaCl in the metabolism of reduced sulfur compounds in A. thiooxidans strain SH.  相似文献   

2.
Copper dissolution from a sulfide ore (with covellite as the main copper phase) was investigated in cultures of Thiobacillus ferrooxidans or Thiobacillus thiooxidans and in abiotic controls. In unsupplemented media, T. ferrooxidans was more efficient than T. thiooxidans. In the presence of ferric iron, the dissolution of covellite was not significantly different in cultures inoculated with T. ferrooxidans or T. thiooxidans. However, the most extraction was found in T. thiooxidans cultures supplemented with ferrous sulfate. The first results were explained by the mechanism proposed by Schippers and Sand (Appl Envir Microbiol 65:319-321, 1999), which involves polysulfides and sulfur as intermediates. This mechanism was extended to explain the behavior of T. thiooxidans culture supplemented with ferrous iron.  相似文献   

3.
A new pathway of dimethylsulfide (DMS) metabolism was identified in a novel species of Gammaproteobacteria, Methylophaga thiooxidans sp. nov., in which tetrathionate (S4O62?) was the end‐product of DMS oxidation. Inhibitor evidence indicated that DMS degradation was initiated by demethylation, catalysed by a corrinoid demethylase. Thiosulfate was an intermediate, which was oxidized to tetrathionate by a cytochrome‐linked thiosulfate dehydrogenase. Thiosulfate oxidation was coupled to ATP synthesis, and M. thiooxidans could also use exogenous thiosulfate as an energy source during chemolithoheterotrophic growth on DMS or methanol. Cultures grown on a variety of substrates oxidized thiosulfate, indicating that thiosulfate oxidation was constitutive. The observations have relevance to interactions among sulfur‐metabolizing bacteria in the marine environment. The production of tetrathionate from an organosulfur precursor is previously undocumented and represents a potential step in the biogeochemical sulfur cycle, providing a ‘shunt’ across the cycle.  相似文献   

4.
Summary Thiobacillus thiooxidans is capable of oxidizing sulfur in digested sludge, while decreasing the pH value from about 5.5 to, say, 1.0 to 1.5. Insoluble metal sulfides can be solubilized through this acidification. Thiobacillus ferrooxidans oxidises pyritic ore in the presence of 6% centrifuged sludge if the pH value is adjusted to about 2.5. When mixing T. thiooxidans and T. ferrooxidans with sludge and 1% sulfur, the former acidifies the sludge and the latter oxidizes metal sulfides; together they solubilize more metal than T. thiooxidans alone. The following metals solubilized from their sulfides have been investigated so far: iron, copper, zinc, nickel, and cadmium. The possibility of recycling metals from sewage sludge with this method is discussed.  相似文献   

5.
Comamonas thiooxidans (strain S23T) capable of oxidizing thiosulfate under a mixotrophic growth condition was isolated from a sulfur spring. DNA–DNA homology study showed 55% similarity with Comamonas testosteroni KCTC2990T and 52% with Comamonas composti LMG24008T, the nearest phylogenetic relative (16S rRNA sequence similarity <97%). Comparative genomic fingerprinting by using ERIC and Rep-PCR further delineated species identity of the strain S23T for which Comamonas thiooxidans sp. nov. is proposed. In addition, thiosulfate oxidation potential of the strain S23T was compared with Comamonas testosteroni and Comamonas composti.  相似文献   

6.
In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.  相似文献   

7.
The oxidation of elemental sulfur by Thiobacillus thiooxidans was studied at pH 2.3, 4.5, and 7.0 in the presence of different concentrations of various anions (sulfate, phosphate, chloride, nitrate, and fluoride) and cations (potassium, sodium, lithium, rubidium, and cesium). The results agree with the expected response of this acidophilic bacterium to charge neutralization of colloids by ions, pH-dependent membrane permeability of ions, and osmotic pressure.  相似文献   

8.
A stable bacterial association isolated from a sulfur block sample of the Astrakhan gas processing complex was able to utilize n-alkanes as the sole carbon and energy source at low pH. Hydrocarbon-dependent growth occurred at pH 1.6–5.5 (optimum at pH 2.5) and 20–50°C (optimum at 30–35°C). Analysis of the 16S rRNA gene fragments isolated from the total DNA of the enrichment by PCR-DGGE revealed the nucleotide sequences most closely related to extreme acidophilic chemolithotrophs Acidithiobacillus thiooxidans and Sulfobacillus sp. (98–99% similarity) and the sequences exhibiting high similarity to those of slowly growing actinobacteria Mycobacterium europaeum and M. parascrofulaceum (98%). Capacity of any of these organisms for hydrocarbon oxidation has not been reported previously. The taxonomic position of the 16S rRNA gene fragments from the enrichment culture suggests that this bacterial association is a unique microbial community, in which development of acidophilic hydrocarbon-oxidizing bacteria is mediated by a localized pH decrease in the sulfur blocks resulting from elemental sulfur oxidation due to massive development of chemolithotrophic sulfur-oxidizing bacteria.  相似文献   

9.
Counts of acidophilic iron‐oxidizing bacteria, ratios of S2O3=—S/SO4=—S and Fe+3/Fe+2, and S2O3=—S oxidation potentials were examined over a two‐year period in coal refuse (acid gob) treated with limestone and/or sewage sludge. A non‐amended treatment was used as a control.

No significant difference in population counts of acidophilic iron‐oxidizing bacteria were observed between treatments in either year of the study. S2O3=—S/SO4=S and Fe+3/Fe+2 ratios indicated active sulfur and iron oxidation suggesting that limestone and/or sewage sludge may be ineffective in suppressing pyrite oxidation. Under optimal conditions, S2O3=—S oxidation potentials (in vitro) showed a logarithmic increase in SO4=—S formation for all four treatments over time. The final pH of the treatments following twenty days of perfusion ranged from 3.06 to 3.59.  相似文献   

10.
Bioleaching of heavy metals from contaminated soil was carried out using indigenous sulfur oxidizing bacterium Acidithiobacillus thiooxidans. Experiments were carried out by varying sulfur/soil ratio from 0.03 to 0.33 to evaluate the optimum ratio for efficient bioleaching of heavy metals from soil. The influence of sulfur/soil ratio on the bioleaching efficiency was assessed based on decrease in pH, increase in oxidation–reduction potential, sulfate production and solubilization of heavy metals from the soil. Decrease in pH, increase in oxidation–reduction potential and sulfate production was found to be better with the increase in sulfur/soil ratio. While the final pH of the system with different sulfur/soil ratio was in the range of 4.1–0.7, oxidation reduction potential varied from 230 to 629 mV; sulfate production was in the range of 2,786–8,872 mg/l. Solubilization of chromium, zinc, copper, lead and cadmium from the contaminated soil was in the range of 11–99%. Findings of the study will help to optimize the ratio of sulfur/soil to achieve effective bioleaching of heavy metals from contaminated soils.  相似文献   

11.
Properties of the oxidation systems of sulfur and sulfite ofa sulfur oxidizing bacterium, Thiobacillus thiooxidans, arecompared by using various inhibitors. Oxidation of sulfur isinhibited by a low concentration of monoiodoacetic acid, NEMand pCMB. Inhibition by pCMB is diminished by the addition ofan equivalent amount of cysteine to that of added pCMB. Althoughinhibition by pCMB is also observed in the oxidation of sulfite,it is not diminished by the addition of excess cysteine andthe extent of inhibition is lower than that in the oxidationof sulfur. Metal chelating agents, such as DDC, 8-hydroxyquinoline, salicylaldoximeand neocuproine have inhibitory effects on the oxidation ofsulfur but do not affect the oxidation of sulfite. Carbon monoxide inhibits the oxidation of sulfur photo-irreversiblyand the oxidation of sulfite photo-reversibly. Alcohols and organic acids, inhibit the oxidation of both sulfurand sulfite. The cell-free extract prepared by sonic disruptionof cells can oxidize sulfite, but not sulfur. The sulfur oxidizingextract can be, however, prepared by disruption under a nitrogenatmosphere. Both the soluble and participate fractions are requiredfor the oxidation of sulfur, while sulfite oxidation is catalyzedby the participate fraction alone. 1Partly supported by a grant from the Ministry of Education.  相似文献   

12.
In a study of chemosynthesis (the fixation of CO2 by autotrophic bacteria in the dark) in Thiobacillus thiooxidans, the data obtained support the following conclusions: 1. CO2 can be fixed by "resting cells" of Thiobacillus thiooxidans; the fixation is not "growth bound." 2. The physiological condition of the cell is of considerable importance in determining CO2 fixation. 3. CO2 fixation can occur in the absence of oxidizable sulfur in "young" cells. The extent of this fixation appears to be dependent upon the pCO2. 4. CO2 fixation can also occur under anaerobic conditions and the presence of sulfur does not influence such fixation. 5. However, in the CO2 fixation by cells in the absence of sulfur, only a limited amount of CO2 can be fixed. This amount is approximately 40 µl. CO2 per 100 micrograms bacterial nitrogen. After a culture has utilized this amount of CO2 it no longer has the ability to fix CO2 but releases it during its respiration. 6. Relatively short periods of sulfur oxidation can restore the ability of cells to fix CO2 under conditions where sulfur oxidation is prevented. 7. It is possible to oxidize sulfur in the absence of CO2 and to store the energy thus formed within the cell. It is then possible to use this energy at a later time for the fixation of CO2 in the entire absence of sulfur oxidation. 8. Cultures of Thiobacillus thiooxidans respiring on sulfur utilize CO2 in a reaction which proceeds to a zero concentration of CO2 in the atmosphere. 9. CO2 may act as an oxidizing agent for sulfur. 10. Hydrogen is not utilized by the organism. 11. It is possible to selectively inhibit sulfur oxidation and CO2 fixation.  相似文献   

13.

Background  

Iron is an essential nutrient but can be toxic at high intracellular concentrations and organisms have evolved tightly regulated mechanisms for iron uptake and homeostasis. Information on iron management mechanisms is available for organisms living at circumneutral pH. However, very little is known about how acidophilic bacteria, especially those used for industrial copper bioleaching, cope with environmental iron loads that can be 1018 times the concentration found in pH neutral environments. This study was motivated by the need to fill this lacuna in knowledge. An understanding of how microorganisms thrive in acidic ecosystems with high iron loads requires a comprehensive investigation of the strategies to acquire iron and to coordinate this acquisition with utilization, storage and oxidation of iron through metal responsive regulation. In silico prediction of iron management genes and Fur regulation was carried out for three Acidithiobacilli: Acidithiobacillus ferrooxidans (iron and sulfur oxidizer) A. thiooxidans and A. caldus (sulfur oxidizers) that can live between pH 1 and pH 5 and for three strict iron oxidizers of the Leptospirillum genus that live at pH 1 or below.  相似文献   

14.
The intermediary production of elemental sulfur during the microbial oxidation of reduced sulfur compounds has frequently been reported. Thiobacillus ferrooxidans, an acidophilic chemolithoautotroph, was found to produce an insoluble sulfur compound, primarily elemental sulfur, during the oxidation of thiosulfate, trithionate, tetrathionate and sulfide. This was confirmed by light and electron microscopy. Sulfur was produced from sulfide by an oxidative step, while the production from tetrathionate was initiated by a hydrolytic step, probably followed by a series of chemical reactions. The oxidation of intermediary sulfur was severely inhibited by sulfhydryl-binding reagents such as N-ethylmaleimide, by the addition of uncouplers or after freezing and thawing of the cells, which probably damaged the cell membrane. The mechanisms behind these inhibitions have not yet been clarified. Finally, it was observed that elemental sulfur oxidation by whole cells depended on the medium composition. The absence of sulfate or selenate reduced the sulfur oxidation rate.Non-standard abbreviations NEM N-ethylmaleimide - CCCP carbonyl cyanide m-chlorophenyl hydrazone  相似文献   

15.
Abstract

Salinity negatively affects growth of sulfur-oxidizing bacteria (SOB) and their sulfate production ability, meanwhile decreases the available sulfate for plants in soil. The aim of this study was to isolate and characterize the bacteria of genus Halothiobacillus, as a salt-tolerant SOB, from saline and sulfidic habitats of Iran for the first time and evaluating the effect of salinity on their biomass and sulfate production during the oxidation of different sulfur sources. Isolation process and surveying the morphological, biochemical and 16S rRNA gene analysis resulted into identification of three species (eight strains) of Halothiobacillus genus including H. neapolitanus, H. hydrothermalis and H. halophilus. Salinity (0, 0.5, 1, 2 and 4?M NaCl) had a significant impact (p?≤?0.01) on bacterial biomass and sulfate production during the oxidation of thiosulfate and elemental sulfur. Biomass and sulfate production by strains was accompanied by a decrease in residual content of thiosulfate (RCT) in medium. The amount of produced biomass and sulfate in medium supplemented by thiosulfate was much higher than elemental sulfur. The highest amount of biomass and sulfate was produced by H. neapolitanus strain I19 at 0.5 and 1?M NaCl concentration. The results of this study could be the first step to focus on the application of these bacteria to increase sulfate storage of saline soils and crop production.  相似文献   

16.
《Process Biochemistry》2004,39(6):737-748
This study provides a first attempt from a toxicological perspective to put forward, in general terms and explanations, the toxicity series of Cd(II), Cu(II) and Zn(II) to Thiobacillus thiooxidans BC1. Sulphur oxidation and sulphuric acid production are strongly related to microbial growth at pH less than 4. Dose–response analysis on chronic and acute toxicity (e.g. EC20, median effective dose EC50 and slope factor B) of divalent cadmium, copper and zinc cations suggests a toxicity series of Cu>Cd>>Zn to T. thiooxidans BC1. Zn(II) is termed non-toxic and the maximum treatment concentrations of Cd(II) and Cu(II) are approximately 300, 400 mg/l, respectively. This assessment clearly indicates viable operation ranges of metal bioleaching for mine wastewater treatment, suggesting a technological feasibility of biotreatment using acidophilic thiobacilli T. thiooxidans BC1.  相似文献   

17.
Kinetic investigations on growth parameters of nitrifying and COD oxidizing bacteria were carried out with recourse to a three stage reciprocating jet bioreactor system using real life wastewater. The system employed in this investigation essentially consisted of separate aerobic oxidation stage along with nitrification stage and anaerobic denitrification stage with facility for biomass recirculation whenever necessary. Steady-state COD oxidation reactor performance was assessed for various values of residence time. Yield coefficient and decay coefficient of COD oxidizing biomass were obtained as 0.3329 kg BM/kg COD and 0.0032 (1/h) respectively.It was observed that COD oxidizing bacteria co-existed with nitrifying bacteria during nitrification process due to the nature of wastewater used. Steady-state nitrification reactor performance was also assessed for various residence time values. Exact concentration of nitrifying and COD oxidizing biomass in the nitrification reactor was then estimated with the help of kinetic growth parameters of COD oxidizing biomass and extent of COD oxidation achieved in nitrification reactor. This further enabled evaluation of corrected kinetic growth parameters estimated as 0.4272 kg BM/kg NH 4 + -N and 0.00626 (1/h) for nitrifier biomass yield coefficient and decay coefficient respectively.  相似文献   

18.
1. It is shown that Sulfomonas thiooxidans oxidizes elementary sulfur completely to sulfuric acid. Sodium thiosulfate is oxidized by this organism completely to sulfate. Sulfomonas thiooxidans differs, in this respect, from various other sulfur-oxidizing bacilli which either produce elementary sulfur, from the thiosulfate, or convert it into sulfates and persulfates. 2. The organism derives its carbon from the CO2 of the atmosphere, but is incapable of deriving the carbon from carbonates or organic matter. 3. The S:C, or ratio between the amount of sulfur oxidized to sulfate and amount of carbon assimilated chemosynthetically from the CO2 of the atmosphere, is, with elementary sulfur as a source of energy, 31.8, and with thiosulfate 64.2. The higher ratio in the case of the thiosulfate is due to the smaller amount of energy liberated in the oxidation of sulfur compound than in the elementary form. 4. Of the total energy made available in the oxidation of the sulfur to sulfuric acid, only 6.65 per cent is used by the organism for the reduction of atmospheric CO2 and assimilation of carbon. 5. Sulfates do not exert any injurious effect upon sulfur oxidation by Sulfomonas thiooxidans. Any effect obtained is due to the cation rather than the sulfate radical. Nitrates exert a distinctly injurious action both on the growth and respiration of the organism. 6. There is a definite correlation between the amount of sulfur present and velocity of oxidation, very similar to that found in the growth of yeasts and nitrifying bacteria. Oxidation reaches a maximum with about 25 gm. of sulfur added to 100 cc. of medium. However, larger amounts of sulfur have no injurious effect. 7. Dextrose does not exert any appreciable injurious effect in concentrations less than 5 per cent. The injurious effect of peptone sets in at 0.1 per cent concentration and brings sulfur oxidation almost to a standstill in 1 per cent concentration. Dextrose does not exert any appreciable influence upon sulfur oxidation and carbon assimilation from the carbon dioxide of the atmosphere. 8. Sulfomonas thiooxidans can withstand large concentrations of sulfuric acid. The oxidation of sulfur is affected only to a small extent even by 0.25 molar initial concentration of the acid. In 0.5 molar solutions, the injurious effect becomes marked. The organism may produce as much as 1.5 molar acid, without being destroyed. 9. Growth is at an optimum at a hydrogen ion concentration equivalent to pH 2.0 to 5.5, dropping down rapidly on the alkaline side, but not to such an extent on the acid, particularly when a pure culture is employed. 10. Respiration of the sulfur-oxidizing bacteria can be studied by using the filtrate of a vigorously growing culture, to which a definite amount of sulfur is added, and incubating for 12 to 24 hours.  相似文献   

19.
By immersing a few small cellophane bags containing BaCO3 powderin STARKEY's medium, the duration of lag phase in the growthof Thiobacillus thiooxidans is minimized and the yield of cellsis increased ten times that of the previous method. The activitiesof oxidation for sulfur and sulfite change with growth. Sulfiteis oxidized at a comparable rate to that of sulfur oxidationat pH values between 6.0 and 6.5. In the presence of cysteineor glutathione, thiosulfate can be oxidized at a pH above 5.0.At pH values below 4.5, apparent oxidation of thiosulfate andtetrathionate to sulfate is observed. This result is accountedfor by the facts that thiosulfate is decomposed to sulfur andsulfite under the acidic condition at pH values below 4.5, andthat tetrathionate is reduced to thiosulfate enzymatically.In the oxidation of tetrathionate, oxygen uptake begins aftera lag phase, the duration of which depends on the concentrationsof cells and of tetrathionate. Cysteine is oxidized to cystine.The oxidation is strongly inhibited by metal-chelating agents.The cysteine oxidizing activity is, however, quite stable andis not lost by treating cells with organic solvents, sonic oscillation,by heating or lyophilization. 1III=References (11). 2Partly supported by a grant from the Ministry of Education.  相似文献   

20.
Accumulation of elemental sulfur during pyrite oxidation lowers the efficiency of coal desulfurization and bioleaching. In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an iron(II)-ion-oxidizing organism without sulfur-oxidizing capacity, from the pyritic sulfur moiety about 10% elemental sulfur, 2% pentathionate, and 1% tetrathionate accumulated by a recently described cyclic pyrite oxidation mechanism. In the case of pure cultures of Thiobacillus ferrooxidans and mixed cultures of L. ferrooxidans and T. thiooxidans, pyrite was nearly completely oxidized to sulfate because of the capacity of these cultures to oxidize both iron(II) ions and sulfur compounds. Pyrite oxidation in acidic solutions, mediated chemically by iron(III) ion, resulted in an accumulation of similar amounts of sulfur compounds as obtained with L. ferrooxidans. Changes of pH to values below 2 or in the iron ion concentration are not decisive for diverting the flux of sulfur compounds. The literature on pyrite bioleaching is in agreement with the findings indicating that the chemistry of direct and indirect pyrite leaching is identical. Received: 20 April 1998 / Received revision: 27 August 1998 / Accepted: 3 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号