首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims: The prevalence of enteric viruses in drinking and river water samples collected from Pune, India was assessed. During an outbreak of HEV in a small town near pune, water samples were screened for enteric viruses. Methods and Results: The water samples were subjected to adsorption–elution‐based virus concentration protocol followed by multiplex nested PCR. Among 64 Mutha river samples, 49 (76·56%) were positive for Hepatitis A Virus, 36 (56·25%) were positive for Rotavirus, 33 (51·56%) were positive for Enterovirus and 16 (25%) were positive for Hepatitis E Virus RNA. Only enterovirus RNA was detected in 2/662 (0·3%) drinking water samples, and the samples from the city’s water reservoir tested negative for all four viruses. HEV RNA was detected in three out of four river water samples during HEV outbreak and partial sequences from patients and water sample were identical. Conclusions: The study suggests absence of enteric viruses both in the source and in the purified water samples from Pune city, not allowing evaluation of the purification system and documents high prevalence of enteric viruses in river water, posing threat to the community. Significance and Impact of the Study: The rapid, sensitive and relatively inexpensive protocol developed for virological evaluation of water seems extremely useful and should be adapted for evaluating viral contamination of water for human consumption. This will lead to development of adequate control measures thereby reducing disease burden because of enteric viruses.  相似文献   

2.
The DNA barcodes are generally interpreted using distance‐based and character‐based methods. The former uses clustering of comparable groups, based on the relative genetic distance, while the latter is based on the presence or absence of discrete nucleotide substitutions. The distance‐based approach has a limitation in defining a universal species boundary across the taxa as the rate of mtDNA evolution is not constant throughout the taxa. However, character‐based approach more accurately defines this using a unique set of nucleotide characters. The character‐based analysis of full‐length barcode has some inherent limitations, like sequencing of the full‐length barcode, use of a sparse‐data matrix and lack of a uniform diagnostic position for each group. A short continuous stretch of a fragment can be used to resolve the limitations. Here, we observe that a 154‐bp fragment, from the transversion‐rich domain of 1367 COI barcode sequences can successfully delimit species in the three most diverse orders of freshwater fishes. This fragment is used to design species‐specific barcode motifs for 109 species by the character‐based method, which successfully identifies the correct species using a pattern‐matching program. The motifs also correctly identify geographically isolated population of the Cypriniformes species. Further, this region is validated as a species‐specific mini‐barcode for freshwater fishes by successful PCR amplification and sequencing of the motif (154 bp) using the designed primers. We anticipate that use of such motifs will enhance the diagnostic power of DNA barcode, and the mini‐barcode approach will greatly benefit the field‐based system of rapid species identification.  相似文献   

3.
High‐resolution melting (HRM) analysis is a very attractive and flexible advanced post‐PCR method with high sensitivity/specificity for simple, fast and cost‐effective genotyping based on the detection of specific melting profiles of PCR products. Next generation real‐time PCR systems, along with improved saturating DNA‐binding dyes, enable the direct acquisition of HRM data after quantitative PCR. Melting behaviour is particularly influenced by the length, nucleotide sequence and GC content of the amplicons. This method is expanding rapidly in several research areas such as human genetics, reproductive biology, microbiology and ecology/conservation of wild populations. Here we have developed a successful HRM protocol for avian sex identification based on the amplification of sex‐specific CHD1 fragments. The melting curve patterns allowed efficient sexual differentiation of 111 samples analysed (plucked feathers, muscle tissues, blood and oral cavity epithelial cells) of 14 bird species. In addition, we sequenced the amplified regions of the CHD1 gene and demonstrated the usefulness of this strategy for the genotype discrimination of various amplicons (CHD1Z and CHD1W), which have small size differences, ranging from 2 bp to 44 bp. The established methodology clearly revealed the advantages (e.g. closed‐tube system, high sensitivity and rapidity) of a simple HRM assay for accurate sex differentiation of the species under study. The requirements, strengths and limitations of the method are addressed to provide a simple guide for its application in the field of molecular sexing of birds. The high sensitivity and resolution relative to previous real‐time PCR methods makes HRM analysis an excellent approach for improving advanced molecular methods for bird sexing.  相似文献   

4.
Despite the negative impact that many scarab larvae have on agro-ecosystems, very little attention has been paid to their taxonomy. Their often extremely similar morphological characteristics have probably contributed to this impediment, which has also meant that they are very difficult to identify in the field. Molecular methods can overcome this challenge and are particularly useful for the identification of larvae to enable management of pest species occurring sympatrically with nonpest species. However, the invasive collection of DNA samples for such molecular methods is not compatible with subsequent behavioural, developmental or fitness studies. Two noninvasive DNA sampling and DNA analysis methods suitable for the identification of larvae from closely related scarab species were developed here. Using the frass and larval exuviae as sources of DNA, field-collected larvae of Costelytra zealandica (White) and Costelytra brunneum (Broun) (Scarabaeidae: Melolonthinae) were identified by multiplex PCR based on the difference in size of the resulting PCR products. This study also showed that small quantities of frass can be used reliably even 7 days after excretion. This stability of the DNA is of major importance in ecological studies where timeframes rarely allow daily monitoring. The approach developed here is readily transferable to the study of any holometabolous insect species for which morphological identification of larval stages is difficult.  相似文献   

5.
Modern taxonomy requires an analytical approach incorporating all lines of evidence into decision‐making. Such an approach can enhance both species identification and species discovery. The character‐based DNA barcode method provides a molecular data set that can be incorporated into classical taxonomic data such that the discovery of new species can be made in an analytical framework that includes multiple sources of data. We here illustrate such a corroborative framework in a dragonfly model system that permits the discovery of two new, but visually cryptic species. In the African dragonfly genus Trithemis three distinct genetic clusters can be detected which could not be identified by using classical taxonomic characters. In order to test the hypothesis of two new species, DNA‐barcodes from different sequence markers (ND1 and COI) were combined with morphological, ecological and biogeographic data sets. Phylogenetic analyses and incorporation of all data sets into a scheme called taxonomic circle highly supports the hypothesis of two new species. Our case study suggests an analytical approach to modern taxonomy that integrates data sets from different disciplines, thereby increasing the ease and reliability of both species discovery and species assignment.  相似文献   

6.
Molecular‐based methods for identifying sex in mammals have a wide range of applications, from embryo manipulation to ecological studies. Various sex‐specific or homologous genes can be used for this purpose, PCR amplification being a common method. Over the years, the number of reported tests and the range of tested species have increased greatly. The aim of the present analysis was to retrieve PCR‐based sexing assays for a range of mammalian species, gathering the gene sequences from either the articles or online databases, and visualize the molecular design in a uniform manner. For nucleotide alignment and diagnostic test visualization, the following genomic databases and tools were used: NCBI, Ensembl Nucleotide BLAST, ClustalW2, and NEBcutter V2.0. In the 45 gathered articles, 59 different diagnostic tests based on eight different PCR‐based methods were developed for 114 mammalian species. Most commonly used genes for the analysis were ZFX, ZFY, AMELX, and AMELY. The tests were most commonly based on sex‐specific insertions and deletions (SSIndels) and sex‐specific sequence polymorphisms (SSSP). This review provides an overview of PCR‐based sexing methods developed for mammals. This information will facilitate more efficient development of novel molecular sexing assays and reuse of previously developed tests. Development of many novel and improvement of previously developed tests is also expected with the rapid increase in the quantity and quality of available genetic information.  相似文献   

7.
The sexes of non‐ratite birds can be determined routinely by PCR amplification of the CHD‐Z and CHD‐W genes. CHD‐based molecular sexing of four species of auklets revealed the presence of a polymorphism in the Z chromosome. No deviation from a 1:1 sex ratio was observed among the chicks, though the analyses were of limited power. Polymorphism in the CHD‐Z gene has not been reported previously in any bird, but if undetected it could lead to the incorrect assignment of sex. We discuss the potential difficulties caused by a polymorphism such as that identified in auklets and the merits of alternative CHD‐based sexing protocols and primers.  相似文献   

8.
9.
In this study, the distribution of biomaterials and its molecular mechanism of embryonic development in Japanese medaka fish were analyzed nondestructively and noninvasively without staining using near‐infrared (NIR) imaging. The microscopic NIR imaging system used in this research was a device capable of ultra‐high‐speed imaging; using this system, one can acquire microscopic imaging data in a few seconds. Therefore, the medaka eggs remained alive throughout measurements and were successfully monitored in vivo. The distributions of biomolecules were examined by mapping the intensities of NIR bands resulting from lipids, proteins and water in 2 dimensions (2D). The structures of eyes, lipid bilayer membranes, micelles and water‐structure differences at the interface of different substances constituting different structures on the egg were visualized. Furthermore, insights on the metabolic mechanisms of lipids and membrane functions were drawn from the biased distribution of lipoproteins and the presence of unsaturated fatty acids in the egg membrane. These results indicated the potential for NIR imaging in evaluating the biological functions and metabolic systems of cells and embryos.   相似文献   

10.
11.
12.
Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL‐)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T‐DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL‐PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T‐DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T‐DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided.  相似文献   

13.
Viral vectors have a wide range of applications in biology, particularly in gene therapy. Based on their integration capacity, viral vectors are classified as either integrating or non‐integrating vectors. Although integrating vectors, such as lentivectors, have the ability to direct prolonged expression of exogenous genes, manipulation of the host genome is an inappropriate feature of these gene delivery tools. Non‐integrating vectors, such as episomal replicating plasmids, can replicate and persist in host cells for long periods without any chromosomal interruption. These advantages made them good tools for gene induction purposes in gene therapy and basic studies. Due to the necessity of gene induction in stem cells for study of mammalian development and targeted differentiation, the use of integrating vectors for prolonged expression of genes of interest has been developed. Application of replicating plasmids can overcome some drawbacks associated with integrating vectors, although replication and maintenance of these plasmids can differ between cell types. Previously, it has been shown that such plasmids can be maintained in human embryonic stem cells for more than one month, but the rate of the plasmid replication during the host cell cycle has not been elucidated. In the present study, we showed that an EBV‐based plasmid can replicate simultaneously with host in pluripotent and multipotent human and mouse stem cells and can be sustained for long time periods in dividing cells. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1579–1585, 2015  相似文献   

14.
Genetic diversity and spatial structure of populations are important for antagonistic coevolution. We investigated genetic variation and population structure of three closely related European ant species: the social parasite Harpagoxenus sublaevis and its two host species Leptothorax acervorum and Leptothorax muscorum. We sampled populations in 12 countries and analysed eight microsatellite loci and an mtDNA sequence. We found high levels of genetic variation in all three species, only slightly less variation in the host L. muscorum. Using a newly introduced measure of differentiation (Jost’s Dest ), we detected strong population structuring in all species and less male‐biased dispersal than previously thought. We found no phylogeographic patterns that could give information on post‐glacial colonization routes – northern populations are as variable as more southern populations. We conclude that conditions for Thompson’s geographic mosaic of coevolution are ideal in this system: all three species show ample genetic variation and strong population structure.  相似文献   

15.
Species concept and delimitation are fundamental to taxonomic and evolutionary studies. Both inadequate informative sites in the molecular data and limited taxon sampling have often led to poor phylogenetic resolution and incorrect species delineation. Recently, the whole chloroplast genome sequences from extensive herbarium specimen samples have been shown to be effective to amend the problem. Stachyuraceae are a small family consisting of only one genus Stachyurus of six to 16 species. However, species delimitation in Stachyurus has been highly controversial because of few and generally unstable morphological characters used for classification. In this study, we sampled 69 individuals of seven species (each with at least three individuals) covering the entire taxonomic diversity, geographic range, and morphological variation of Stachyurus from herbarium specimens for genome‐wide plastid gene sequencing to address species delineation in the genus. We obtained high‐quality DNAs from specimens using a recently developed DNA reconstruction technique. We first assembled four whole chloroplast genome sequences. Based on the chloroplast genome and one nuclear ribosomal DNA sequence of Stachyurus, we designed primers for multiplex polymerase chain reaction and high throughput sequencing of 44 plastid loci for species of Stachyurus. Data of these chloroplast DNA and nuclear ribosomal DNA internal transcribed spacer sequences were used for phylogenetic analyses. The phylogenetic results showed that the Japanese species Stachyurus praecox Siebold & Zucc. was sister to the rest in mainland China, which indicated a typical Sino‐Japanese distribution pattern. Based on diagnostic morphological characters, distinct distributional range, and monophyly of each clade, we redefined seven species for Stachyurus following an integrative species concept, and revised the taxonomy of the family based on previous reports and specimens, in particular the type specimens. Furthermore, our divergence time estimation results suggested that Stachyuraceae split from its sister group Crossosomataceae from the New World at ca. 54.29 Mya, but extant species of Stachyuraceae started their diversification only recently at ca. 6.85 Mya. Diversification time of Stachyurus in mainland China was estimated to be ca. 4.45 Mya. This research has provided an example of using the herbarium specimen‐based phylogenomic approach in resolving species boundaries in a taxonomically difficult genus.  相似文献   

16.
R. A. Fisher predicted that individuals should invest equally in offspring of both sexes, and that the proportion of males and females produced (the primary sex ratio) should evolve towards 1:1 when unconstrained. For many species, sex determination is dependent on sex chromosomes, creating a strong tendency for balanced sex ratios, but in other cases, multiple autosomal genes interact to determine sex. In such cases, the maintenance of multiple sex‐determining alleles at multiple loci and the consequent among‐family variability in sex ratios presents a puzzle, as theory predicts that such systems should be unstable. Theory also predicts that environmental influences on sex can complicate outcomes of genetic sex determination, and that population structure may play a role. Tigriopus californicus, a copepod that lives in splash‐pool metapopulations and exhibits polygenic and environment‐dependent sex determination, presents a test case for relevant theory. We use this species as a model for parameterizing an individual‐based simulation to investigate conditions that could maintain polygenic sex determination. We find that metapopulation structure can delay the degradation of polygenic sex determination and that periods of alternating frequency‐dependent selection, imposed by seasonal fluctuations in environmental conditions, can maintain polygenic sex determination indefinitely.  相似文献   

17.
The biomaterial distribution and its molecular mechanism of embryonic development in Japanese medaka fish were visualized without staining using high‐speed near‐infrared imaging. It was a remarkable achievement to visualize the structures of eyes, lipid bilayer membranes, micelles, and water structural variations at the interface of different substances. Furthermore, insights on lipid metabolism and membrane functions were obtained from the biased distribution of lipoproteins and the presence of unsaturated fatty acids in the egg membrane. Further details can be found in the article by Mika Ishigaki ( e201700115 )

  相似文献   


18.
Aims: In this study, three facile repetitive‐sequence PCR (rep‐PCR) techniques have been compared with the pulsed‐field gel electrophoresis (PFGE) method for differentiating the genetic relatedness of clinical Stenotrophomonas maltophilia isolates. Methods and Results: The dendrograms of 20 S. maltophilia isolates were constructed based on the data obtained from PFGE and three PCR‐based methods, i.e. enterobacterial repetitive intergenic consensus‐PCR (ERIC‐PCR), BOX‐PCR and repetitive extragenic palindromic‐PCR (REP‐PCR). When compared with PFGE, ERIC‐PCR displayed a much lower discriminatory power, whereas BOX‐PCR and REP‐PCR had a comparable discriminatory power for close genetic‐related isolates. Conclusion: BOX‐PCR and REP‐PCR can be convenient and effective methods for evaluating the close genetic relatedness of clinical S. maltophilia isolates. Significance and Impact of the Study: A rapid method for determining S. maltophilia’s close genetic relatedness provides a convenient tool for understanding the epidemiology of S. maltophilia.  相似文献   

19.
Developing strategies to maintain biodiversity requires baseline information on the current status of each individual species. The development of genetic techniques and their application to noninvasively collected samples have the potential to yield information on the structure of elusive animal populations and so are important tools in conservation management. Using DNA isolated from faecal samples can be challenging owing to low quantity and quality. This study, however, presents the development of novel real‐time polymerase chain reaction assays using fluorescently labelled TaqMan® MGB probes enabling species and sex identification of Eurasian otter (Lutra lutra) spraints (faeces). These assays can also be used in determining an optimum microsatellite panel and can be employed as cost‐saving screening tools for downstream genetic testing including microsatellite genotyping and haplotype analysis. The techniques are shown to work efficiently with Llutra DNA isolated from tissue, hair, spraint, blood and anal jelly samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号