首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Crude extracts of Clostridium thermoaceticum DSM 521 contain various AMAPORs (artificial mediator accepting pyridine nucleotide oxidoreductases). The specific activities of this mixture of AMAPORs is about 8–9 U mg?1 protein (µmoles mg?1 min?1) for NADPH and 3–4 U mg?1 protein for NADH formation with reduced methylviologen (MV++) as electron donor. These AMAPOR-activities are only slightly oxygen sensitive. The reoxidation of NADPH and NADH with carboxamido-methylviologen is catalysed by crude extracts with 2.0 and 1.6 U mg?1 protein, respectively. The same crude extracts also catalyse the dehydrogenation of reduced pyridine nucleotides with suitable quinones such as anthraquinone-2,6-disulphonate. The reduced quinone can be reoxidised by dioxygen.

The Km-values of these enzymes for the pyridine nucleotides and also for the artificial electron mediators are in a suitable range for preparative transformations.

Furthermore the crude extract of C. thermoaceticum contains about 2.5 U mg?1 protein of an NADP+-dependent formate dehydrogenase (FDH), which is suitable for NADPH and/or MV++ regeneration. The regeneration of MV++ with FDH and formate as electron donor proceeds with a specific activity of about 5 U mg?1 protein of the crude extract. The reduced viologen in turn reduces NAD(P)+ by AMAPOR. The formate dehydrogenase is sensitive to oxygen.

Examples of compounds which have been prepared by combination of AMAPORs or formate dehydrogenase with an oxidoreductase are: (S)-3-hydroxycarboxylates, esters of (S)-3-hydroxycarboxylates, (1R,2S)-1-hydroxypropane-tricarboxylate (Ds-(+)-isocitrate), Ls-(-)-isocitrate and 6-phosphogluconate.  相似文献   

2.
The feeding deterrent effect of carvone on the slug Arion lusitanicus was investigated. Carvone, a natural compound from caraway seeds, was incorporated into mulch to reduce its inherent volatility. In a laboratory choice experiment, boxes were filled on one side with carvone‐treated mulch and on the other side with untreated mulch. At carvone concentrations ranging from 0.03–0.75 ml litre?1 mulch, slugs ate significantly more lettuce on the untreated side. In a laboratory based no‐choice experiment, carvone concentrations of 0.25 and 0.75 ml litre?1 mulch significantly reduced slug feeding in comparison with the untreated control. Moreover at the highest concentration of carvone (0.75 ml litre?1 mulch) 50% mortality was recorded over a period of 5 days, indicating a clear molluscicidal effect. Due to its volatility carvone did not decrease plant defoliation by A. lusitanicus when applied directly onto lettuce. Subsequent field evaluation showed 0.75 ml litre?1 mulch to partially reduce slug feeding damage. However, this effect was not sufficient to significantly increase lettuce yield. The incorporation of a higher carvone concentration into mulch is still to be tested to confirm whether carvone‐treated mulch can be recommended as an effective alternative approach to chemical slug control.  相似文献   

3.
4.
1. The prevalence of mycosporine‐like amino acids (MAAs) – a group of potential ultraviolet (UV)‐photoprotective compounds – was surveyed across 11 species of freshwater copepods from 20 lakes of varying ultraviolet radiation (UVR) transparency in North America, New Zealand and Argentina. Co‐occurring cladocerans were also analysed (seven species from 12 lakes). Many of the calanoid copepod populations were red with carotenoid pigmentation, allowing comparison of MAA and carotenoid accumulation as photoprotective strategies. 2. In two Pennsylvania (U.S.A.) lakes, MAA and carotenoid contents were followed during the early spring to mid‐summer period of lake warming. A pronounced seasonal pattern of higher carotenoid/low MAA content in spring, shifting to low carotenoid/higher MAA content in summer, was observed in calanoids from the more UV transparent lake. 3. All copepod samples contained MAAs. Visibly red calanoids, especially southern Hemisphere Boeckella, often had moderate to high concentrations (2.5–11 μg MAA mg?1 dw), but low concentrations (0.04–1 μg MAA mg?1 dw) in some N. American red calanoids show that high carotenoid pigmentation (e.g. 5–10 μg carotenoid mg?1 dw) does not necessarily imply high MAA content. 4. No cladoceran sample had more than trace amounts of MAAs (<0.05 μg mg?1 dw). Therefore, MAA accumulation does not seem to be a photoprotective strategy utilized by Daphnia (five species from nine lakes) or other cladocerans. 5. Seven identifiable MAAs were widely distributed among both calanoids and cyclopoids. Shinorine was ubiquitous and was usually the most abundant MAA in N. American samples. In contrast, porphyra‐334 was the predominant MAA in the southern Hemisphere Boeckella. 6. Copepods from higher UVR lakes tended to have a higher MAA content, but this relationship was statistically weak overall and taxon‐specific when found.  相似文献   

5.
Photosynthetic generation of reducing power makes cyanobacteria an attractive host for biochemical reduction compared to cell‐free and heterotrophic systems, which require burning of additional resources for the supply of reducing equivalent. Here, using xylitol synthesis as an example, efficient uptake and reduction of xylose photoautotrophically in Synechococcus elongatus PCC7942 are demonstrated upon introduction of an effective xylose transporter from Escherichia coli (Ec‐XylE) and the NADPH‐dependent xylose reductase from Candida boidinii (Cb‐XR). Simultaneous activation of xylose uptake and matching of cofactor specificity enabled an average xylitol yield of 0.9 g g?1 xylose and a maximum productivity of about 0.15 g L?1 day?1 OD?1 with increased level of xylose supply. While long‐term cellular maintenance still appears challenging, high‐density conversion of xylose to xylitol using concentrated resting cell further pushes the titer of xylitol formation to 33 g L?1 in six days with 85% of maximum theoretical yield. While the results show that the unknown dissipation of xylose can be minimized when coupled to a strong reaction outlet, it remains to be the major hurdle hampering the yield despite the reported inability of cyanobacteria to metabolize xylose.  相似文献   

6.
Inside-out submitochondrial particles from both potato (Solanum tuberosum L. cv. Bintje) tubers and pea (Pisum sativum L. cv. Oregon) leaves possess three distinct dehydrogenase activities: Complex I catalyzes the rotenone-sensitive oxidation of deamino-NADH, NDin(NADPH) catalyzes the rotenone-insensitive and Ca2+-dependent oxidation of NADPH and NDin(NADH) catalyzes the rotenone-insensitive and Ca2+-independent oxidation of NADH. Diphenylene iodonium (DPI) inhibits complex I, NDin(NADPH) and NDin (NADH) activity with a Ki of 3.7, 0.17 and 63 µM, respectively, and the 400-fold difference in Ki between the two NDin made possible the use of DPI inhibition to estimate NDin (NADPH) contribution to malate oxidation by intact mitochondria. The oxidation of malate in the presence of rotenone by intact mitochondria from both species was inhibited by 5 µM DPI. The maximum decrease in rate was 10–20 nmol O2 mg?1 min?1. The reduction level of NAD(P) was manipulated by measuring malate oxidation in state 3 at pH 7.2 and 6.8 and in the presence and absence of an oxaloacetate-removing system. The inhibition by DPI was largest under conditions of high NAD(P) reduction. Control experiments showed that 125 µM DPI had no effect on the activities of malate dehydrogenase (with NADH or NADPH) or malic enzyme (with NAD+ or NADP+) in a matrix extract from either species. Malate dehydrogenase was unable to use NADP+ in the forward reaction. DPI at 125 µM did not have any effect on succinate oxidation by intact mitochondria of either species. We conclude that the inhibition caused by DPI in the presence of rotenone in plant mitochondria oxidizing malate is due to inhibition of NDin(NADPH) oxidizing NADPH. Thus, NADP turnover contributes to malate oxidation by plant mitochondria.  相似文献   

7.
In this investigation, we report on the treatment of tannery wastewater using microalgae Chlorella species to produce lipid and fatty acid as well as changes in antioxidant metabolism during the treatment. The variation in growth, production of pigments, antioxidant metabolism, lipid and fatty acids, and nutrient removal from wastewater during the remediation were observed. Surprisingly, a profuse growth was found in 50% diluted tannery wastewater (TW), which supported to accumulate high yield of lipid (18.5%) and unsaturated fatty acids (50.05%). The antioxidant activity of microalgae in both the concentrations (50% and 100% TW) were viz., lipid peroxidation 1.6 ± 0.1 and 2.3 ± 0.02nmol MDA mg?1 protein, SOD 10.3 ± 0.4 and 15.7 ± 0.9 U mg?1 protein, CAT 0.17 ± 0.036 and 0.52 ± 0.06 U mg?1 protein, and APX 7.2 ± 0.8 and 11.2 ± 09 U mg?1 protein respectively, which point out that the free radical scavenging mechanism against heavy metal stress. Maximum phycoremediation of heavy metals observed from both concentrations during the healthy growth period were Cr – 73.1, 45.7%, Cu – 90.4, 78.1%, Pb – 92.1, 52.2%, and Zn – 81.2, 44.6%, respectively. This study proved the potential use of Chlorella for heavy metal and nutrient removal from tannery wastewater. Moreover, an unaffected growth with high antioxidant activity of this species promises a sustainable lipid and fatty acid contents for biofuel production.  相似文献   

8.
Atomically dispersed transition metals confined with nitrogen on a carbon support has demonstrated great electrocatalytic performance, but an extremely low concentration of metal atoms (usually below 1.5%) is necessary to avoid aggregation through sintering which limits mass activity. Here, a salt‐template method to fabricate densely populated, monodispersed cobalt atoms on a nitrogen‐doped graphene‐like carbon support is reported, and achieving a dramatically higher site fraction of Co atoms (≈15.3%) in the catalyst and demonstrating excellent electrocatalytic activity for both the oxygen reduction reaction and oxygen evolution reaction. The atomic dispersion and high site fraction of Co provide a large electrochemically active surface area of ≈105.6 m2 g?1, leading to very high mass activity for ORR (≈12.164 A mgCo?1 at 0.8 V vs reversible hydrogen electrode), almost 10.5 times higher than that of the state‐of‐the‐art benchmark Pt/C catalyst (1.156 A mgPt?1 under similar conditions). It also demonstrates an outstanding mass activity for OER (0.278 A mgCo?1). The Zn‐air battery based on this bifunctional catalyst exhibits high energy density of 945 Wh kgZn?1 as well as remarkable stability. In addition, both density functional theory based simulations and experimental measurements suggest that the Co? N4 sites on the carbon matrix are the most active sites for the bifunctional oxygen electrocatalytic activity.  相似文献   

9.
Abstract

Present study was undertaken to develop cross-linked enzyme aggregate (CLEA)of alkaline serine proteases (sp) from Pythium myriotylum (Pm), a necrotrophic oomycete reported to considerably secrete serine proteases. Among various precipitants screened for spPm1-CLEA preparation, ammonium sulfate at 80% saturation (w/v) yielded 100% activity recovery and retention of spherical morphology as observed by SEM analysis. Addition of glutaraldehyde as cross-linker at 1% (v/v) concentration with optimized ammonium sulfate concentration for 1?hour at 100?rpm yielded 100% activity recovery of spPm1-CLEA from 8-day old P. myriotylum culture filtrate. Addition of BSA (10?mg/ml) to CLEA cross-linking reaction mix reduced CLEA size from the range of 1.82–1.19?µm to 394–647?nm. spPm1-CLEA preparations retained 100% activity at temperature of 80?°C and pH 12.0 signifying their potential commercial applications. In terms of kinetic parameters, present process enhanced kinetic parameters as revealed by 1.67?U.mg?1 specific activity, Km of 0.062?mM and Vmax of 0.145?µmol.min?1.mg?1 for the spPm1-CLEA compared to 0.288?U.mg?1 specific activity, Km of 0.060?mM and Vmax of 0.20?µmol.min?1.mg?1 determined for the free spPm1 enzyme. Study has successfully demonstrated the concept of CLEA in enhancing spPm1 stability and the results so generated can be translated in future towards development of robust biocatalysts.  相似文献   

10.
To be utilized in biomass conversion, including ethanol production and galactosylated oligosaccharide synthesis, namely prebiotics, the gene of extracellular endo‐β‐1,4‐mannanase (EC 3.2.1.78) of Aspergillus fumigatus IMI 385708 (formerly known as Thermomyces lanuginosus IMI 158749) was expressed first in Aspergillus sojae and then in Pichia pastoris under the control of the glyceraldehyde triphosphate dehydrogenase (gpdA ) and the alcohol oxidase (AOX1 ) promoters, respectively. The highest production of mannanase (352 U mL?1) in A. sojae was observed after 6 days of cultivation. In P. pastoris, the highest mannanase production was observed 10 h after induction with methanol (61 U mL?1). The fold increase in mannanase production was estimated as ~12‐fold and ~2‐fold in A. sojae and P. pastoris, respectively, when compared with A. fumigatus. Both recombinant enzymes showed molecular mass of about 60 kDa and similar specific activities (~350 U mg?1 protein). Temperature optima were at 60°C and 45°C, and maximum activity was at pH 4.5 and 5.2 for A. sojae and P. pastoris, respectively. The enzyme from P. pastoris was more stable retaining most of the activity up to 50°C, whereas the enzyme from A. sojae rapidly lost activity above 40°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria   总被引:4,自引:0,他引:4  
Mitochondria isolated from the roots of barley (Hordeum vulgare L.) and rice (Oryza sativa L.) seedlings were capable of oxidizing external NADH and NADPH anaerobically in the presence of nitrite. The reaction was linked to ATP synthesis and nitric oxide (NO) was a measurable product. The rates of NADH and NADPH oxidation were in the range of 12–16 nmol min−1 mg−1 protein for both species. The anaerobic ATP synthesis rate was 7–9 nmol min−1 mg−1 protein for barley and 15–17 nmol min−1 mg−1 protein for rice. The rates are of the same order of magnitude as glycolytic ATP production during anoxia and about 3–5% of the aerobic mitochondrial ATP synthesis rate. NADH/NADPH oxidation and ATP synthesis were sensitive to the mitochondrial inhibitors myxothiazol, oligomycin, diphenyleneiodonium and insensitive to rotenone and antimycin A. The uncoupler FCCP completely eliminated ATP production. Succinate was also capable of driving ATP synthesis. We conclude that plant mitochondria, under anaerobic conditions, have a capacity to use nitrite as an electron acceptor to oxidize cytosolic NADH/NADPH and generate ATP.  相似文献   

12.
The electrochemical nitrogen reduction reaction (NRR) process usually suffers extremely low Faradaic efficiency and ammonia yields due to sluggish N?N dissociation. Herein, single‐atomic ruthenium modified Mo2CTX MXene nanosheets as an efficient electrocatalyst for nitrogen fixation at ambient conditions are reported. The catalyst achieves a Faradaic efficiency of 25.77% and ammonia yield rate of 40.57 µg h?1 mg?1 at ‐0.3 V versus the reversible hydrogen electrode in 0.5 m K2SO4 solution. Operando X‐ray absorption spectroscopy studies and density functional theory calculations reveal that single‐atomic Ru anchored on MXene nanosheets act as important electron back‐donation centers for N2 activation, which can not only promote nitrogen adsorption and activation behavior of the catalyst, but also lower the thermodynamic energy barrier of the first hydrogenation step. This work opens up a promising avenue to manipulate catalytic performance of electrocatalysts utilizing an atomic‐level engineering strategy.  相似文献   

13.
The ADP-dependent phosphofructokinase (PFK) from Thermococcus zilligii has been purified 950 fold; it had a specific activity of 190 U mg−1. The enzyme required Mg2+ ions for optimal activity and was specific for ADP. The forward reaction kinetics were hyperbolic for both cosubstrates (pH optimum of 6.4), and the apparent K m values for ADP and fructose-6-phosphate were 0.6 mM (apparent V max of 243 U mg−1) and 1.47 mM (apparent V max of 197 U mg−1), respectively. Significantly, the enzyme is indicated to be nonallosteric but was slightly activated by some monovalent cations including Na+ and K+. The protein had a subunit size of 42.2 kDa and an estimated native molecular weight of 66 kDa (gel filtration). Maximal reaction rates for the reverse reaction were attained at pH 7.5–8.0, and the apparent K m values for fructose-1,6-bisphosphate and AMP were 0.56 mM (apparent V max of 2.9 U mg−1) and 12.5 mM, respectively. The biochemical characteristics of this unique ADP-dependent enzymatic activity are compared to ATP and pyrophosphate-dependent phosphofructokinases. Received: August 14, 1998 / Accepted: December 2, 1998  相似文献   

14.
PtM alloy catalysts (e.g., PtFe, PtCo), especially in an intermetallic L10 structure, have attracted considerable interest due to their respectable activity and stability for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, metal‐catalyzed formation of ·OH from H2O2 (i.e., Fenton reaction) by Fe‐ or Co‐containing catalysts causes severe degradation of PEM/catalyst layers, hindering the prospects of commercial applications. Zinc is known as an antioxidant in Fenton reaction, but is rarely alloyed with Pt owing to its relatively negative redox potential. Here, sub‐4 nm intermetallic L10‐PtZn nanoparticles (NPs) are synthesized as high‐performance PEMFC cathode catalysts. In PEMFC tests, the L10‐PtZn cathode achieves outstanding activity (0.52 A mgPt?1 at 0.9 ViR‐free, and peak power density of 2.00 W cm?2) and stability (only 16.6% loss in mass activity after 30 000 voltage cycles), exceeding the U.S. DOE 2020 targets and most of the reported ORR catalysts. Density function theory calculations reveal that biaxial strains developed upon the disorder‐order (A1? L10) transition of PtZn NPs would modulate the surface Pt? Pt distances and optimize Pt? O binding for ORR activity enhancement, while the increased vacancy formation energy of Zn atoms in an ordered structure accounts for the improved stability.  相似文献   

15.
Samuel A. Sholl 《Steroids》1981,38(2):221-228
C17–20Lyase and 21-hydroxylase activities were measured during late gestation In the rhesus monkey (Macaca mulatta) fetal adrenal. Activities were assessed in 10,000 × g supernatants with 17-hydroxyprogesterone and NADPH as substrates. Although conversion of [14C]17-hydroxyprogesterone to [14C]androstenedione was noted, activity was often nonlinear and far less than the rate of hydroxylation which together prevented an accurate estimation of lyase rate, Km and Vmax. 21-Hydroxylase activity was characterized; the mean reaction rate was 1.6 × 10?3 μmoles NADPH oxidized/min. × mg?1 protein with an apparent Km of 3.6 × 10?7 M and a Vmax of 2.2 × 10?3 μmoles/min. × mg?1 protein. These values were similar to data obtained In adrenals from adult monkeys. A relatively high level of hydroxylase activity in the fetal gland might lead to an Inadequate supply of precursors for the synthesis of dehydroepiandrosterone sulfate (DHEAS) in the adrenal if it also contained 3β-hydroxysteroid dehydrogenase (3β-hsdh). However, the fact that the fetal adrenal reportedly is deficient in 3β-hsdh may serve to protect both DHEAS and corticoid synthesis.  相似文献   

16.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

17.
The effect of irradiance and temperature on the photosynthesis of the red alga, Pyropia tenera, was determined for maricultured gametophytes and sporophytes collected from a region that is known as one of the southern limits of its distribution in Japan. Macroscopic gametophytes were examined using both pulse‐amplitude modulated fluorometry and/or dissolved oxygen sensors. A model of the net photosynthesis–irradiance (P‐E) relationship of the gametophytes at 12°C revealed that the net photosynthetic rate quickly increased at irradiances below the estimated saturation irradiance of 46 μmol photons m?2 s?1, and the compensation irradiance was 9 μmol photons m?2 s?1. Gross photosynthesis and dark respiration for the gametophytes were also determined over a range of temperatures (8–34°C), revealing that the gross photosynthetic rates of 46.3 μmol O2 mgchl‐a?1 min?1 was highest at 9.3 (95% Bayesian credible interval (BCI): 2.3–14.5)°C, and the dark respiration rate increased at a rate of 0.93 μmol O2 mgchl‐a?1 min?1°C?1. The measured dark respiration rates ranged from ?0.06 μmol O2 mgchl‐a?1 min?1 at 6°C to ?25.2 μmol O2 mgchl‐a?1 min?1 at 34°C. The highest value of the maximum quantum yield (Fv/Fm) for the gametophytes occurred at 22.4 (BCI: 21.5–23.3) °C and was 0.48 (BCI: 0.475–0.486), although those of the sporophyte occurred at 12.9 (BCI: 7.4–15.1) °C and was 0.52 (BCI: 0.506–0.544). This species may be considered well‐adapted to the current range of seawater temperatures in this region. However, since the gametophytes have such a low temperature requirement, they are most likely close to their tolerable temperatures in the natural environment.  相似文献   

18.
A whole-cell biotransformation system for the reduction of prochiral carbonyl compounds, such as methyl acetoacetate, to chiral hydroxy acid derivatives [methyl (R)-3-hydroxy butanoate] was developed in Escherichia coli by construction of a recombinant oxidation/reduction cycle. Alcohol dehydrogenase from Lactobacillus brevis catalyzes a highly regioselective and enantioselective reduction of several ketones or keto acid derivatives to chiral alcohols or hydroxy acid esters. The adh gene encoding for the alcohol dehydrogenase of L. brevis was expressed in E. coli. As expected, whole cells of the recombinant strain produced only low quantities of methyl (R)-3-hydroxy butanoate from the substrate methyl acetoacetate. Therefore, the fdh gene from Mycobacterium vaccae N10, encoding NAD+-dependent formate dehydrogenase, was functionally coexpressed. The resulting two-fold recombinant strain exhibited an in vitro catalytic alcohol dehydrogenase activity of 6.5 units mg–1 protein in reducing methyl acetoacetate to methyl (R)-3-hydroxy butanoate with NADPH as the cofactor and 0.7 units mg–1 protein with NADH. The in vitro formate dehydrogenase activity was 1.3 units mg–1 protein. Whole resting cells of this strain catalyzed the formation of 40 mM methyl (R)-3-hydroxy butanoate from methyl acetoacetate. The product yield was 100 mol% at a productivity of 200 mol g–1 (cell dry weight) min–1. In the presence of formate, the intracellular [NADH]/[NAD+] ratio of the cells increased seven-fold. Thus, the functional overexpression of alcohol dehydrogenase in the presence of formate dehydrogenase was sufficient to enable and sustain the desired reduction reaction via the relatively low specific activity of alcohol dehydrogenase with NADH, instead of NADPH, as a cofactor.  相似文献   

19.
Lactobacillus kefir DSM 20587 produces an (R)-specific NADP-dependent alcohol dehydrogenase (ADH) with a broad substrate specificity. The gene of this ADH was isolated and the complete nucleotide sequence determined. The adh gene comprises 759?bp and encodes a protein of 252 amino acids with a calculated molecular weight of 26 781?Da. The deduced amino acid sequence indicated a high degree of similarity to short-chain dehydrogenases. After cloning and expression in Escherichia coli the enzyme was purified and characterized. For the reduction of acetophenone the specific activity of the homogeneous recombinant ADH was 558?U?mg?1. The enzyme shows its maximum activity at 50°C while the pH optimum was at pH?7.0. In order to demonstrate its preparative application, purified ADH was used for the stereoselective reduction of several aliphatic and aromatic ketones as well as β-keto esters. Glucose dehydrogenase was added for the regeneration of NADPH. All prochiral ketones were stereoselectively reduced to the corresponding alcohols with >99% ee and in the case of diketones >99% de.  相似文献   

20.
l ‐DOPA (3,4‐dihydroxyphenyl‐l ‐alanine) is an extensively used drug for the treatment of Parkinson's disease. In the present study, optimization of nutritional parameters influencing l ‐DOPA production was attempted using the response surface methodology (RSM) from Brevundimonas sp. SGJ. A Plackett–Burman design was used for screening of critical components, while further optimization was carried out using the Box–Behnken design. The optimized levels of factors predicted by the model were pH 5.02, 1.549 g l?1 tryptone, 4.207 g l?1 l ‐tyrosine and 0.0369 g l?1 CuSO4, which resulted in highest l ‐DOPA yield of 3.359 g l?1. The optimization of medium using RSM resulted in a 8.355‐fold increase in the yield of l ‐DOPA. The anova showed a significant R2 value (0.9667), model F‐value (29.068) and probability (0.001), with insignificant lack of fit. The highest tyrosinase activity observed was 2471 U mg?1 at the 18th hour of the incubation period with dry cell weight of 0.711 g l?1. l ‐DOPA production was confirmed by HPTLC, HPLC and GC‐MS analysis. Thus, Brevundimonas sp. SGJ has the potential to be a new source for the production of l ‐DOPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号