首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mass transfer, mixing times and power consumption were measured in rigid disposable stirred tank bioreactors and compared to those of a traditional glass bioreactor. The volumetric mass transfer coefficient and mixing times are usually determined at high agitation speeds in combination with sparged aeration as used for single cell suspension and most bacterial cultures. In contrast, here low agitation speeds combined with headspace aeration were applied. These settings are generally used for cultivation of mammalian cells growing adherent to microcarriers. The rigid disposable vessels showed similar engineering characteristics compared to a traditional glass bioreactor. On the basis of the presented results appropriate settings for adherent cell culture, normally operated at a maximum power input level of 5 W m?3, can be selected. Depending on the disposable bioreactor used, a stirrer speed ranging from 38 to 147 rpm will result in such a power input of 5 W m?3. This power input will mix the fluid to a degree of 95% in 22 ± 1 s and produce a volumetric mass transfer coefficient of 0.46 ± 0.07 h?1. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1269–1276, 2014  相似文献   

2.
In this study, a compressed oxygen gas supply was connected to a sealed aerated stirred tank reactor (COS-SSTR) bio-system, leading to a high-oxygen pressure bioreactor used to improve the bio-transformative performance in the production of 1,3-dihydroxyacetone (DHA) from glycerol using Gluconobacter oxydans NL71. A concentration of 301.2 ± 8.2 g L?1 DHA was obtained from glycerol after 32 h of fed-batch fermentation in the COS-SSTR system. The volumetric productivity for this process was 9.41 ± 0.23 g L?1 h?1, which is presently the highest obtained level of glycerol bioconversion into DHA. These results show that the application of this bioreactor would enable microbial production of DHA from glycerol at the industrial scale.  相似文献   

3.
Measles virus (MV) with attenuated pathogenicity has potential as oncolytic agent. However, the clinical translation of this therapy concept has one major hurdle: the production of sufficient amounts of infectious oncolytic MV particles. The current study describes oncolytic MV production in Vero cells grown on microcarrier using serum‐free medium. The impact of the number of harvests, cell concentration at infection (CCI), multiplicity of infection (MOI), and temperature on MV production was determined in different production scales/systems (static T‐flasks, dynamic spinner, and bioreactor system) and modes (batch, repeated‐batch, and perfusion). Cell growth, metabolic, and production kinetics were analyzed. It was found that the number of harvests had the strongest positive impact on MV yield in each production scale, and that high temperatures affected MV yield adversely. Moderate MV titers were produced in T‐ and spinner flasks at 37°C (~107 TCID50 mL?1, where TCID50 is tissue culture infective doses 50%), but stirred tank reactor (STR) MV production at 37°C yielded up to 10 000‐fold lower MV titers. In contrast, at lower temperatures (32°C, 27°C), 1.4 × 107 TCID50 mL?1 were achieved in the STR. Variations in MOI and CCI had almost no influence on MV production yield. The current study improves oncolytic MV production process understanding and identifies process bottlenecks for large‐scale production.  相似文献   

4.
The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single‐use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large‐scale production and feasibility of meeting clinical‐grade standards. The current work evaluated the capacity of a single‐use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (kLa) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h?1, respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7‐fold with a total cell number of 1.2 ± 0.2 × 109 cells L?1. In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single‐use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362–369, 2018  相似文献   

5.
In this work, the effects of agitation and aeration rates on aqueous two‐phase system (ATPS)‐based extractive fermentation of clavulanic acid (CA) by Streptomyces variabilis DAUFPE 3060 were investigated through a 22 full factorial design, where oxygen transfer rate (OTR) and oxygen uptake rate (OUR) were selected as the responses. Aeration rates significantly influenced cell growth, OUR, and CA yield, while OTR was practically the same in all the runs. Under the intermediate agitation (950 rpm) and aeration conditions (3.5 vvm) of the central point runs, it was achieved OTR of 1.617 ± 0.049 mmol L?1 h?1, OUR of 0.132 ± 0.030 mmol L?1 h?1, maximum CA production of 434 ± 4 mg L?1, oxygen mass transfer coefficient of 33.40 ± 2.01 s?1, partition coefficient of 66.5 ± 1.5, CA yield in the top and bottom phases of 75% ± 2% and 19% ± 1%, respectively, mass balance of 95% ± 4% and purification factor of 3.8 ± 0.1. These results not only confirmed the paramount role of O2 supply, broth composition and operational conditions in CA ATPS‐extractive fermentation, but also demonstrated the possibility of effectively using this technology as a cheap tool to simultaneously produce and recover CA. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1444–1452, 2016  相似文献   

6.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

7.
A novel milliliter‐scale stirred tank bioreactor was developed for the cultivation of mycelium forming microorganisms on a 10 milliliter‐scale. A newly designed one‐sided paddle impeller is driven magnetically and rotates freely on an axis in an unbaffled reaction vessel made of polystyrene. A rotating lamella is formed which spreads out along the reactor wall. Thus an enhanced surface‐to‐volume ratio of the liquid phase is generated where oxygen is introduced via surface aeration. Volumetric oxygen transfer coefficients (kLa) > 0.15 s?1 were measured. The fast moving liquid lamella efficiently prevents wall growth and foaming. Mean power consumption and maximum local energy dissipation were measured as function of operating conditions in the milliliter‐scale stirred tank bioreactor (V = 10 mL) and compared to a standard laboratory‐scale stirred tank bioreactor with six‐bladed Rushton turbines (V = 2,000 mL). Mean power consumption increases with increasing impeller speed and shows the same characteristics and values on both scales. The maximum local energy dissipation of the milliliter‐scale stirred tank bioreactor was reduced compared to the laboratory‐scale at the same mean volumetric power input. Hence the milliliter impeller distributes power more uniformly in the reaction medium. Based on these data a reliable and robust scale‐up of fermentation processes is possible. This was demonstrated with the cultivation of the actinomycete Streptomyces tendae on both scales. It was shown that the process performances were equivalent with regard to biomass concentration, mannitol consumption and production of the pharmaceutical relevant fungicide nikkomycin Z up to a process time of 120 h. A high parallel reproducibility was observed on the milliliter‐scale (standard deviation < 8%) with up to 48 stirred tank bioreactors operated in a magnetic inductive drive. Rheological behavior of the culture broth was measured and showed a highly viscous shear‐thinning non‐Newtonian behavior. The newly developed one‐sided paddle impellers operated in unbaffled reactors on a 10 milliliter‐scale with a magnetic inductive drive for up to 48 parallel bioreactors allows for the first time the parallel bioprocess development with mycelium forming microorganisms. This is especially important since these kinds of cultivations normally exhibit process times of 100 h and more. Thus the operation of parallel stirred tank reactors will have the potential to reduce process development times drastically. Biotechnol. Bioeng. 2010; 106: 443–451. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
In this study we maximized biomass production by the basidiomycete Ganoderma australe ATHUM 4345, a species of pharmaceutical interest as it is a valuable source of nutraceuticals, including dietary fibers and glucans. We used the Biolog FF MicroPlate to screen 95 different carbon sources for growth monitoring. The pattern of substrate catabolism forms a substrate assimilation fingerprint, which is useful in selecting components for media optimization of maximum biomass production. Response surface methodology, based on the central composite design was applied to explore the optimum concentrations of carbon and nitrogen sources of culture medium in shake flask cultures. When the improved culture medium was tested in a 20‐L stirred tank bioreactor, using 13.7 g/L glucose and 30.0 g/L yeast extract, high biomass yields (10.1±0.4 g/L) and productivity of 0.09 g L?1 h?1 were obtained. The yield coefficients for total glucan and dietary fibers on biomass formed were 94.82±6 and 341.15±12.3 mg/g mycelium dry weight, respectively.  相似文献   

9.
The objective of this study was to evaluate the production of pectinase by an isolated strain of Penicillium brasilianum in a bioreactor and to consider its potential for industrial applications (i.e. fruit juice). The optimization of production was achieved through experimental design. The maximum exo-polygalacturonase (Exo-PG) production in the bioreactor was 53.8?U mL?1 under the conditions of 180?rpm, an aeration rate of 1.5 vvm, 30?°C, pHinitial of 5.5, 5?×?106 spores mL?1, 32?g L?1 pectin, 10?g L?1 of yeast extract and 0.5?g L?1 magnesium sulfate and bioproduction for 36?h. The production of Exo-PG in the bioreactor was 1.3 times higher than that obtained in shake flasks, with aeration (1.5 vvm) and agitation (180?rpm) control. The crude enzyme complex, beyond the pectinolytic activity of Exo-PG (53.8?U mL?1), also contained activity pectin methylesterase (6.0?U mL?1) and pectin lyase (6.61?U mL?1). At a crude enzyme complex with a concentration of 0.5% (v/v), viscosity of peach juice was reduced by 11.66%, turbidity was reduced by 13.71% and clarification was increased by 26.92%. Based on the present results, we can conclude that the new strain of isolated P. brasilianum produced high amounts of pectinases in a bioreactor with mechanical agitation, and has the potential to be applied to in the clarification of juices.  相似文献   

10.
Recent clinical trials have shown the potential of oncolytic adenoviruses as a cancer immunotherapy. A successful transition of oncolytic adenovirus to clinical applications requires efficient and good manufacturing practice compatible production and purification bioprocesses. Suspension cultures are preferable for virus production as they can reduce process costs and increase product quality and consistency. This work describes the adaptation of the A549 cell line to suspension culture in serum‐reduced medium validated by oncolytic adenovirus production in stirred tank bioreactor. Cell concentrations up to 3 × 106 cells mL?1 are obtained during the production process. At harvest 1.4 × 1010 infectious particles mL?1 and 6.9 ± 1.1 × 1010 viral genome mL?1 are obtained corresponding to a viral genome: infectious particles ratio of 5.2 (± 1.9): 1 confirming the virus quality. Overall, the suspension characteristics of these A549 cells support an easily scalable, less time‐consuming, and more cost‐effective process for expanded success in the use of oncolytic viruses for cancer therapy.  相似文献   

11.
Dictyostelium discoideum is a promising eukaryotic host for the expression of heterologous proteins requiring post‐translational modifications. However, the dilute nature of D. discoideum cell culture limits applications for high value proteins production. D. discoideum cells, entrapped in sodium cellulose sulfate/poly‐dimethyl‐diallyl‐ammonium chloride (NaCS‐PDMDAAC) capsules were used for biosynthesis of the heterologous protein, soluble human Fas ligand (hFasL). Semi‐continuous cultivations with capsules recycling were carried out in shake flasks. Also, a scaled‐up cultivation of immobilized D. discoideum for hFasL production in a customized vitreous airlift bioreactor was conducted. The results show that NaCS‐PDMDAAC capsules have desirable biophysical properties including biocompatibility with the D. discoideum cells and good mechanical stability throughout the duration of cultivation. A maximum cell density of 2.02 × 107 cells mL?1 (equivalent to a maximum cell density of 2.22 × 108 cells mL?1 in capsules) and a hFasL concentration of 130.40 μg L?1 (equivalent to a hFasL concentration of 1434.40 μg L?1 in capsules) were obtained in shake flask cultivation with capsules recycling. Also, a maximum cell density of 1.72 × 107cells mL?1 (equivalent to a maximum cell density of 1.89 × 108 cells mL?1 in capsules) and a hFasL concentration of 106.10 μg L?1 (equivalent to a hFasL concentration of 1167.10 μg L?1 in capsules) were obtained after ~170 h cultivation in the airlift bioreactor (with a working volume of 200 mL in a 315 mL bioreactor). As the article presents a premier work in the application of NaCS‐PDMDAAC immobilized D. discoideum cells for the production of hFasL, more work is required to further optimize the system to generate higher cell densities and hFasL titers for large‐scale applications. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:424–430, 2015  相似文献   

12.
The net carbon uptake rate and net production rate of mycosporine‐like amino acids (MAAs) were measured in phytoplankton from 2 different melt ponds (MPs; closed and open type pond) in the western Arctic Ocean using a 13C stable isotope tracer technique. The Research Vessel Araon visited ice‐covered western‐central basins situated at 82°N and 173°E in the summer of 2012, when Arctic sea ice declined to a record minimum. The average net carbon uptake rate of the phytoplankton in polycarbonate (PC) bottles in the closed MP was 3.24 mg C · m?3 · h?1 (SD = ±1.12 mg C · m?3 · h?1), while that in the open MP was 1.3 mg C · m?3 · h?1 (SD = ±0.05 mg C · m?3 · h?1). The net production rate of total MAAs in incubated PC bottles was highest (1.44 (SD = ±0.24) ng C · L?1 · h?1) in the open MP and lowest (0.05 (SD = ±0.003) ng C · L?1 · h?1) in the closed MP. The net production rate of shinorine and palythine in incubated PC bottles at the open MP presented significantly high values 0.76 (SD = ±0.12) ng C · L?1 · h?1and 0.53 (SD = ±0.06) ng C · L?1 · h?1. Our results showed that high net production rate of MAAs in the open MP was enhanced by a combination of osmotic and UVR stress and that in situ net production rates of individual MAA can be determined using 13C tracer in MPs in Arctic sea ice.  相似文献   

13.
The oxygen transfer rate (OTR) was evaluated as a scale-up criterion for alginate production in 3- and 14-L stirred fermentors. Batch cultures were performed at different agitation rates (200, 300, and 600 rpm) and airflow rates (0.25, 0.5, and 1 vvm), resulting in different maximum OTR levels (OTRmax). Although the two reactors had a similar OTRmax (19 mmol L?1 h?1) and produced the same alginate concentration (3.8 g L?1), during the cell growth period the maximum molecular weight of the alginate was 1,250 kDa in the 3-L stirred fermentor and 590 kDa in 14-L stirred fermentor. The results showed for the first time the evolution of the molecular weight of alginate and OTR profiles for two different scales of stirred fermentors. There was a different maximum specific oxygen uptake rate between the two fermenters, reaching 8.3 mmol g?1 h?1 in 3-L bioreactor and 10.6 mmol g?1 h?1 in 14-L bioreactor, which could explain the different molecular weights observed. These findings open the possibility of using $ q_{{{\text{O}}_{ 2} }} $ instead of OTRmax as a scaling criterion to produce polymers with similar molecular weights during fermentation.  相似文献   

14.
Bioprocess scale‐up is a fundamental component of process development in the biotechnology industry. When scaling up a mammalian cell culture process, it is important to consider factors such as mixing time, oxygen transfer, and carbon dioxide removal. In this study, cell‐free mixing studies were performed in production scale 5,000‐L bioreactors to evaluate scale‐up issues. Using the current bioreactor configuration, the 5,000‐L bioreactor had a lower oxygen transfer coefficient, longer mixing time, and lower carbon dioxide removal rate than that was observed in bench scale 5‐ and 20‐L bioreactors. The oxygen transfer threshold analysis indicates that the current 5,000‐L configuration can only support a maximum viable cell density of 7 × 106 cells mL?1. Moreover, experiments using a dual probe technique demonstrated that pH and dissolved oxygen gradients may exist in 5,000‐L bioreactors using the current configuration. Empirical equations were developed to predict mixing time, oxygen transfer coefficient, and carbon dioxide removal rate under different mixing‐related engineering parameters in the 5,000‐L bioreactors. These equations indicate that increasing bottom air sparging rate is more efficient than increasing power input in improving oxygen transfer and carbon dioxide removal. Furthermore, as the liquid volume increases in a production bioreactor operated in fed‐batch mode, bulk mixing becomes a challenge. The mixing studies suggest that the engineering parameters related to bulk mixing and carbon dioxide removal in the 5,000‐L bioreactors may need optimizing to mitigate the risk of different performance upon process scale‐up. Biotechnol. Bioeng. 2009;103: 733–746. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell‐based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non‐invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)‐free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin‐based Cultispher®S microcarriers and xeno‐free culture medium for the expansion of umbilical cord matrix (UCM)‐derived MSC. This system enabled the production of 2.4 (±1.1) x105 cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)‐fold increase in cell number. The established protocol was then implemented in a stirred‐tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier‐based stirred culture system, using xeno‐free culture medium that suits the intrinsic features of UCM‐derived MSC represents an important step towards a GMP compliant large‐scale production platform for these promising cell therapy candidates.  相似文献   

16.
In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed‐batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed‐batch fermentation system with high fidelity (R2 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L?1 h?1, 3 μg mL?1 and 40%, respectively. While 1711 IU mL?1 nisin was produced by L. lactis N8 in control fed‐batch fermentation, 5410 IU mL?1 nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed‐batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed‐batch fermentation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:678–685, 2015  相似文献   

17.
The modified rotating simplex method has been successfully used to determine the best combination of agitation rate and aeration rate for maximum production of extracellular proteases by Staphylococcus aureus mutant RC128, in a stirred tank bioreactor operated in a discontinuous way. This mutant has shown altered exoprotein production, specially enhanced protease production. Maximum production of proteases (15.28 UP/ml), measured using azocasein as a substrate, was obtained at exponential growth phase when the bioreactor was operated at 300 rpm and at 2 vvm with a volumetric oxygen transfer coefficient (K L a) of 175.75 h−1. These conditions were found to be more suitable for protease production.  相似文献   

18.
The impact of mass transfer on productivity can become a crucial aspect in the fermentative production of bulk chemicals. For highly aerobic bioprocesses the oxygen transfer rate (OTR) and productivity are coupled. The achievable space time yields can often be correlated to the mass transfer performance of the respective bioreactor. The oxygen mass transfer capability of a jet aerated loop reactor is discussed in terms of the volumetric oxygen mass transfer coefficient kLa [h?1] and the energetic oxygen transfer efficiency E [kgO2 kW?1 h?1]. The jet aerated loop reactor (JLR) is compared to the frequently deployed aerated stirred tank reactor. In jet aerated reactors high local power densities in the mixing zone allow higher mass transfer rates, compared to aerated stirred tank reactors. When both reactors are operated at identical volumetric power input and aeration rates, local kLa values up to 1.5 times higher are possible with the JLR. High dispersion efficiencies in the JLR can be maintained even if the nozzle is supplied with pressurized gas. For increased oxygen demands (above 120 mmol L?1 h?1) improved energetic oxygen transfer efficiencies of up to 100 % were found for a JLR compared to an aerated stirred tank reactor operating with Rushton turbines.  相似文献   

19.
Oxygenase‐containing cyanobacteria constitute promising whole‐cell biocatalysts for oxyfunctionalization reactions. Photosynthetic water oxidation thereby delivers the required cosubstrates, that is activated reduction equivalents and O2, sustainably. A recombinant Synechocystis sp. PCC 6803 strain showing unprecedentedly high photosynthesis‐driven oxyfunctionalization activities is developed, and its technical applicability is evaluated. The cells functionally synthesize a heterologous cytochrome P450 monooxygenase enabling cyclohexane hydroxylation. The biocatalyst‐specific reaction rate is found to be light‐dependent, reaching 26.3 ± 0.6 U gCDW?1 (U = μmol min?1 and cell dry weight [CDW]) at a light intensity of 150 µmolphotons m?2 s?1. In situ substrate supply via a two‐liquid phase system increases the initial specific activity to 39.2 ± 0.7 U gCDW?1 and stabilizes the biotransformation by preventing cell toxification. This results in a tenfold increased specific product yield of 4.5 gcyclohexanol gCDW?1 as compared to the single aqueous phase system. Subsequently, the biotransformation is scaled from a shake flask to a 3 L stirred‐tank photobioreactor setup. In situ O2 generation via photosynthetic water oxidation allows a nonaerated process operation, thus circumventing substrate evaporation as the most critical factor limiting the process performance and stability. This study for the first time exemplifies the technical applicability of cyanobacteria for aeration‐independent light‐driven oxyfunctionalization reactions involving highly toxic and volatile substrates.  相似文献   

20.
This article presents a novel pumpless perfusion cell culture cap, the gravity‐driven flow rate of which is kept constant by the height difference of two parallel channel layers. Previous pumpless perfusion cell culture systems create a gravity‐driven flow by means of the hydraulic head difference (Δh) between the source reservoir and the drain reservoir. As more media passes from the source reservoir to the drain reservoir, the source media level decreases and the drain media level increases. Thus, previous works based on a gravity‐driven flow were unable to supply a constant flow rate for the perfusion cell culture. However, the proposed perfusion cell culture cap can supply a constant flow rate, because the media level remains unchanged as the media moves laterally through each channel having same media level. In experiments, using the different fluidic resistances, the perfusion cap generated constant flow rates of 871 ± 27 μL h?1 and 446 ± 11 μL h?1. The 871 and 446 μL h?1 flow rates replace the whole 20 mL medium in the petridish with a fresh medium for days 1 and 2, respectively. In the perfusion cell (A549 cell line) culture with the 871 μL h?1 flow rate, the proposed cap can maintain a lactate concentration of about 2200 nmol mL?1 and an ammonia concentration of about 3200 nmol mL?1. Moreover, although the static cell culture maintains cell viability for 5 days, the perfusion cell culture with the 871 μL h?1 flow rate can maintain cell viability for 9 days. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号