首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This article presents a multispectral image analysis approach for probing the spectral backscattered irradiance from algal cultures. It was demonstrated how this spectral information can be used to measure algal biomass concentration, detect invasive species, and monitor culture health in real time. To accomplish this, a conventional RGB camera was used as a three band photodetector for imaging cultures of the green alga Chlorella sp. and the cyanobacterium Anabaena variabilis. A novel floating reference platform was placed in the culture, which enhanced the sensitivity of image color intensity to biomass concentration. Correlations were generated between the RGB color vector of culture images and the biomass concentrations for monocultures of each strain. These correlations predicted the biomass concentrations of independently prepared cultures with average errors of 22 and 14%, respectively. Moreover, the difference in spectral signatures between the two strains was exploited to detect the invasion of Chlorella sp. cultures by A. variabilis. Invasion was successfully detected for A. variabilis to Chlorella sp. mass ratios as small as 0.08. Finally, a method was presented for using multispectral imaging to detect thermal stress in A. variabilis. These methods can be extended to field applications to provide delay free process control feedback for efficient operation of large scale algae cultivation systems. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:233–240, 2014  相似文献   

2.
1. Positive effects of fish on algal biomass have variously been attributed to cascading top‐down effects and to nutrient enrichment by fish excretion. 2. Here, we used a combination of field and laboratory approaches to test an additional hypothesis, namely that the physical resuspension of settled algal cells by fish enhances algal biomass and alters community composition. 3. A multi‐lake survey showed that phytoplankton biomass and the fraction of motile algae increased with the concentration of inorganic suspended solids. This correlation could not be explained by wind‐induced resuspension because of the small size of the lakes. 4. In an enclosure experiment, chlorophyll‐a concentration, phytoplankton abundance and inorganic suspended solids increased significantly in the presence of Cyprinus carpio (common carp), but only if the fish had access to the sediment. No such effects were seen when a net prevented carp reaching the sediment. 5. The effects of enhanced nutrients and reduced zooplankton grazing as a result of fish feeding could not (fully) explain these observations, suggesting that the resuspension by carp of settled algae from a surface film on the sediment was the major factor in the outcome of the experiment. 6. An increase in diatoms and green algae (organisms with a relatively large sedimentation velocity) only in enclosures where carp could reach the sediment supported this view. 7. Several lines of evidence indicate that fish‐induced resuspension of algal cells from the sediment is an important mechanism that affects phytoplankton biomass and community composition in shallow lakes.  相似文献   

3.
Mathematical models are useful tools for studying and exploring biological conversion processes as well as microbial competition in biological treatment processes. A single‐species biofilm model was used to describe biofilm reactor operation at three different hydraulic retention times (HRT). The single‐species biofilm model was calibrated with sparse experimental data using the Monte Carlo filtering method. This calibrated single‐species biofilm model was then extended to a multi‐species model considering 10 different heterotrophic bacteria. The aim was to study microbial diversity in bulk phase biomass and biofilm, as well as the competition between suspended and attached biomass. At steady state and independently of the HRT, Monte Carlo simulations resulted only in one unique dominating bacterial species for suspended and attached biomass. The dominating bacterial species was determined by the highest specific substrate affinity (ratio of µ/KS). At a short HRT of 20 min, the structure of the microbial community in the bulk liquid was determined by biomass detached from the biofilm. At a long HRT of 8 h, both biofilm detachment and microbial growth in the bulk liquid influenced the microbial community distribution. Biotechnol. Bioeng. 2013; 110: 1323–1332. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Abstract. This paper presents a new and simple technique to derive quantitative estimates of green or dry biomass using colour information from digital pictures. This pixel‐counting technique is based on the association of particular plant material with a representative region on a two‐dimensional colour space, and applies to cases of non‐overlapping canopies. The efficacy of the method is demonstrated using sets of samples obtained from both field and laboratory studies. It is shown that application of the proposed approach results in a highly linear relationship between pixel count and foliar area for both green and non‐green material [r= 0.99 (p < 0.001)]. Analysis of images from a short‐grass steppe shows a high correlation between pixel count and measured values of green biomass [r= 0.95 (p < 0.001)]. The method outlined here allows for a substantial improvement in the speed of sample evaluation to estimate biomass both in the field and in the laboratory. It also provides a non‐destructive alternative to monitor plant cover and biomass in open canopies.  相似文献   

5.
The alga Parachlorella kessleri, strain CCALA 255, grown under optimal conditions, is characterized by storage of energy in the form of starch rather than lipids. If grown in the complete medium, the cultures grew rapidly, producing large amounts of biomass in a relatively short time. The cells, however, contained negligible lipid reserves (1–10% of DW). Treatments inducing hyperproduction of storage lipids in P. kessleri biomass were described. The cultures were grown in the absence or fivefold decreased concentration of either nitrogen or phosphorus or sulfur. Limitation by all elements using fivefold or 10‐fold diluted mineral medium was also tested. Limitation with any macroelement (nitrogen, sulfur, or phosphorus) led to an increase in the amount of lipids; nitrogen limitation was the most effective. Diluted nutrient media (5‐ or 10‐fold) were identified as the best method to stimulate lipid overproduction (60% of DW). The strategy for lipid overproduction consists of the fast growth of P. kessleri culture grown in the complete medium to produce sufficient biomass (DW more than 10 g/L) followed by the dilution of nutrient medium to stop growth and cell division by limitation of all elements, leading to induction of lipid production and accumulation up to 60% DW. Cultivation conditions necessary for maximizing lipid content in P. kessleri biomass generated in a scale‐up solar open thin‐layer photobioreactor were described. Biotechnol. Bioeng. 2013; 110: 97–107. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Understanding how patterns and processes relate across spatial scales is one of the major goals in ecology. 1/f models have been applied mostly to time series of environmental and ecological variables, but they can also be used to analyse spatial patterns. Since 1/f noise may display scale‐invariant behaviour, ecological phenomena whose spatial variability shows 1/f type scaling are susceptible to further characterization using fractals or multifractals. Here we use spectral analysis and multifractal techniques (generalized dimension spectrum) to investigate the spatial distribution of epilithic microphytobenthos (EMPB) on rocky intertidal surfaces. EMPB biomass was estimated from calibrated colour‐infrared images that provided indirect measures of rock surface chlorophyll a concentration, along two 8‐m and one 4‐m long transects sampled in January and November 2012. Results highlighted a pattern of spectral coefficient close to or greater than one for EMPB biomass distribution and multifractal structures, that were consistent among transects, implying scale‐invariance in the spatial distribution of EMPB. These outcomes can be interpreted as a result of the superimposition of several biotic and abiotic processes acting at multiple spatial scales. However, the scale‐invariant nature of EMPB spatial patterns can also be considered a hallmark of self‐organization, underlying the possible role of scale‐dependent feedback in shaping EMPB biomass distribution.  相似文献   

7.
The perennial rhizomatous grass, Miscanthus×giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. ×giganteus must be propagated vegetatively by mechanically divided rhizomes or from micropropagated plantlets. Plant regeneration through somatic embryogenesis is a viable approach to achieve large‐scale production of plantlets in tissue culture. Effect of the callus types, ages and culture methods on the regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. ×giganteus. Shoot‐forming calli having a yellow or white compact callus with light‐green shoot‐like structures showed the highest regeneration frequency. Percentage of shoot‐forming callus induction from immature inflorescence explants was 41% on callus induction medium containing 13.6 μM 2,4‐d and 0.44 μM benzyladenine (BA). The use of a regeneration medium containing 1.3 μM NAA and 22 μM BA was effective at shortening the incubation period required for plantlet regeneration, with 69% of total regenerated plantlets obtained within 1 month of incubation on regeneration medium. Embryogenic‐like callus morphotype could maintain regeneration competency for up to 1 year as suspension cultures. Field grown regenerated plants showed normal phenotypic development with DNA content and plant heights comparable to rhizome propagated plants. Winter survival rates of the regenerated plants planted in 2006 and 2007 at the University of Illinois South Farm, Urbana‐Champaign, Illinois, were 78% and 56%, respectively.  相似文献   

8.
Plant virus accumulation was investigated in vitro using three different forms of plant tissue culture. Suspended cells, hairy roots and shooty teratomas of Nicotiana benthamiana were infected with tobacco mosaic virus (TMV) using the same initial virus:biomass ratio. Viral infection did not affect tissue growth or morphology in any of the three culture systems. Average maximum virus concentrations in hairy roots and shooty teratomas were similar and about an order of magnitude higher than in suspended cells. Hairy roots were considered the preferred host because of their morphological stability in liquid medium and relative ease of culture. The average maximum virus concentration in the hairy roots was 0.82 ± 0.14 mg g−1 dry weight; viral coat protein represented a maximum of approximately 6% of total soluble protein in the biomass. Virus accumulation in hairy roots was investigated further using different modes of semi-continuous culture operation aimed at prolonging the root growth phase and providing nutrient supplementation; however, virus concentrations in the roots were not enhanced compared with simple batch culture. The relative infectivity of virus in the biomass declined by 80–90% during all the cultures tested, irrespective of the form of plant tissue used or mode of culture operation. Hairy root cultures inoculated with a transgenic TMV-based vector in batch culture accumulated green fluorescent protein (GFP); however, maximum GFP concentrations in the biomass were relatively low at 39 μg g−1 dry weight, probably due to genetic instability of the vector. This work highlights the advantages of using hairy roots for in vitro propagation of TMV compared with shooty teratomas and suspended plant cells, and demonstrates that batch root culture is more effective than semi-continuous operations for accumulation of high virus concentrations in the biomass.  相似文献   

9.
We describe a novel strategy to produce vaccine antigens using a plant cell‐suspension culture system in lieu of the conventional bacterial or animal cell‐culture systems. We generated transgenic cell‐suspension cultures from Nicotiana benthamiana leaves carrying wild‐type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot‐and‐mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co‐expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large‐scale production of immunopeptide vaccines in a cost‐effective manner using a plant cell‐suspension culture system.  相似文献   

10.
  • 1 The North and South Basins of Windermere, Cumbria, have experienced a large increase in concentrations of nutrients, particularly phosphate, since 1945 when detailed measurements began. Over‐winter concentrations have increased from 1 to 3 mg PO4‐P m‐3 in the 1940s, up to 30 mg PO4‐P m‐3 in the South Basin of Windermere in the early 1990s where nutrient enrichment has been most marked. A visible manifestation of this ‘eutrophication’ in recent years has been the production of a large biomass by the green filamentous macroalga, Cladophora.
  • 2 Since April 1992, tertiary chemical stripping of phosphate at the two sewage treatment plants on Windermere has reduced direct sources of phosphate to both basins. In the South Basin, over‐winter concentrations of phosphate have fallen to values similar to those in the early 1970s.
  • 3 The biomass of Cladophora has declined markedly in response to the reduced phosphate availability. Significant relationships were found between the annual maximum biomass of Cladophora and two measures of phosphate availability: the over‐winter concentration and, more strongly, the day of year when the concentration fell below 1 mg m‐3.
  • 4 The annual biomass maxima of Cladophora since 1945, estimated from the regressions, showed a gradual increased potential for biomass production after 1965 as phosphate concentrations increased, followed by a striking and rapid biological response to lake remediation by phosphate stripping.
  相似文献   

11.
SUMMARY.
  • 1 Research was performed in laboratory streams to evaluate periphytic biomass accrual, export, and community composition over a range of limiting nutrient (phosphorus) concentrations with variable velocity, and suspended sediment addition, in comparison to constant velocity and no suspended sediment. In fixed-velocity treatments, velocity increase to 60 cm s?1 significantly enhanced biomass accrual, but further increase resulted in substantial biomass reduction. Average biomass loss rates did not change significantly over a velocity range of 10–80 cm s?1. Diatoms were favoured at relatively high velocities and low phosphorus concentrations, whereas the blue-green Phormidium tended to dominate at higher SRP concentrations and the green Mougeotia seemed to prefer lower velocities.
  • 2 Sudden increases in velocity raised instantaneous loss rates by an order of magnitude or more, but these high rates persisted only briefly. As a result, marked biomass reductions were not apparent a day after the velocity change. Dominance change from filamentous green or blue-green to diatoms immediately after the increase was reversed within 2 days. Loss rate increases due to solids addition were much smaller than those accompanying velocity increase, but simultaneous velocity elevation and solids addition produced instantaneous loss rates approximately double those with velocity increase alone.
  • 3 The experiments demonstrated that an elevation in velocity, above that to which algae were accustomed, led to increased loss rates and temporarily reduced biomass. However, recolonization and growth after biomass reduction were apparently rapid. Substantial export of periphyton following solids addition required erosion of the protective boundary layer accompanied by a velocity increase. These results arc applicable to understanding the response of lotic periphytic algae to elevated, turbid storm discharges and similar runoff or high-flow events.
  • 4 Areal uptake rates of P by algae growing in the laboratory streams increased with soluble reactive phosphorus (SRP) concentration, up to approximately 15 μg I?1 in overlying water. They also increased above 35 cm s ?1. Overall, uptake rate seemed to vary inversely with biomass. The ralio of areal uptake rate/biomass was significantly less where mean biomass was 411±6 mg chl a m?2 compared to 223±17 mg chl a m?2.
  • 5 The results suggested that although nutrient uptake is primarily a surface phenomenon, diffusion to interior cells can also determine the responses of attached communities. Both diffusion and uptake rate were stimulated by increasing nutrient concentration and velocity up to certain levels, but became limited by biofilm thickness and scouring.
  相似文献   

12.
Mycoplasma hyopneumoniae is cultured on large‐scale to produce antigen for inactivated whole‐cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint‐based genome‐scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time‐series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non‐growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model‐driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3–4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339–2347. © 2017 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.  相似文献   

13.
Disposable cell culture vessels are extensively used at small scales for process optimization and validation, but they lack monitoring capabilities. Optical sensors that can be easily adapted for use in small‐scale vessels are commercially available for pH, dissolved oxygen (DO), and dissolved carbon dioxide (DCO2). However, their use has been limited due to the contamination and compatibility issues. We have developed a novel solution to these problems for DO monitoring. Oxygen diffusion through permeable vessel wall can be exploited for noninvasive monitoring. An optical oxygen sensor can be placed outside the oxygen permeable vessel wall thereby allowing oxygen diffusing through the vessel wall to be detected by the sensor. This way the sensor stays separate from the cell culture and there are no concerns about contaminants or leachants. Here we implement this method for two cell culture devices: polystyrene‐made T‐75 tissue culture flask and fluorinated ethylene propylene (FEP)‐made Vuelife® cell culture bag. Additionally, mammalian and microbial cell cultures were performed in Vuelife® cell culture bags, proving that a sensor placed outside can be used to track changes in cell cultures. This approach toward noninvasive monitoring will help in integrating cell culture vessels with sensors in a seamless manner. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:172–177, 2014  相似文献   

14.
The biological degradation of quinoline by suspended and immobilized Comamonas acidovorans was studied under continuous and discontinuous operating conditions in a three‐phase fluidized bed reactor. C. acidovorans degrades quinoline into biomass and carbon dioxide. Quinoline and the intermediates of its metabolic pathway are found only by quinoline shockloads. The continuous degradation of quinoline by suspended biomass was only possible, if the dilution rate was less than the growth rate (μmax =0.42 h–1) and the concentration of a shockload was less than 1 kg/m3. A concentration greater than 1 kg/m3 led to an irreversible damage of the cells. Hence, two different carrier materials were used for immobilization by attachment, to increase the stability of the process. Using immobilization of biomass on carriers decouples the hydrodynamic retention time and the growth rate of the microorganisms. A comparison of the carrier material showed no differences with respect of activity and stability of the biofilm. The process stability of a three‐phase fluidized bed reactor was increased by immobilized biomass. The degradation of toxic shockloads was only possible with immobilized biomass. A dynamic model has been developed to describe the concentration profile of quinoline, 2‐hydroxyquinoline as metabolite and the suspended biomass. A comparison of the measured and calculated values showed good agreement.  相似文献   

15.
Three pilot‐scale bioreactors were started up and operated under salinity‐amended urban wastewater feeding. The bioreactors were configured as membrane bioreactor and two different hybrid, moving bed biofilm reactor‐membrane bioreactor and operated with a hydraulic retention time of 9.5 h, a solid residence time of 11.75 days and a total solids concentration of 2500 mg L?1. The three systems showed excellent performance in suspended solids, BOD5, and COD removal (values of 96–100%, 97–99%, and 88–90%, respectively), but poor nitrogen removal (values of 20–30%). The bacterial community structure during the start‐up phase and the stabilization phase were different, as showed by β‐diversity analyses. The differences between aerobic and anoxic biomass—and between suspended and attached biomass—were higher at the start‐up phase than at the stabilization phase. The start‐up phase showed high abundances of Chiayiivirga (mean values around 3–12% relative abundance) and Luteimonas (5–8%), but in the stabilization phase, the domination belonged to Thermomonas (3–14%), Nitrobacter (3–7%), Ottowia (3–11.5%), and Comamonas (2–6%), among others. Multivariate redundancy analyses showed that Thermomonas and Nitrosomonas were positively correlated with fast autotrophic kinetics, while Caulobacter and Ottowia were positively correlated with fast heterotrophic kinetics. Nitrobacter, Rhodanobacter, and Comamonas were positively correlated with fast autotrophic and heterotrophic kinetics. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1483–1495, 2017  相似文献   

16.
The influence of light intensity upon biomass and fatty acid productivity by the microalga Pavlova lutheri was experimentally studied using a novel device. This device was designed to automatically adjust light intensity in a photobioreactor: it takes on-line measurements of biomass concentration, and was successfully tested to implement a feedback control of light based on the growth rate variation. Using said device, batch and semicontinuous cultures of P. lutheri were maintained at maximum growth rates and biomass productivities – hence avoiding photoinhibition, and consequent waste of radiant energy. Several cultures were run with said device, and their performances were compared with those of control cultures submitted to constant light intensity; the biomass levels attained, as well as the yields of eicosapentaenoic and docosahexaenoic acids were calculated – and were consistently higher than those of their uncontrolled counterpart.  相似文献   

17.
Geotrichum candidum plays an important role in the ripening of Camembert‐type cheeses. However, the direct measurement of the biomass concentration is rather tedious and, therefore, the development of alternative methods for monitoring the growth on solid media would be very useful. For this purpose, a non‐structured model was previously developed to describe the CO2 emission during the growth of G. candidum in liquid cultures. The CO2 production was assumed to be partially associated with growth: a part resulted from growth and the remaining from cellular maintenance. This model has also been validated in solid cultures on peptone‐lactate based medium. The coefficients for growth‐associated and non‐growth‐associated production were found to be 0.301 and 0.123 per day, respectively. Therefore, the CO2 production may be a non‐destructive and useful tool to monitor fungal growth in solid cultures. In the case of mixed cultures of both fungi (Geotrichum candidum and Penicillium camembertii) involved in the ripening of Camembert cheeses, CO2 emission can be related to the total viable biomass, while ammonia and volatile sulphur compounds can be linked to G. candidum biomass. Indeed, it was previously shown that Penicillium camembertii released only very low amounts of both compounds.  相似文献   

18.
Many studies have documented habitat cascades where two co‐occurring habitat‐forming species control biodiversity. However, more than two habitat‐formers could theoretically co‐occur. We here documented a sixth‐level habitat cascade from the Avon‐Heathcote Estuary, New Zealand, by correlating counts of attached inhabitants to the size and accumulated biomass of their biogenic hosts. These data revealed predictable sequences of habitat‐formation (=attachment space). First, the bivalve Austrovenus provided habitat for green seaweeds (Ulva) that provided habitat for trochid snails in a typical estuarine habitat cascade. However, the trochids also provided habitat for the nonnative bryozoan Conopeum that provided habitat for the red seaweed Gigartina that provided habitat for more trochids, thereby resetting the sequence of the habitat cascade, theoretically in perpetuity. Austrovenus is here the basal habitat‐former that controls this “long” cascade. The strength of facilitation increased with seaweed frond size, accumulated seaweed biomass, accumulated shell biomass but less with shell size. We also found that Ulva attached to all habitat‐formers, trochids attached to Ulva and Gigartina, and Conopeum and Gigartina predominately attached to trochids. These “affinities” for different habitat‐forming species probably reflect species‐specific traits of juveniles and adults. Finally, manipulative experiments confirmed that the amount of seaweed and trochids was important and consistent regulators of the habitat cascade in different estuarine environments. We also interpreted this cascade as a habitat‐formation network that describes the likelihood of an inhabitant being found attached to a specific habitat‐former. We conclude that the strength of the cascade increased with the amount of higher‐order habitat‐formers, with differences in form and function between higher and lower‐order habitat‐formers, and with the affinity of inhabitants for higher‐order habitat‐formers. We suggest that long habitat cascades are common where species traits allow for physical attachment to other species, such as in marine benthic systems and old forest.  相似文献   

19.
This follow-up study provided an evaluation on threshold operation criteria of biostimulation in immobilized cell systems (ICSs) with Aeromonas hydrophila onto packing materials Porites corals. Essential nutrients in appropriate flow rate for biostimulation were inevitably required to maintain maximum attached cell population for cost-effective biodecolorization. With the method of “graphical reconstruction”, the most economically feasible strategy of medium stimulation for color removal was quantitatively revealed. Our findings pointed out no matter what operation mode of reactor was (e.g., suspended batch cultures or ICS) color removal efficiency for A. hydrophila still strongly depended upon intrinsic kinetics and chemical reactivities of azo dyes. Mass transport effects in ICS might not play most significant roles to limit dye biodecolorization of A. hydrophila (except Reactive red 198, Reactive green 19), as relative rankings of color removal rates of various dyes were almost in parallel with those in suspended batch cultures.  相似文献   

20.
This paper investigates the scaling‐up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo‐heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low‐chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold. Biotechnol. Bioeng. 2015;112: 2429–2438. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Peiodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号