首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphite, interpreted as altered bioorganic matter in an early Archean, ca. 3.83‐Ga‐old quartz‐amphibole‐pyroxene gneiss on Akilia Island, Greenland, has previously been claimed to be the earliest trace of life on Earth. Our petrographic and Raman spectroscopy data from this gneiss reveal the occurrence of graphitic material with the structure of nano‐crystalline to crystalline graphite in trails and clusters of CO2, CH4 and H2O bearing fluid inclusions. Irregular particles of graphitic material without a fluid phase, representing decrepitated fluid inclusions are common in such trails too, but occur also as dispersed individual or clustered particles. The occurrence of graphitic material associated with carbonic fluid inclusions is consistent with an abiologic, fluid deposited origin during a poly‐metamorphic history. The evidence for fluid‐deposited graphitic material greatly complicates any claim about remnants of early life in the Akilia rock.  相似文献   

2.
(Ca1‐xEux)WO4 (x = 0–21 mol%) phosphors were prepared using the classical solid‐state reaction method. The influence of Eu3+ ion doping on lattice structure was observed using powder X‐ray diffraction and Fourier transform infrared spectroscopy. Furthermore, under this influence, the luminescence properties of all samples were analyzed. The results clearly illustrated that the element europium was successfully incorporated into the CaWO4 lattice with a scheelite structure in the form of a Eu3+ ion, which introduced a slight lattice distortion into the CaWO4 matrix. These lattice distortions had no effect on phase purity, but had regular effects on the intrinsic luminescence of the matrix and the f–f excitation transitions of Eu3+ activators. When the Eu3+ concentration was increased to 21 mol%, a local luminescence centre of [WO4]2? groups was detected in the matrix and manifested as the decay curves of [WO4]2? groups and luminescence changed from single exponential to double exponential fitting. Furthermore, the excitation transitions of Eu3+ between different energy levels (such as 7F05L6, 7F05D2) also produced interesting changes. Based on analysis of photoluminescence spectra and the chromaticity coordinates in this study, it could be verified that the nonreversing energy transfer of [WO4]2?→Eu3+ was efficient and incomplete.  相似文献   

3.
Mixed cation perovskites currently achieve very promising efficiency and operational stability when used as the active semiconductor in thin‐film photovoltaic devices. However, an in‐depth understanding of the structural and photophysical properties that drive this enhanced performance is still lacking. Here the prototypical mixed‐cation mixed‐halide perovskite (FAPbI3)0.85(MAPbBr3)0.15 is explored, and temperature‐dependent X‐ray diffraction measurements that are correlated with steady state and time‐resolved photoluminescence data are presented. The measurements indicate that this material adopts a pseudocubic perovskite α phase at room temperature, with a transition to a pseudotetragonal β phase occurring at ≈260 K. It is found that the temperature dependence of the radiative recombination rates correlates with temperature‐dependent changes in the structural configuration, and observed phase transitions also mark changes in the gradient of the optical bandgap. The work illustrates that temperature‐dependent changes in the perovskite crystal structure alter the charge carrier recombination processes and photoluminescence properties within such hybrid organic–inorganic materials. The findings have significant implications for photovoltaic performance at different operating temperatures, as well as providing new insight on the effect of alloying cations and halides on the phase behavior of hybrid perovskite materials.  相似文献   

4.
Incorporating the Gd3+ rare earth ion in the LiCaBO3 host lattice resulted in narrow‐band UV‐B emission peaking at 315 nm, with excitation at 274 nm. The LiCaBO3:Gd3+ phosphor was synthesized via the solid‐state diffusion method. The structural, morphological and luminescence properties of this phosphor were characterized by X‐ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. Electron paramagnetic resonance (EPR) characterization of the as‐prepared phosphors is also reported here. XRD studies confirmed the crystal formation and phase purity of the prepared phosphors. A series of different dopant concentrations was synthesized and the concentration‐quenching effect was studied. Critical energy transfer distance between activator ions was determined and the mechanism governing the concentration quenching is also reported in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Phase transitions play a crucial role in Li‐ion battery electrodes being decisive for both the power density and cycle life. The kinetic properties of phase transitions are relatively unexplored and the nature of the phase transition in defective spinel Li4+xTi5O12 introduces a controversy as the very constant (dis)charge potential, associated with a first‐order phase transition, appears to contradict the exceptionally high rate performance associated with a solid–solution reaction. With the present density functional theory study, a microscopic mechanism is put forward that provides deeper insight in this intriguing and technologically relevant material. The local substitution of Ti with Li in the spinel Li4+xTi5O12 lattice stabilizes the phase boundaries that are introduced upon Li‐ion insertion. This facilitates a subnanometer phase coexistence in equilibrium, which although very similar to a solid solution should be considered a true first‐order phase transition. The resulting interfaces are predicted to be very mobile due to the high mobility of the Li ions located at the interfaces. This highly mobile, almost liquid‐like, subnanometer phase morphology is able to respond very fast to nonequilibrium conditions during battery operation, explaining the excellent rate performance in combination with a first‐order phase transition.  相似文献   

6.
The bacterial channel KirBac1.1 provides a structural homolog of mammalian inward rectifier potassium (Kir) channels. The conformational dynamics of the selectivity filter of Kir channels are of some interest in the context of possible permeation and gating mechanisms for this channel. Molecular dynamics simulations of KirBac have been performed on a 10-ns timescale, i.e., comparable to that of ion permeation. The results of five simulations (total simulation time 50 ns) based on three different initial ion configurations and two different model membranes are reported. These simulation data provide evidence for limited (<0.1 nm) filter flexibility during the concerted motion of ions and water molecules within the filter, such local changes in conformation occurring on an approximately 1-ns timescale. In the absence of K(+) ions, the KirBac selectivity filter undergoes more substantial distortions. These resemble those seen in comparable simulations of other channels (e.g., KcsA and KcsA-based homology models) and are likely to lead to functional closure of the channel. This suggests filter distortions may provide a mechanism of K-channel gating in addition to changes in the hydrophobic gate formed at the intracellular crossing point of the M2 helices. The simulation data also provide evidence for interactions of the "slide" (pre-M1) helix of KirBac with phospholipid headgroups.  相似文献   

7.
Multiple applications of lithium‐ion batteries in energy storage systems and electric vehicles require highly stable electrode materials for long‐term battery operation. Among the various cathode materials, high‐Ni cathode materials enable a high energy density. However, cathode degradation accompanied by complex chemical and structural changes results in capacity and voltage fading in batteries. Cathode degradation remains poorly understood; the majority of studies have only explored the oxidation states of transition‐metal ions in localized areas and have rarely evaluated chemical degradation in complete particles after prolonged cycling. This study systematically investigates the degradation of a high‐Ni cathode by comparing the chemical, structural, and electrical changes in pristine and 500 times‐cycled cathodes. Electron probe micro‐analysis and X‐ray energy dispersive spectroscopy reveal changes in the Ni:O ratio from 1:2 to 1:1 over a large area inside the secondary particle. Electron energy loss spectroscopy analysis related to structural changes is performed for the entire primary particle area to visualize the oxidation state of transition‐metal ions in two dimensions. The results imply that the observed monotonic capacity fade without unusual changes is due to the continuous formation of the Ni2+ phase from the surface to the bulk through chemical and structural degradation.  相似文献   

8.
In this work, the hydroxyapatite nanoparticles doped with trivalent dysprosium ions were synthesized by a co-precipitation method. The characterization techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) were carried out to determine the crystalline and structural properties. The Rietveld structural refinement of the XRD patterns confirmed the purity of the phase formation of the synthesized nanoparticles. The photoluminescence emission spectra exhibited intense emissions in the blue region at 450 nm and 476 nm along with less intense yellow emission at 573 nm which can be attributed to the magnetic dipole and electric dipole transitions of dysprosium respectively. In order to evaluate the colour tunability of the emitted light CIE chromaticity coordinate values were calculated. The intense blue emissions from the synthesized sample were found to be favourable for bioimaging. The images obtained from the fluorescence microscopy revealed that the dysprosium-doped hydroxyapatite nanoparticles are potential bioimaging probes in human cells.  相似文献   

9.
Although noble metal nanoparticles (NPs) have attracted some attention for potentially enhancing the luminescence of rare earth ions for phosphor lighting applications, the absorption of energy by NPs can also be beneficial in biological and polymer applications where local heating is desired, e.g. photothermal applications. Strong interaction between incident laser light and NPs occurs only when the laser wavelength matches the NP plasmon resonance. Although lasers with different wavelengths are available and the NP plasmon resonance can be tuned by changing its size and shape or the dielectric medium (host material), in this work, we consider exciting the plasmon resonance of Ag NPs indirectly with a He–Cd UV laser using the down‐conversion properties of Tb3+ ions in ZnO. The formation of Ag NPs was confirmed by X‐ray diffraction, transmission electron microscopy and UV–vis diffuse reflectance measurements. Radiative energy transfer from the Tb3+ ions to the Ag NPs resulted in quenching of the green luminescence of ZnO:Tb and was studied by means of spectral overlap and lifetime measurements. The use of a down‐converting phosphor, possibly with other rare earth ions, to indirectly couple a laser to the plasmon resonance wavelength of metal NPs is therefore successfully demonstrated and adds to the flexibility of such systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Cyclosporine A (CSA)-dipalmitoylphosphatidylcholine (DPPC) interactions were investigated using scanning calorimetry, infrared spectroscopy, and Raman spectroscopy. CSA reduced both the temperature and the maximum heat capacity of the lipid bilayer gel-to-liquid crystalline phase transition; the relationship between the shift in transition temperature and CSA concentration indicates that the peptide does not partition ideally between DPPC gel and liquid crystalline phases. This nonideality can be accounted for by excluded volume interactions between peptide molecules. CSA exhibited a similar but much more pronounced effect on the pretransition; at concentrations of 1 mol % CSA the amplitude of the pretransition was less than 20% of its value in the pure lipid. Raman spectroscopy confirmed that the effects of CSA on the phase transitions are not accompanied by major structural alterations in either the lipid headgroup or acyl chain regions at temperatures away from the phase changes. Both infrared and Raman spectroscopic results demonstrated that CSA in the lipid bilayer exists largely in a beta-turn conformation, as expected from single crystal x-ray data; the lipid phase transition does not induce structural alterations in CSA. Although the polypeptide significantly affects DPPC model membrane bilayers, CSA neither inhibited hypotonic hemolysis nor caused erythrocyte hemolysis, in contrast to many chemical agents that are believed to act through membrane-mediated pathways. Thus, agents, such as CSA, that perturb phospholipid phase transitions do not necessarily cause functional changes in cell membranes.  相似文献   

11.
Halide perovskites have emerged as materials for high‐performance optoelectronic devices. Often, progress made to date in terms of higher efficiency and stability is based on increasing material complexity, i.e., formation of multicomponent halide perovskites with multiple cations and anions. In this review article, the use of in situ optical methods, namely, photoluminescence (PL) and UV‐vis, that provide access to the relevant time and length scales to ascertain chemistry–property relationships by monitoring evolving properties is discussed. Additionally, because halide perovskites are electron/ion conductors and prone to solid‐state ion transport under various external stimuli, application of these optical methods in the context of ionic movement is described to reveal mechanistic insights. Finally, examples of using in situ PL and UV‐vis to study degradation and phase transitions are reviewed to demonstrate the wealth of information that can be obtained regarding many different aspects of ongoing research activities in the field of halide perovskites.  相似文献   

12.
Zhi‐Jie Tan 《Biopolymers》2013,99(6):370-381
Nucleic acids are negatively charged macromolecules and their structure properties are strongly coupled to metal ions in solutions. In this article, the salt effects on the flexibility of single‐stranded (ss) nucleic acid chain ranging from 12 to 120 nucleotides are investigated systematically by the coarse‐grained Monte Carlo simulations where the salt ions are considered explicitly and the ss chain is modeled with the virtual‐bond structural model. Our calculations show that, the increase of ion concentration causes the structural collapse of ss chain and multivalent ions are much more efficient in causing such collapse, and both trivalent/small divalent ions can induce more compact state than a random relaxation state. We found that monovalent, divalent, and trivalent ions can all overcharge ss chain, and the dominating source for such overcharging changes from ion‐exclusion‐volume effect to ion Coulomb correlations. In addition, the predicted Na+ and Mg2+‐dependent persistence length lp’s of ss nucleic acid are in accordance with the available experimental data, and through systematic calculations, we obtained the empirical formulas for lp as a function of [Na+], [Mg2+] and chain length. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 370–381, 2013.  相似文献   

13.
Sodium‐ion batteries are intensively investigated for large‐scale energy storage due to the favorable sodium availability. However, the anode materials have encountered numerous problems, such as insufficient cycling performance, dissatisfactory capacity, and low safety. Here, a novel post‐spinel anode material, i.e., single‐crystalline NaVSnO4, is presented with the confined 1D channels and the shortest diffusion path. This material delivers an ultra long cycling life (84% capacity retention after 10 000 cycles), a high discharging capacity (163 mA h g?1), and a safe average potential of 0.84 V. Results indicate that the post‐spinel structure is well maintained over 10 000 cycles, surprisingly, with 0.9% volume change, the Sn4+/Sn2+ based redox enables two sodium ions for reversible release and uptake, and the diffusion coefficient of sodium ions is characterized by 1.26 × 10?11 cm2 s?1. The findings of this study provide a new insight into design of new frameworks with polyelectronic transfers for full performance electrode materials of sodium‐ion batteries.  相似文献   

14.
This work reports Eu(III) and Tb(III) luminescence titrations in which the lanthanide ions were used as spectroscopic probes for Ca(II) ions to determine the metal binding ability of Ac-NESVKEEGGW-NH(2) and Ac-NESVKEDGGW-NH(2). These decapeptides correspond to the putative calcium binding region of the plant antifungal proteins SI-alpha1 from Sorghum bicolor and of Zeathionin from Zea mays, respectively. The luminescence spectra for the Eu(III)-decapeptide system (red emission) with the excitation at the Trp band at 280 nm showed an enhancement of the intensities of the 5D(0)-->7F(J) transitions (where J=0-4) with increments of Eu(III) ion concentration. The photoluminescence titration data of the terbium ion (green emission) in the decapeptide solutions showed intensification of the 5D(4)-->7F(J) transitions (J=0-6), similar to that observed for the Eu(III) ion. Thus, energy transfer from Ac-NESVKEEGGW-NH(2) and Ac-NESVKEDGGW-NH(2) to the trivalent lanthanide ions revealed that these peptides are capable of binding to these metal ions with association constants of the order of 10(5) M(-1). The amino acid derivative Ac-Trp-OEt also transferred energy to Tb(III) and Eu(III) ions as judged from the quenching of tryptophan luminescence. However, the energy transfers were significantly lower. Taken together the luminescence titration data indicated that Ac-NESVKEEGGW-NH(2) and Ac-NESVKEDGGW-NH(2) bind efficiently to both trivalent lanthanide ions and that these ions may be used as probes to distinguish an anionic peptide from a neutral amino acid derivative.  相似文献   

15.
Transition metal (TM) substitution has been widely applied to change complex oxides crystal structures to create high energy density electrodes materials in high performance rechargeable lithium‐ion batteries. The complex local structure in the oxides imparted by the TM arrangement often impacts their electrochemical behaviors by influencing the diffusion and intercalation of lithium. Here, a major discrepancy is demonstrated between the global and local structures of the promising high energy density and high voltage LiNi0.5Mn1.5O4 spinel cathode material that contradicts the existing structural models. A new single‐phase lattice‐cell orientation disorder model is proposed as the mechanism for the local ordering that explains how the inhomogeneous local distortions and the coherent connection give rise to the global structure in the complex oxide. Further, the single‐phase model is consistent with the electrochemical behavior observation of the materials.  相似文献   

16.
Trivalent europium (Eu3+) and terbium (Tb3+) ions are important activator centers used in different host lattices to produce red and green emitting materials. The current work shows the design of new clay minerals to act as host lattices for rare earth (RE) ions. Based on the hectorite structure, nano‐chlorohectorites and nano‐fluorohectorites were developed by replacing the OH? present in the hectorite structure with Cl? or F?, thus avoiding the luminescence quenching expected due to the OH? groups. The produced matrices were characterized through X‐ray powder diffraction (XPD), transmission electron microscopy (TEM), FT‐IR, 29Si MAS (magic angle spinning) NMR, nitrogen sorption, thermogravimetry‐differential scanning calorimetry (TGA‐DSC) and luminescence measurements, indicating all good features expected from a host lattice for RE ions. The nano‐clay materials were successfully doped with Eu3+ and/or Tb3+ to yield materials preserving the hectorite crystal structure and showing the related luminescence emissions. Thus, the present work shows that efficient RE3+ luminescence can be obtained from clays without the use of organic ‘antenna’ molecules.  相似文献   

17.
Whole-cell functional assays are often used for high-throughput screening (HTS) of molecular targets such as ion channels and G-protein-coupled receptors. A common method for assaying the activity of these membrane proteins is to measure the change in intracellular calcium concentration upon receptor stimulation. These changes in calcium concentration are typically transient and therefore not readily adapted to high-density plate formats used in HTS instruments. We have demonstrated that an intracellular calcium chelator, BAPTA, was able to delay by 5- to 20-fold and extend for several minutes the observed calcium signals initiated by extracellular calcium influx or release of calcium from intracellular stores. As examples, we used cells expressing a calcium-permeable ion channel, vanilloid receptor type 1 (the capsaicin receptor), and two G-protein-coupled receptors. These receptor-mediated increases in intracellular calcium concentration were measured by both fluorescence-based and luminescence-based detection methods. The use of an intracellular calcium chelator to delay calcium signaling should have wide application since it allows the measurement of the functional activity of any cellular receptor that signals through calcium. With this procedure, calcium fluorescence and luminescence whole-cell functional assays may be performed with standard laboratory pipetting and detection systems.  相似文献   

18.
Anatomy and cytochemistry of inclusion bodies induced by Soil‐borne wheat mosaic virus infection were studied in roots and leaves to learn more about the nature of inclusions and their roles in pathogenesis. Acid Fuchsin, Giemsa stain, Toluidine Blue and Trypan Blue stains facilitated visualization of inclusion bodies. Combined, simultaneous staining with Acid Fuchsin and Toluidine Blue clearly differentiated inclusion bodies from host nuclei. The overall anatomy, composition and structure of virus inclusions in leaves and roots were generally similar, as shown by phase contrast, differential interference contrast, epifluorescence, laser scanning confocal and transmission electron microscopy. Both were often closely associated with host nuclei; both were comprised of intertwined masses of tubular material, presumably endoplasmic reticulum, and in which varied numbers and sizes of vacuolar cavities occurred. Leaf inclusions, however, were typically larger and more vacuolate than those in roots. Lipids were found to be significant constituents of both the tubular and vacuolar components of inclusions, indicated by positive staining with Nile Red and Sudan Black. Inclusion bodies in both leaves and roots lost their structural and compositional integrity, eventually becoming disorganized and devoid of clearly identifiable components as host tissue aged and symptom expression advanced. Significant results of this study include the first published examination of virus inclusion bodies in root tissue, the degree of structural detail of inclusion body anatomy revealed by laser scanning confocal microscopy and the presence of an extensive lipid component in virus inclusion bodies.  相似文献   

19.
X‐Ray excited luminescence (radioluminescence, RL) spectra from nominally pure crystalline zinc oxide (ZnO) are reported. The temperature range is from 20 to 673 K. Significant changes of emission band energies and intensities are observed across the temperature range. Photon energies of emission bands linked to the band gap decrease with increasing temperature in RL. This dependence fits the theoretical equations describing the temperature response of the ZnO band gap. Defect related luminescence includes a complex mixture of features at low temperature for RL. Thermoluminescence (TL) signals from 20 to 300 K confirm the presence of an unresolved feature in the RL data. Comments on the possible origin of these bands are summarized. The data underline that it is essential to record the temperature dependence for the luminescence data in order to separate overlapping spectral features.  相似文献   

20.
Understanding the process by which RNA molecules fold into stable structures includes study of the role of site-bound metal ions. Because the alkaline earth metal ions typically associated with RNA structure [most often Mg(II)] do not provide convenient spectroscopic signals, replacement with metal ions having spectroscopically useful properties has been a valuable approach. The luminescence properties of the lanthanide(III) series, in particular europium(III), have made them useful in the study of complexation with biomolecules. We review the physical, chemical, and spectroscopic characteristics of Eu(III) that contribute to its value as a probe of RNA-metal ion interactions, and examples of information obtained from studies of Eu(III) bound to small RNA stem loops. Although Eu(III) has similar site preference to Mg(II), luminescence and isothermal titration calorimetry measurements indicate that Ln(III) loses water molecules from the inner hydration sphere more readily than does Mg(II), resulting in more direct coordination between RNA and the metal ion and very different energetics of binding. In some cases, e.g., a GAAA tetraloop, binding appears to occur by a lock and key process; in the same base sequence containing certain deoxynucleoside substitutions that alter loop structure, binding appears to occur by an induced fit process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号