首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 548 毫秒
1.
Vibrissae are specialized sensory “hairs” that respond to mechanical stimuli. Sensory information from vibrissae is transmitted to the brain via the infraorbital nerve, which passes through the infraorbital foramen (IOF). Several analyses have documented that primates have smaller IOFs than non-primate mammals, and that haplorhines have smaller IOFs than strepsirrhines. These grade shifts in IOF area were attributed to differences in “vibrissa development.” Following earlier analyses, IOF area has been used to derive a general estimate of “whiskeredness” in extinct primates, and consequently, IOF area has been used in phylogenetic and paleoecological interpretations. Yet, the relationship between IOF area and vibrissa count has not been tested, and little is known about how IOF area and vibrissa counts vary among mammals. This study explores how relative IOF area and vibrissa count differ among 25 mammalian orders, and tests for a correlation between IOF area and vibrissa count. Results indicate that primates and dermopterans (Primatomorpha) have smaller IOFs than most non-primate mammals, but they do not have fewer vibrissae. In addition, strepsirrhines and haplorhines do not differ from one another in relative IOF area or vibrissa counts. Despite different patterns documented for IOF area and vibrissa count variation across mammals, results from this study do confirm that vibrissa count and IOF area are significantly and positively correlated (p < 0.0001). However, there is considerable scatter in the data, suggesting that vibrissa counts cannot be predicted from IOF area. There are three implications of these finding. First, IOF area reflects all mechanoreceptors in the maxillary region, not just vibrissae. Second, IOF area may be an informative feature in interpretations of the fossil record. Third, paleoecological interpretations based on vibrissae are not recommended.  相似文献   

2.
Positive feedback in a brainstem tactile sensorimotor loop   总被引:8,自引:0,他引:8  
Nguyen QT  Kleinfeld D 《Neuron》2005,45(3):447-457
The trigeminal loop in the brainstem comprises the innermost level of sensorimotor feedback in the rat vibrissa system. Anatomy suggests that this loop relays tactile information from the vibrissae to the motoneurons that control vibrissa movement. We demonstrate, using in vitro and in vivo recordings, that the trigeminal loop consists of excitatory pathways from vibrissa sensory inputs to vibrissa motoneurons in the facial nucleus. We further show that the trigeminal loop implements a rapidly depressing reflex that provides positive sensory feedback to the vibrissa musculature during simulated whisking and contact. On the basis of these findings, we propose that the trigeminal loop provides an enhancement of vibrissa muscle tone upon contact during active touch.  相似文献   

3.
4.
The cross-sectional properties of mammalian limb bones provide an important source of information about their loading history and locomotor adaptations. It has been suggested, for instance, that the cross-sectional strength of primate limb bones differs from that of other mammals as a consequence of living in a complex arboreal environment (Kimura, 1991, 1995). In order to test this hypothesis more rigorously, we have investigated cross-sectional properties in samples of humeri and femora of 71 primate species, 30 carnivorans and 59 rodents. Primates differ from carnivorans and rodents in having limb bones with greater cross-sectional strength than mammals of similar mass. This might imply that primates have stronger bones than carnivorans and rodents. However, primates also have longer proximal limb bones than other mammals. When cross-sectional dimensions are regressed against bone length, primates appear to have more gracile bones than other mammals. These two seemingly contradictory findings can be reconciled by recognizing that most limb bones experience bending as a predominant loading regime. After regressing cross-sectional strength against the product of body mass and bone length, a product which should be proportional to the bending moments applied to the limb, primates are found to overlap considerably with carnivorans and rodents. Consequently, primate humeri and femora are similar to those of nonprimates in their resistance to bending. Comparisons between arboreal and terrestrial species within the orders show that the bones of arboreal carnivorans have greater cross-sectional properties than those of terrestrial carnivorans, thus supporting Kimura's general notion. However, no differences were found between arboreal and terrestrial rodents. Among primates, the only significant difference was in humeral bending rigidity, which is higher in the terrestrial species. In summary, arboreal and terrestrial species do not show consistent differences in long bone reinforcement, and Kimura's conclusions must be modified to take into account the interaction of bone length and cross-sectional geometry.  相似文献   

5.
Arboreal primates have distinctive intrinsic hand proportions compared with many other mammals. Within Euarchonta, platyrrhines and strepsirrhines have longer manual proximal phalanges relative to metacarpal length than colugos and terrestrial tree shrews. This trait is part of a complex of features allowing primates to grasp small-diameter arboreal substrates. In addition to many living and Eocene primates, relative elongation of proximal manual phalanges is also present in most plesiadapiforms. In order to evaluate the functional and evolutionary implications of manual similarities between crown primates and plesiadapiforms, we measured the lengths of the metacarpal, proximal phalanx, and intermediate phalanx of manual ray III for 132 extant mammal species (n=702 individuals). These data were compared with measurements of hands in six plesiadapiform species using ternary diagrams and phalangeal indices. Our analyses reveal that many arboreal mammals (including some tree shrews, rodents, marsupials, and carnivorans) have manual ray III proportions similar to those of various arboreal primates. By contrast, terrestrial tree shrews have hand proportions most similar to those of other terrestrial mammals, and colugos are highly derived in having relatively long intermediate phalanges. Phalangeal indices of arboreal species are significantly greater than those of the terrestrial species in our sample, reflecting the utility of having relatively long digits in an arboreal context. Although mammals known to be capable of prehensile grips demonstrate long digits relative to palm length, this feature is not uniquely associated with manual prehension and should be interpreted with caution in fossil taxa. Among plesiadapiforms, Carpolestes, Nannodectes, Ignacius, and Dryomomys have manual ray III proportions that are unlike those of most terrestrial species and most similar to those of various arboreal species of primates, tree shrews, and rodents. Within Euarchonta, Ignacius and Carpolestes have intrinsic hand proportions most comparable to those of living arboreal primates, while Nannodectes is very similar to the arboreal tree shrew Tupaia minor. These results provide additional evidence that plesiadapiforms were arboreal and support the hypothesis that Euarchonta originated in an arboreal milieu.  相似文献   

6.
Previous studies show that humans have a large genomic deletion downstream of the Androgen Receptor gene that eliminates an ancestral mammalian regulatory enhancer that drives expression in developing penile spines and sensory vibrissae. Here we use a combination of large-scale sequence analysis and PCR amplification to demonstrate that the penile spine/vibrissa enhancer is missing in all humans surveyed and in the Neandertal and Denisovan genomes, but is present in DNA samples of chimpanzees and bonobos, as well as in multiple other great apes and primates that maintain some form of penile integumentary appendage and facial vibrissae. These results further strengthen the association between the presence of the penile spine/vibrissa enhancer and the presence of penile spines and macro- or micro- vibrissae in non-human primates as well as show that loss of the enhancer is both a distinctive and characteristic feature of the human lineage.  相似文献   

7.
Interpretation of the adaptive profile of ancestral primates is controversial and has been constrained for decades by general acceptance of the premise that the first primates were very small. Here we show that neither the fossil record nor modern species provide evidence that the last common ancestor of living primates was small. Instead, comparative weight distributions of arboreal mammals and a phylogenetic reconstruction of ancestral primate body mass indicate that the reduction of functional claws to nails -- a primate characteristic that had up until now eluded satisfactory explanation - resulted from an increase in body mass to around 1000 g or more in the primate stem lineage. The associated shift to a largely vegetarian diet coincided with increased angiosperm diversity and the evolution of larger fruit size during the Late Cretaceous.  相似文献   

8.
Hypotheses for the adaptive origin of primates have reconstructed nocturnality as the primitive activity pattern for the entire order based on functional/adaptive interpretations of the relative size and orientation of the orbits, body size and dietary reconstruction. Based on comparative data from extant taxa this reconstruction implies that basal primates were also solitary, faunivorous, and arboreal. Recently, primates have been hypothesized to be primitively diurnal, based in part on the distribution of color-sensitive photoreceptor opsin genes and active trichromatic color vision in several extant strepsirrhines, as well as anthropoid primates (Tan & Li, 1999 Nature402, 36; Li, 2000 Am. J. phys. Anthrop. Supple.30, 318). If diurnality is primitive for all primates then the functional and adaptive significance of aspects of strepsirrhine retinal morphology and other adaptations of the primate visual system such as high acuity stereopsis, have been misinterpreted for decades. This hypothesis also implies that nocturnality evolved numerous times in primates. However, the hypothesis that primates are primitively diurnal has not been analyzed in a phylogenetic context, nor have the activity patterns of several fossil primates been considered.This study investigated the evolution of activity patterns and trichromacy in primates using a new method for reconstructing activity patterns in fragmentary fossils and by reconstructing visual system character evolution at key ancestral nodes of primate higher taxa. Results support previous studies that reconstruct omomyiform primates as nocturnal. The larger body sizes of adapiform primates confound inferences regarding activity pattern evolution in this group. The hypothesis of diurnality and trichromacy as primitive for primates is not supported by the phylogenetic data. On the contrary, nocturnality and dichromatic vision are not only primitive for all primates, but also for extant strepsirrhines. Diurnality, and possibly X-linked polymorphic trichromacy, evolved at least in the stem lineage of Anthropoidea, or the stem lineage of all haplorhines.  相似文献   

9.
Despite the importance that concepts of arboreal stability have in theories of primate locomotor evolution, we currently lack measures of balance performance during primate locomotion. We provide the first quantitative data on locomotor stability in an arboreal primate, the common marmoset (Callithrix jacchus), predicting that primates should maximize arboreal stability by minimizing side-to-side angular momentum about the support (i.e., Lsup). If net Lsup becomes excessive, the animal will be unable to arrest its angular movement and will fall. Using a novel, highly integrative experimental procedure we directly measured whole-body Lsup in two adult marmosets moving along narrow (2.5 cm diameter) and broad (5 cm diameter) poles. Marmosets showed a strong preference for asymmetrical gaits (e.g., gallops and bounds) over symmetrical gaits (e.g., walks and runs), with asymmetrical gaits representing >90% of all strides. Movement on the narrow support was associated with an increase in more “grounded” gaits (i.e., lacking an aerial phase) and a more even distribution of torque production between the fore- and hind limbs. These adjustments in gait dynamics significantly reduced net Lsup on the narrow support relative to the broad support. Despite their lack of a well-developed grasping apparatus, marmosets proved adept at producing muscular “grasping” torques about the support, particularly with the hind limbs. We contend that asymmetrical gaits permit small-bodied arboreal mammals, including primates, to expand “effective grasp” by gripping the substrate between left and right limbs of a girdle. This model of arboreal stability may hold important implications for understanding primate locomotor evolution. Am J Phys Anthropol 156:565–576, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The foot, perhaps more than any other region of the primate body, reflects the interaction of positional behaviors with the geometric properties of available supports. The ability to reverse the hind foot during hindlimb suspension while hanging from a horizontal support or descending a large diameter vertical trunk has been noted in many arboreal mammals, including primates. Observations of Varecia variegata in the wild and under seminatural conditions document hindlimb suspension in this lemurid primate. The kinematics and skeletal correlates of this behavior are examined. Analogy is made with the form and function exhibited by nonprimate mammalian taxa employing this behavior. Examples of carnivores and rodents display very similar adaptations of the tarsals while other mammals, such as the xenarthrans, accomplish a similar end by means of different morphologies. However, a suite of features is identified that is shared by mammals capable of hind foot reversal. Hindlimb suspension effectively increases the potential feeding space available to a foraging mammal and represents a significant, and often unrecognized, alternative adaptive strategy to forelimb suspension and prehensile-tail suspension in primates. Am J Phys Anthropol 103:85–102, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Primates use a range of locomotor modes during which they incorporate various foot postures. Humans are unique compared with other primates in that humans lack a mobile fore‐ and midfoot. Rigidity in the human foot is often attributed to increased propulsive and stability requirements during bipedalism. Conversely, fore‐ and midfoot mobility in nonhuman primates facilitates locomotion in arboreal settings. Here, we evaluated apparent density (AD) in the subchondral bone of human, ape, and monkey calcanei exhibiting different types of foot loading. We used computed tomography osteoabsorptiometry and maximum intensity projection (MIP) maps to visualize AD in subchondral bone at the cuboid articular surface of calcanei. MIPs represent 3D volumes (of subchondral bone) condensed into 2D images by extracting AD maxima from columns of voxels comprising the volumes. False‐color maps are assigned to MIPs by binning pixels in the 2D images according to brightness values. We compared quantities and distributions of AD pixels in the highest bin to test predictions relating AD patterns to habitual locomotor modes and foot posture categories of humans and several nonhuman primates. Nonhuman primates exhibit dorsally positioned high AD concentrations, where maximum compressive loading between the calcaneus and cuboid likely occurs during “midtarsal break” of support. Humans exhibit less widespread areas of high AD, which could reflect reduced fore‐ and midfoot mobility. Analysis of the internal morphology of the tarsus, such as subchondral bone AD, potentially offers new insights for evaluating primate foot function during locomotion. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The ability to operate during the day and at night (i.e., cathemerality) is common among mammals but has rarely been identified in primates. Adaptive hypotheses assume that cathemerality represents a stable adaptation in primates, while nonadaptive hypotheses propose that it is the result of an evolutionary disequilibrium arising from human impacts on natural habitats. Madagascar offers a unique opportunity to study the evolution of activity patterns as there we find a monophyletic primate radiation that shows nocturnal, diurnal, and cathemeral patterns. However, when and why cathemeral activity evolved in lemurs is the subject of intense debate. Thus far, this activity pattern has been regularly observed in only three lemurid genera but the actual number of lemur species exhibiting this activity is as yet unknown. Here we show that the ring‐tailed lemur, Lemur catta, a species previously considered to be diurnal, can in fact be cathemeral in the wild. In neighboring but distinct forest areas these lemurs exhibited either mainly diurnal or cathemeral activity. We found that, as in other cathemeral lemurs, activity was entrained by photoperiod and masked by nocturnal luminosity. Our results confirm the relationship between transitional eye anatomy and physiology and 24‐h activity, thus supporting the adaptive scenario. Also, on the basis of the most recent strepsirrhine phylogenetic reconstruction, using parsimony criterion, our findings suggest pushing back the emergence of cathemerality to stem lemurids. Flexible activity over 24‐h could thus have been one of the key adaptations of the early lemurid radiation possibly driven by Madagascar's island ecology. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Data on captive longevity in 587 mammalian species were analyzed in order to evaluate primate longevity in the context of general mammalian life history patterns. Contrary to some recurrent claims in the literature, we found that 1) primates are not the longest-lived mammalian order, either by absolute longevity, longevity corrected for body size, or metabolic expenditure per lifetime; 2) although relative brain size is highly correlated with longevity in primates, this is an aberrant trend for mammals in general, and other body organs account for an even greater amount of variation in longevity; and 3) there has been no progressive evolution of increased longevity among the primate superfamilies. The exceptional magnitude of primate longevity may, in keeping with evolutionary senescence theory, be due to an evolutionary history of low vulnerability to environmentally imposed death due to their body size, arboreal habit, and propensity to live in social groups. © 1992 Wiley-Liss, Inc.  相似文献   

14.
Strepsirrhine and haplorhine primates exhibit highly derived features of the visual system that distinguish them from most other mammals. Comparative data link the evolution of these visual specializations to the sequential acquisition of nocturnal visual predation in the primate stem lineage and diurnal visual predation in the anthropoid stem lineage. However, it is unclear to what extent these shifts in primate visual ecology were accompanied by changes in eye size and shape. Here we investigate the evolution of primate eye morphology using a comparative study of a large sample of mammalian eyes. Our analysis shows that primates differ from other mammals in having large eyes relative to body size and that anthropoids exhibit unusually small corneas relative to eye size and body size. The large eyes of basal primates probably evolved to improve visual acuity while maintaining high sensitivity in a nocturnal context. The reduced corneal sizes of anthropoids reflect reductions in the size of the dioptric apparatus as a means of increasing posterior nodal distance to improve visual acuity. These data support the conclusion that the origin of anthropoids was associated with a change in eye shape to improve visual acuity in the context of a diurnal predatory habitus.  相似文献   

15.
Andermann ML  Ritt J  Neimark MA  Moore CI 《Neuron》2004,42(3):451-463
The array of vibrissae on a rat's face is the first stage of a high-resolution tactile sensing system. Recently, it was discovered that vibrissae (whiskers) resonate when stimulated at specific frequencies, generating several-fold increases in motion amplitude. We investigated the neural correlates of vibrissa resonance in trigeminal ganglion and primary somatosensory cortex (SI) neurons (regular and fast spiking units) by presenting low-amplitude, high-frequency vibrissa stimulation. We found that somatosensory neurons showed band-pass tuning and enhanced sensitivity to small amplitude stimuli, reflecting the resonance amplification of vibrissa motion. Further, a putative somatotopic map of frequency selectivity was observed in SI, with isofrequency columns extending along the representations of arcs of vibrissae, in agreement with the gradient in vibrissa resonance across the vibrissa pad. These findings suggest several parallels between frequency processing in the vibrissa system and the auditory system and have important implications for detection and discrimination of tactile information.  相似文献   

16.
Studies of skeletal pathology indicate that injury from falling accounts for most long bone trauma in free‐ranging primates, suggesting that primates should be under strong selection to manifest morphological and behavioral mechanisms that increase stability on arboreal substrates. Although previous studies have identified several kinematic and kinetic features of primate symmetrical gaits that serve to increase arboreal stability, very little work has focused on the dynamics of primate asymmetrical gaits. Nevertheless, asymmetrical gaits typify the rapid locomotion of most primates, particularly in smaller bodied taxa. This study investigated asymmetrical gait dynamics in growing marmosets and squirrel monkeys moving on terrestrial and simulated arboreal supports (i.e., an elevated pole). Results showed that monkeys used several kinematic and kinetic adjustments to increase stability on the pole, including reducing peak vertical forces, limiting center of mass movements, increasing substrate contact durations, and using shorter and more frequent strides (thus limiting disruptive whole‐body aerial phases). Marmosets generally showed greater adjustment to pole locomotion than did squirrel monkeys, perhaps as a result of their reduced grasping abilities and retreat from the fine‐branch niche. Ontogenetic increases in body size had relatively little independent influence on asymmetrical gait dynamics during pole locomotion, despite biomechanical theory suggesting that arboreal instability is exacerbated as body size increases relative to substrate diameter. Overall, this study shows that 1) symmetrical gaits are not the only stable way to travel arboreally and 2) small‐bodied primates utilize specific kinematic and kinetic adjustments to increase stability when using asymmetrical gaits on arboreal substrates. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
The colugos, or flying lemurs (Dermoptera), are arboreal gliding mammals that are commonly grouped with tree‐shrews (Scandentia) and Primates in the superorder Euarchonta. However, little is known about the head and neck muscles of these gliding mammals. This raises difficulties for the discussion of not only the functional morphology and evolution of colugos, but also the origin, evolution, functional morphology, and phylogenetic relationships of the Euarchonta as a whole, and thus also of our own clade, the Primates. In this work, I describe the head and neck muscles of the colugo Cynocephalus volans, and compare these muscles with those of other mammals, either dissected by me or described in the literature. My observations and comparisons indicate that, with respect to the number of muscles, the plesiomorphic condition for euarchontans as well as for primates is more similar to that found in extant tree‐shrews than in extant colugos. This is because various muscles that were probably plesiomorphically present in the euarchontan and primate clades, as, e.g., the stylohyoideus, mandibulo‐auricularis, cleido‐occipitalis, omohyoideus, and sternohyoideus, are not present as independent elements in extant colugos. These observations and comparisons also indicate that various laryngeal and facial muscles that are present in modern humans were absent in the last common ancestor of extant primates. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Hominization via predation has become a pervasive anthropological theme in recent years. Indeed, the assumption that hunting behavior originated within the primate phylogenetic sequence as a “human” subsistence pattern has generated numerous subsidiary hypotheses about how secondary traits were initiated, propagated or enhanced when a terrestrial, savanna-dwelling, meat-eating hominid line emerged from an arboreal, forest-dwelling, plant-eating ancestral stock. New field evidence on the behavioral and organizational features of subsistence in nonhuman and human primates now provides the basis for reconsidering these views.Many monkey, ape and human populations no longer seem to fit the stereotyped images sketched in past decades, when little or no comparative information was available to anthropologists. The discrepancy between the old concepts and new facts is particularly evident in Sub-Saharan Africa, where numerous primate taxa have been studied in climatically and biotically similar zones. In this region alone, more than 364 cases of predation, involving 22 different species of mammalian prey, have been recorded among at least 10 supposedly “vegetarian” baboon and chimpanzee populations dispersed between Ethiopia and South Africa. Furthermore, many of the human populations living within this same region—such as the Mbuti pygmies, the Hadza and the Kalahari bushmen—have been characterized as “hunters” but actually subsist for the most part on foods other than meat. These basic facts about collector-predator and Gatherer-hunter subsistence patterns are a mere beginning, however, for popular conceptions of primate lifestyles are eroding swiftly along many axes of investigation. It is becoming clear, for instance, that many primates—from prosimians to humans—are actually omnivores even though anthropologists have persistently miscast them as frugivores or carnivores. This false dichotomization of nonhuman versus human diets has led to a series of equally erroneous dichotomies in nonhuman versus human behavior. Thus, the possession of culture, technology, language and other similarly amorphous traits, many of which were in fact derived from this presumed shift in subsistence, have become entrenched as concepts of human uniqueness. In recent years, however, many new discoveries in primatology, and in ethnography and archeology, have weakened the theoretical structure to which “man-the-hunter” has been pinned. It is probable that savanna-dwelling, tool-using, seed-eating, scavenging and other independent schemes can now be replaced by a single, much simpler model wherein subsistence shifts among both nonhuman and human primates are perceived as smooth transitions within a graded continuum of evolution. Thus, the central objective of this report is to show that the subsistence activities of several extant cercopithecid, pongid and hominid populations in Africa can be arranged along an integrated spectrum which reflects gradual processes in the evolution of primate behavior and organization. This spectrum serves as the crux for a unifying model of behavioral evolution, and can in turn be broken down into a linked series of subsidiary models which elucidate specific aspects of primate prehistory.  相似文献   

19.
Arboreal tropical forest vertebrates: current knowledge and research trends   总被引:1,自引:0,他引:1  
Kays  Roland  Allison  Allen 《Plant Ecology》2001,153(1-2):109-120
We review the ecology and specialized methods required for studying arboreal mammals, birds, reptiles and amphibians, and use faunal checklists from 12 tropical wet forest sites and an analysis of all articles published during the past ten years in 14 major journals to assess current knowledge and general research trends for these groups. The percentage of arboreal vertebrates was remarkably similar at the different sites (76.2 ± 3.9%). Birds were the most arboreal group and amphibians and reptiles the least. The review of journals showed that primates were overwhelmingly the most studied group (336 papers), followed by bats (105), passeriform birds (73) and rodents (55). Judging by their portion of the arboreal vertebrate community and the number of papers surveyed, birds and amphibians and reptiles are vastly understudied compared to mammals, but this is largely due to the great number of primate studies. The number of publications on arboreal vertebrates has remained relatively stable over the last 10 years for all taxa except primates, which have seen a growth in publications. Canopy vertebrates from Brazil had by far the most publications (120), followed by Madagascar (61), Costa Rica (55) and Indonesia (42). We conclude by highlighting the priorities we see for future studies on tropical canopy vertebrates.  相似文献   

20.
In living primates, except the great apes and humans, the foot is placed in a heel-elevated or semi-plantigrade position when these animals move upon arboreal or terrestrial substrates. Heel placement and bone positions in the non-great ape primate foot are designed to increase mobility and flexibility in the arboreal environment. Orangutans have further enhanced foot mobility by adapting their feet for suspension and thus similarly utilize foot positions where the heel does not touch the substrate. Chimpanzees and gorillas represent an alternative pattern (plantigrady), in which the heel contacts the surface of the support at the end of swing phase, especially during terrestrial locomotion. Thus, chimpanzees and gorillas possess feet adapted for both arboreal and terrestrial substrates. African apes also share several osteological features related to plantigrady and terrestrial locomotion with early hominids. From this analysis, it is apparent that hominid locomotor evolution passed through a quadrupedal terrestrial phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号