首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.  相似文献   

2.
A therapeutic antibody candidate (AT-19) isolated using multivalent phage display binds native tomoregulin (TR) as a mul-timer not as a monomer. This report raises the importance of screening and selecting phage antibodies on native antigen and reemphasizes the possibility that potentially valuable antibodies are discarded when a monomeric phage display system is used for screening. A detailed live cell panning selection and screening method to isolate multivalently active antibodies is described. AT-19 is a fully human antibody recognizing the cell surface protein TR, a proposed prostate cancer target for therapeutic antibody internalization. AT-19 was isolated from a multivalent single-chain variable fragment (scFv) antibody library rescued with hyperphage. The required multivalency for isolation of AT-19 is supported by fluorescence activated cell sorting data demonstrating binding of the multivalent AT-19 phage particles at high phage concentrations and failure of monovalent particles to bind. Pure monomeric scFv AT-19 does not bind native receptor on cells, whereas dimeric scFv or immunoglobulin G binds with nanomolar affinity. The isolation of AT-19 antibody with obligate bivalent binding activity to native TR is attributed to the use of a multivalent display of scFv on phage and the method for selecting and screening by alternate use of 2 recombinant cell lines.  相似文献   

3.
Lymphocytes from eight individuals out of 60 healthy donors, whose plasmas showed relatively higher antibody titer for a target antigen of death receptor 5 (DR5), were selected for the source of antibody genes to construct so called an anti-DR5 pseudo-immune human single-chain fragment variable (scFv) library on the yeast cell surface (approximately 2x10(6) diversity). Compared with a large nonimmune human scFv library (approximately 1x10(9) diversity), the repertoire of the pseudo-immune scFv library was significantly biased toward the target antigen, which facilitated rapid enrichments of the target-specific high affinity scFvs during selections by fluorescence activated cell sortings. Isolated scFvs, HW5 and HW6, from the pseudo-immune library showed much higher specificity and affinity for the targeted antigen than those from the nonimmune library. Our results suggest that a pseudo-immune antibody library is very efficient to isolate target-specific high affinity antibody from a relatively small sized library.  相似文献   

4.
The expression of antibodies inside cells to ablate protein function has the potential for disease therapy and for target validation in functional genomics. However, due to inefficient expression or folding, only a few antibodies or antibody fragments, usually as single-chain Fv antibody fragments (scFv), bind their antigens in an intracellular environment. We have established a genetic-selection technology (intracellular antibody capture, IAC) to facilitate the isolation of functional intracellular scFv from a diverse repertoire. This approach comprises an in vitro library screen with scFv-expressing bacteriophage, employing bacterially expressed antigen, followed by a yeast in vivo antibody-antigen interaction screen of the sub-library of in vitro scFv antigen-binders. Accordingly, we have isolated panels of scFv that bind intracellularly to the BCR or the ABL parts of the BCR-ABL oncogenic protein. Sequence analysis of the intracellular antibody scFv panels revealed a sequence conservation indicating an intracellular antibody consensus for both VH and VL, which could form the basis for the de novo synthesis of intracellular antibody libraries to be used with intracellular antibody-capture technology.  相似文献   

5.
Intracellular antibodies (intrabodies) provide an attractive means for manipulating intracellular protein function, both for research and potentially for therapy. A challenge in the isolation of effective intrabodies is the ability to find molecules that exhibit sufficient binding affinity and stability when expressed in the reducing environment of the cytoplasm. Here, we have used yeast surface display of proteins to isolate novel scFv clones against huntingtin from a non-immune human antibody library. We then applied yeast surface display to affinity mature this scFv pool and analyze the location of the binding site of the mutant with the highest affinity. Interestingly, the paratope was mapped exclusively to the variable light chain domain of the scFv. A single domain antibody was constructed consisting solely of this variable light chain domain, and was found to retain full binding activity to huntingtin. Cytoplasmic expression levels in yeast of the single domain were at least fivefold higher than the scFv. The ability of the single-domain intrabody to inhibit huntingtin aggregation, which has been implicated in the pathogenesis of Huntington's disease (HD), was confirmed in a cell-free in vitro assay as well as in a mammalian cell culture model of HD. Significantly, a single-domain intrabody that is functionally expressable in the cytoplasm was derived from a non-functional scFv by performing affinity maturation and binding site analysis on the yeast cell surface, despite the differences between the cytoplasmic and extracellular environment. This approach may find application in the development of intrabodies to a wide variety of intracellular targets.  相似文献   

6.
To determine the importance of single-chain Fv (scFv) affinity on binding, uptake, and cytotoxicity of tumor-targeting nanoparticles, the affinity of the epidermal growth factor receptor (EGFR) scFv antibody C10 was increased using molecular evolution and yeast display. A library containing scFv mutants was created by error-prone PCR, displayed on the surface of yeast, and higher affinity clones selected by fluorescence activated cell sorting. Ten mutant scFv were identified that had a 3-18-fold improvement in affinity (KD=15-88 nM) for EGFR-expressing A431 tumor cells compared to C10 scFv (KD=264 nM). By combining mutations, higher affinity scFv were generated with KD ranging from 0.9 nM to 10 nM. The highest affinity scFv had a 280-fold higher affinity compared to that of the parental C10 scFv. Immunoliposome nanoparticles (ILs) were prepared using EGFR scFv with a 280-fold range of affinities, and their binding and uptake into EGFR-expressing tumor cells was quantified. At scFv densities greater than 148 scFv/IL, there was no effect of scFv affinity on IL binding and uptake into tumor cells, or on cytotoxicity. At lower scFv densities, there was less uptake and binding for ILs constructed from the very low affinity C10 scFv. The results show the importance of antibody fragment density on nanoparticle uptake, and suggest that engineering ultrahigh affinity scFv may be unnecessary for optimal nanoparticle targeting.  相似文献   

7.
Polypeptide library screening technologies are critically dependent upon the characteristics of the expression system employed. A comparative analysis of the lpp-lac, tet and araBAD promoters was performed to determine the importance of tight regulation and expression level in library screening applications. The surface display of single-chain antibody (scFv) in Escherichia coli as an Lpp-OmpA' fusion was monitored using a fluorescently tagged antigen in conjunction with flow cytometry. In contrast to the lpp-lac promoter, both tet and araBAD promoters could be tightly repressed. Tight regulation was found to be essential for preventing rapid depletion of library clones expressing functional scFv and thus for maintaining the initial library diversity. Induction with subsaturating inducer concentrations yielded mixed populations of uninduced and fully induced cells for both the tet and araBAD expression systems. In contrast, homogeneous expression levels were obtained throughout the population using saturating inducer concentrations and could be adjusted by varying the induction time and plasmid copy number. Under optimal induction conditions for the araBAD system, protein expression did not compromise either cell viability or library diversity. This expression system was used to screen a library of random scFv mutants specific for digoxigenin for clones exhibiting improved hapten dissociation kinetics. Thus, an expression system has been developed which allows library diversity to be preserved and is generally applicable to the screening of E. coli surface displayed libraries.  相似文献   

8.
We have developed a technology for rapidly generating novel and fully human antibodies by simply using the antigen DNA. A human single‐chain variable fragment (scFv) antibody library was constructed in a yeast two‐hybrid vector with high complexity. After cloning cDNA encoding the mature sequence of human interleukin‐8 (hIL8) into the yeast two‐hybrid system vector, we have screened the human scFv antibody library and obtained three distinct scFv clones that could specifically bind to hIL8. One clone was chosen for further improvement by a novel affinity maturation process using the error‐prone PCR of the scFv sequence followed by additional rounds of yeast two‐hybrid screening. The scFv antibodies of both primary and affinity‐matured scFv clones were expressed in E. coli. All purified scFvs showed specific binding to hIL8 in reciprocal coimmunoprecipitation and ELISA assays. All scFvs, as well as a fully human IgG antibody converted from one of the scFv clones and expressed in the mammalian cells, were able to effectively inhibit hIL8 in neutrophil chemotaxis assays. The technology described can generate fully human antibodies with high efficiency and low cost.  相似文献   

9.
Therapeutic antibody engineering by high efficiency cell screening   总被引:1,自引:0,他引:1  
In recent years, several cell-based screening technologies for the isolation of antibodies with prescribed properties emerged. They rely on the multi-copy display of antibodies or antibody fragments on a cell surface in functional form followed by high through put screening and isolation of cell clones that carry an antibody variant with the desired affinity, specificity, and stability. Particularly yeast surface display in combination with high-throughput fluorescence-activated cell sorting has proven successful in the last fifteen years as a very powerful technology that has some advantages over classical generation of monoclonals using the hybridoma technology or bacteriophage-based antibody display and screening. Cell-based screening harbours the benefit of single-cell online and real-time analysis and characterisation of individual library candidates. Moreover, when using eukaryotic expression hosts, intrinsic quality control machineries for proper protein folding and stability exist that allow for co-selection of high-level expression and stability simultaneously to the binding functionality. Recently, promising technologies emerged that directly rely on antibody display on higher eukaryotic cell lines using lentiviral transfection or direct screening on B-cells. The combination of immunisation, B-cell screening and next generation sequencing may open new avenues for the isolation of therapeutic antibodies with prescribed physicochemical and functional characteristics.  相似文献   

10.
Pavoni E  Monteriù G  Cianfriglia M  Minenkova O 《Gene》2007,391(1-2):120-129
We report the development of a novel phagemid vector, pKM19, for display of recombinant antibodies in single-chain format (scFv) on the surface of filamentous phage. This new vector improves efficacy of selection and reduces the biological bias against antibodies that can be harmful to host bacteria. It is useful for generation of large new antibody libraries, and for the subsequent maturation of antibody fragments. In comparison with commonly used plasmids, this vector is designed to have relatively low expression levels of cloned scFv antibodies due to the amber codon positioned in a sequence encoding for the PhoA leader peptide. Moreover, fusion of antibodies to the carboxy terminal part only of the gene III protein improves display of scFv on bacteriophage surface in this system. Despite the lower antibody expression, the functional test performed with a new scFv library derived from human peripheral blood lymphocytes demonstrates that specific antibodies can be easily isolated from the library, even after the second selection round. The use of the pKM19 vector for maturation of an anti-CEA antibody significantly improves the final results. In our previous work, an analogous selection through the use of a phagemid vector, with antibody expression under the control of a lacP promoter, led to isolation of anti-CEA phage antibodies with improved affinities, which were not producible in soluble form. Probably due to the toxicity for E. coli of that particular anti-CEA antibody, 70% of maturated clones contained suppressed stop codons, acquired during various selection/amplification rounds. The pKM19 plasmid facilitates an efficient maturation process, resulting in selection of antibodies with improved affinity without any stop codons.  相似文献   

11.
This protocol describes the process of isolating and engineering antibodies or proteins for increased affinity and stability using yeast surface display. Single-chain antibody fragments (scFvs) are first isolated from an existing nonimmune human library displayed on the yeast surface using magnetic-activated cell sorting selection followed by selection using flow cytometry. This enriched population is then mutagenized, and successive rounds of random mutagenesis and flow cytometry selection are done to attain desired scFv properties through directed evolution. Labeling strategies for weakly binding scFvs are also described, as well as procedures for characterizing and 'titrating' scFv clones displayed on yeast. The ultimate result of following this protocol is a panel of scFvs with increased stability and affinity for an antigen of interest.  相似文献   

12.
目的:建立一种高效噬菌体文库构建方法,获得抗鸡卵清蛋白(ovalbumin,OVA)的单链抗体(scFv)噬菌体展示文库,筛选鉴定获得OVA单链抗体。方法:用OVA蛋白免疫Balb/C小鼠,选取血清抗体效价高的小鼠提取脾脏RNA,利用RT-PCR方法扩增获得小鼠重链和小鼠轻链基因。通过无缝连接酶一步将小鼠重链基因、轻链基因和linker DNA连接起来,插入噬菌体表达载体中,构建OVA scFv噬菌体展示文库。测定文库容量,对文库进行富集筛选,ELISA鉴定阳性克隆,测序后构建真核表达载体,转入Expi-CHO悬浮细胞进行真核表达,利用Western blot进行鉴定。结果:成功获得库容量为1. 2×10~7cfu的OVA scFv噬菌体展示文库,并从中筛选出8个阳性克隆,选取效价最高的2号克隆,在Expi-CHO悬浮细胞中表达获得可溶性抗体。结论:建立了一种高效构建scFv噬菌体文库的方法,筛选获得高结合活性的OVA单链抗体,并成功进行了真核表达,为OVA ELISA检测试剂盒的研制奠定了基础。  相似文献   

13.
单链抗体(single chain antibody fragment,scFv)是由抗体重链可变区(variable region of heavy chain,VH)和轻链可变区(variable region of light chain,VL)通过柔性短肽连接组成的小分子,是具有完整抗原结合活性的最小功能片段,包含抗体识别及抗原结合部位。相比于其他抗体,scFv具有分子量小、穿透性强、免疫原性弱、易构建表达等优点。目前,scFv最常用的展示系统主要有噬菌体展示系统、核糖体展示系统、mRNA展示系统、酵母细胞表面展示系统和哺乳动物细胞展示系统等。近年来,随着scFv在医学、生物学、食品安全学等领域的发展,使得其在生物合成和应用研究方面备受关注。本文对近年来scFv展示系统的研究进展作一综述,以期为scFv的筛选及应用提供理论基础。  相似文献   

14.
We report the design, construction and use of an antibody bacteriophage display library built on the scaffold of a single-chain variable fragment (scFv) previously proven to be functionally expressed in the reducing environment of both bacterial and plant cytoplasm and endowed with intrinsic high thermodynamic stability. Four amino acid residues of the third hypervariable loop (CDR3) of both VH and VL were combinatorially mutated, generating a repertoire of approximately 5x10(7) independent scFvs, cloned in a phagemid vector. The ability of the antibody phage library to yield specific binders was tested by biopanning against several antigens. Successful selection of fully active scFvs was obtained, confirming the notion that combinatorial mutagenesis of few amino acid residues centrally located in the antigen-binding site is sufficient to provide binding specificities against virtually any target. High yields of both soluble and phage antibodies were obtained in Escherichia coli. Maintenance of the cognate scFv antibody stability in the newly selected scFv fragments was demonstrated by guanidinium chloride denaturation/renaturation studies and by soluble antibody expression in the bacterial cytoplasm. The antibody library described here allows the isolation of new stable binding specificities, potentially exploitable as immunochemical reagents for intracellular applications.  相似文献   

15.
为了将可中和对虾白斑综合症病毒(WSSV)的单链抗体P1D3在酵母中实现表达,以原核表达载体M13噬菌粒为模板,设计带有SnaBⅠ和EcoRⅠ酶切位点的特异性引物,通过PCR方法扩增P1D3基因。经过酶切、连接反应将该基因连入大肠杆菌-酵母穿梭质粒pPIC9K上。重组质粒pPIC9K-scFvP1D3经BglⅡ线性化后,用电转化的方法转入毕赤酵母(Pichiapastoris)GS115中。通过PCR和DNA测序,挑选和鉴定阳性克隆。经甲醇诱导,P1D3在酵母中获得分泌表达。ELISA实验结果表明,酵母表达上清液中的单链抗体具有较高的WSSV结合活性,而且其活性要高于大肠杆菌所表达抗体的活性。表达条件优化后,单链抗体在酵母中最高表达量可达302mg/L,为开展对虾被动免疫研究提供了新的抗体来源。  相似文献   

16.
构建T7噬菌体单链抗体(scFv)库筛选抗乙型肝炎病毒表面抗原抗体.从抗-HBs阳性患者外周血淋巴细胞中提取总RNA,反转录合成cDNA第1条链,PCR分别扩增抗体重链可变区基因(VH)和轻链可变区基因(VL),经重叠延伸拼接(SOE)PCR组成scFv基因,并将其与T7噬菌体载体的2个臂相连接.体外包装后,在宿主菌BLT5403中,扩增重组噬菌体抗体库.以乙型肝炎病毒表面抗原进行4轮“吸附-洗脱-扩增”的筛选,酶免疫实验检测抗体活性.所建抗体库库容为1.53×107,扩增后初级库滴度为2.42×1010pfu/mL.以乙型肝炎病毒表面抗原筛选后抗体出现特异性富集,经酶免疫实验鉴定,得到2株与HBsAg抗原特异结合的噬菌体抗体,成功构建了抗HBsAg蛋白T7噬菌体抗体库.  相似文献   

17.
Single chain (scFv) antibodies are used as affinity reagents for diagnostics, therapeutics, and proteomic analyses. The antibody discovery platform we use to identify novel antigen binders involves discovery, characterization, and production. The discovery and characterization components have previously been characterized but in order to fully utilize the capabilities of affinity reagents from our yeast surface display library, efforts were focused on developing a production component to obtain purified, soluble, and active scFvs. Instead of optimizing conditions to achieve maximum yield, efforts were focused on using a system that could quickly and easily produce and process hundreds of scFv antibodies. Heterologous protein expression in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli were evaluated for their ability to rapidly, efficaciously, and consistently produce scFv antibodies for use in downstream proteomic applications. Following purification, the binding activity of several scFv antibodies were quantified using a novel Biacore assay. All three systems produced soluble scFv antibodies which ranged in activity from 0 to 99%. scFv antibody yields from Saccharomyces, Pichia, and E. coli were 1.5-4.2, 0.4-7.3, and 0.63-16.4 mgL(-1) culture, respectively. For our purposes, expression in E. coli proved to be the quickest and most consistent way to obtain and characterize purified scFv for downstream applications. The E. coli expression system was subsequently used to study three scFv variants engineered to determine structure-function relationships.  相似文献   

18.
Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast‐display libraries. Yeast‐display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. A limiting step in the isolation of scFv from non‐immune libraries is the conversion of highly active yeast‐displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast‐display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeast‐displayed and ‐secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of their ability to competitively inhibit the binding of biotinylated antigen to yeast‐displayed scFv. The second is an epitope binning assay that uses secreted scFv to identify additional yeast‐displayed scFv that bind non‐overlapping or non‐competing epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast‐displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast‐displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast‐display libraries. Biotechnol. Bioeng. 2010;105: 973–981. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Phage display antibody (PDA) libraries, allows the rapid isolation and characterization of high specificity monoclonal antibodies for therapeutic and diagnostic applications. However, selection of positive binding clones from synthetic and semi-synthetic libraries has an inherent bias towards clones containing randomly generated amber stop codons, complicating the identification of high affinity binding antibodies. We screened Tomlinson I and J library against receptor binding domain (RBD) of SARS CoV2, eight clones which showed positive binding in phage ELISA, contained one or more amber stop codons in their single-chain antibody fragment (scFv) gene sequences. The presence of amber stop codons within the antibody sequence causes the premature termination of soluble form of scFv expression in nonsuppressor Escherichia coli strain. In the present study, we have used a novel strategy that allows soluble expression of scFvs having amber stop codon in their gene sequences (without phage PIII protein fusion), in the suppressor strain. This strategy of introduction of Ochre (TAA) codon at the junction of scFv and PIII gene, speeds up the initial screening process which is critical for selecting the right scFvs for further studies. Present strategy leads to the identification of a scFv, B8 that binds specifically with nanomolar affinity toward SARS CoV 2 RBD, which otherwise lost in terms of traditional methodology.  相似文献   

20.
Non-immune (na?ve) phage antibody libraries have become an important source of antibodies for reagent, diagnostic, and therapeutic use. To date, reported na?ve libraries have been constructed in phagemid vectors as fusions to pIII, yielding primarily single copy (monovalent) display of antibody fragments. For this work, we subcloned the single chain Fv (scFv) gene repertoire from a na?ve phagemid antibody library into a true phage vector to create a multivalently displayed scFv phage library. Compared to monovalently displayed scFv, multivalent phage display resulted in improved efficiency of display as well as antibody selection. A greater number of antibodies were obtained and at earlier rounds of selection. Such increased efficiency allows the screening for binding antibodies after a single round of selection, greatly facilitating automation. Expression levels of antigen-binding scFv were also higher than from the phagemid library. In contrast, the affinities of scFv from the phage library were lower than from the phagemid library. This could be overcome by utilizing the scFv in a multivalent format, by affinity maturation, or by converting the library to monovalent display after the first round of selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号