首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
How natural selection might be involved in speciation remains a fundamental question in evolutionary biology. When two or more species co-occur in the same areas, natural selection may favor divergence in mating traits. By acting in sympatric but not allopatric populations, natural selection can also affect mate choice within species and ultimately initiate speciation among conspecific populations. Here, we address this potential effect in the sea rock-pool beetles Ochthebius quadricollis and O. urbanelliae. The two species, which inhabit the Mediterranean coasts, co-occurr syntopically in an area along the Italian Tyrrhenian coast and completed reproductive isolation by reinforcement. In this article, through mating trials under laboratory conditions between conspecific populations, we found in O. quadricollis no deviations from random mating. Conversely, in O. urbanelliae, we found a clear pattern of premating isolation between the reinforced populations sympatric with O. quadricollis and those nonreinforced allopatric. This pattern is consistent with the view that natural selection, which completed the reproductive isolation between the two species in sympatry, led incidentally also to partial premating reproductive isolation (I(PSI) estimator from 0.683 to 0.792) between conspecific populations of O. urbanelliae. This case study supports an until recently underappreciated role of natural selection resulting from species interactions in initiating speciation.  相似文献   

2.
There is little evidence from nature that divergent natural selection is crucial to speciation. However, divergent selection is implicated if traits conferring adaptation to alternative environments also form the basis of reproductive isolation. We tested the importance of body size differences to premating isolation between two sympatric sticklebacks. The species differ greatly in size, and several lines of evidence indicate that this difference is an adaptation to alternative foraging habitats. Strong assortative mating was evident in laboratory trials, but a few hybridization events occurred. Probability of interspecific mating was strongly correlated with body size: interspecific spawning occurred only between the largest individuals of the smaller species and the smallest individuals of the larger species. Probability of spawning between similar-sized individuals from different species was comparable to spawning rates within species. Disruption of mating between individuals from different species can be traced to increased levels of male aggression and decreased levels of male courtship as size differences increased between paired individuals. Interspecific mate preferences in sympatric sticklebacks appears to be dominated by body size, implicating natural selection in the origin of species.  相似文献   

3.
Summary It has been hypothesized that reproductive character displacement has evolved in mainland Sonora, Mexico populations of cactophilicD. mojavensis due to the presence of a sympatric sibling speciesD. arizonae. In laboratory tests using ancestral Baja California populations and derived, sympatric mainland populations, asymmetrical sexual isolation has been observed among populations ofD. mojavensis where mainland females discriminate against Baja males. Effects of different pre-adult rearing environments on adult mating behaviour were assessed by comparing fermenting cactus tissues like those used in nature for breeding with laboratory media because previous studies have employed synthetic growth media for fly growth and development. Significant behavioural isolation was evident in all cases when larvae were reared on laboratory food, but was non-significant when flies were reared on fermenting cactus, except for the cactus used by most mainland populations, consistent with previous studies. Time to copulation of Baja females was greater than mainland females over all substrates, but male time to copulation did not differ between populations. Time to copulation for both sexes was significantly greater when flies were reared on laboratory food with one exception. The degree of behavioural isolation was weakly correlated with time to copulation across food types (Spearman rank correlation = 0.58,p = 0.099). Therefore, use of laboratory media in this and previous studies exaggerated adult pre-mating isolation and time to copulation in comparison to natural breeding substrates. These experiments suggest that a change in host substrates by saprophagous insects (where chemical differences exist between hosts) may have subtle effects on mating behaviour in a manner which promotes low levels of sexual isolation as a by-product of their utilization of a particular substrate during larval development. ForD. mojavensis, these results suggest that over evolutionary time, radiation into a new environment (from Baja to the mainland) allowed utilization of new host plants that may have incidentally promoted the sexual isolation patterns that have been observed within this species.See Etges (1992) for the first paper in this series.  相似文献   

4.
Hurt CR  Farzin M  Hedrick PW 《Genetics》2005,171(2):655-662
The timing and pattern of reproductive barrier formation in allopatric populations has received much less attention than the accumulation of reproductive barriers in sympatry. The theory of allopatric speciation suggests that reproductive barriers evolve simply as by-products of overall genetic divergence. However, observations of enhanced premating barriers in allopatric populations suggest that sexual selection driven by intraspecific competition for mates may enhance species-specific signals and accelerate the speciation process. In a previous series of laboratory trials, we examined the strength of premating and postmating barriers in an allopatric species pair of the endangered Sonoran topminnow, Poeciliopsis occidentalis and P. sonoriensis. Behavioral observations provided evidence of asymmetrical assortative mating, while reduced brood sizes and male-biased F(1) sex ratios suggest postmating incompatibilities. Here we examine the combined effects of premating and postmating barriers on the genetic makeup of mixed populations, using cytonuclear genotype frequencies of first- and second-generation offspring. Observed genotype frequencies strongly reflect the directional assortative mating observed in behavioral trials, illustrating how isolating barriers that act earlier in the reproductive cycle will have a greater effect on total reproductive isolation and may be more important to speciation than subsequent postmating reproductive barriers.  相似文献   

5.
The increase in premating reproductive isolation between recently diverged and potentially interbreeding taxa resulting from selection against hybridization (reinforcement) is one of the most contentious issues in evolutionary biology. After many years of debate, its plausibility under various conditions has been shown by theoretical studies and some cases have been documented. At present, interest is arising about the frequency and importance of reinforcement in nature. Ochthebius quadricollis and Ochthebius sp. A are two hydraenid beetles inhabiting marine rock pools in the Mediterranean basin. By molecular analysis of a contact zone between the two species along the Italian Tyrrhenian coast, full reproductive isolation between the two species was evidenced. However, the finding of introgressed specimens at some diagnostic loci suggested that gene flow occurred in the past but then ceased. In this article, by analyzing species composition of mating couples collected in sympatric localities, we show the existence of strong assortative mating between the two species in nature. In laboratory multiple-choice mating trials, sympatric populations showed greater assortative mating than allopatric populations. Reinforcement is suggested as the most parsimonious hypothesis to explain the evolution of discriminative mate recognition systems occurring among O. quadricollis and Ochthebius sp. A under sympatric, but not allopatric, populations.  相似文献   

6.
We carried out a three‐tiered genetic analysis of egg‐to‐adult development time and viability in ancestral and derived populations of cactophilic Drosophila mojavensis to test the hypothesis that evolution of these life‐history characters has shaped premating reproductive isolation in this species. First, a common garden experiment with 11 populations from Baja California and mainland Mexico and Arizona reared on two host species revealed significant host plant X region and population interactions for viability and development time, evidence for host plant adaptation. Second, replicated line crosses with flies reared on both hosts revealed autosomal, X chromosome, cytoplasmic, and autosome X cactus influences on development time. Viability differences were influenced by host plants, autosomal dominance, and X chromosomal effects. Many of the F1, F2, and backcross generations showed evidence of heterosis for viability. Third, a QTL analysis of male courtship song and epicuticular hydrocarbon variation based on 1688 Baja × mainland F2 males also revealed eight QTL influencing development time differences. Mainland alleles at six of these loci were associated with longer development times, consistent with population‐level differences. Eight G × E interactions were also detected caused by longer development times of mainland alleles expressed on a mainland host with smaller differences among Baja genotypes reared on the Baja host plant. Four QTL influenced both development time and epicuticular hydrocarbon differences associated with courtship success, and there was a significant QTL‐based correlation between development time and cuticular hydrocarbon variation. Thus, the regional shifts in life histories that evolved once D. mojavensis invaded mainland Mexico from Baja California by shifting host plants were genetically correlated with variation in cuticular hydrocarbon‐based mate preferences.  相似文献   

7.
Mating preferences are common in natural populations, and their divergence among populations is considered an important source of reproductive isolation during speciation. Although mechanisms for the divergence of mating preferences have received substantial theoretical treatment, complementary experimental tests are lacking. We conducted a laboratory evolution experiment, using the fruit fly Drosophila serrata, to explore the role of divergent selection between environments in the evolution of female mating preferences. Replicate populations of D. serrata were derived from a common ancestor and propagated in one of three resource environments: two novel environments and the ancestral laboratory environment. Adaptation to both novel environments involved changes in cuticular hydrocarbons, traits that predict mating success in these populations. Furthermore, female mating preferences for these cuticular hydrocarbons also diverged among populations. A component of this divergence occurred among treatment environments, accounting for at least 17.4% of the among-population divergence in linear mating preferences and 17.2% of the among-population divergence in nonlinear mating preferences. The divergence of mating preferences in correlation with environment is consistent with the classic by-product model of speciation in which premating isolation evolves as a side effect of divergent selection adapting populations to their different environments.  相似文献   

8.
9.
Divergence and reproductive isolation in the early stages of speciation   总被引:2,自引:0,他引:2  
Tregenza T 《Genetica》2002,116(2-3):291-300
To understand speciation we need to identify the factors causing divergence between natural populations. The traditional approach to gaining such insights has been to focus on a particular theory and ask whether observed patterns of reproductive isolation between populations or species are consistent with the hypothesis in question. However, such studies are few and they do not allow us to compare between hypotheses, so often we cannot determine the relative contribution to divergence of different potential factors. Here, I describe a study of patterns of phenotypic divergence and premating and postmating isolation between populations of the grasshopper Chorthippus parallelus. Information on the phylogeographic relationships of the populations means that a priori predictions from existing hypotheses for the evolution of reproductive isolation can be compared with observations. I assess the relative contributions to premating isolation, postmating isolation and phenotypic divergence of long periods of allopatry, adaptation to different environments and processes associated with colonisation (such as population bottlenecks). Likelihood analysis reveals that long periods of allopatry in glacial refugia are associated with postmating reproductive isolation, but not premating isolation, which is more strongly associated with colonisation. Neither premating nor postmating isolation is higher between populations differing in potential environmental selection pressures. There are only weak correlations between patterns of genetic divergence and phenotypic divergence and no correlation between premating and postmating isolation. This suggests that the potential of a taxon to exercise mate choice may affect the types of factor that promote speciation in that group. I discuss the advantages and disadvantages of the general approach of simultaneously testing competing hypotheses for the evolution of reproductive isolation.  相似文献   

10.
The nascent stages of speciation start with the emergence of sexual isolation. Understanding the influence of reproductive barriers in this evolutionary process is an ongoing effort. We present a study of Drosophila melanogaster admixed populations from the southeast United States and the Caribbean islands known to be a secondary contact zone of European‐ and African‐derived populations undergoing incipient sexual isolation. The existence of premating reproductive barriers has been previously established, but these types of barriers are not the only source shaping sexual isolation. To assess the influence of postmating barriers, we investigated putative postmating barriers of female remating and egg‐laying behavior, as well as hatchability of eggs laid and female longevity after mating. In the central region of our putative hybrid zone of American and Caribbean populations, we observed lower hatchability of eggs laid accompanied by increased resistance to harm after mating to less‐related males. These results illustrate that postmating reproductive barriers act alongside premating barriers and genetic admixture such as hybrid incompatibilities and influence early phases of sexual isolation.  相似文献   

11.
Two species of the endangered Sonoran topminnow, Poeciliopsis occidentalis and P. sonoriensis, occur in two isolated drainage systems in southeast Arizona, U.S.A., and are allopatric throughout their range. Although these two taxa are morphologically very similar, and have been previously described as the same species or subspecies, several molecular studies have since indicated that they differ more than their morphology suggests. To determine whether the behaviours of the two species function as premating barriers to reproduction, we investigated their mating preferences and behavioural patterns in a laboratory setting. Results from no-choice mating observations showed that the mating behaviours of the two species differ. Observations conducted during multiple-choice mating trials provided evidence of assortative mating, suggesting an early stage of premating reproductive isolation.  相似文献   

12.
Divergent habitat preferences can contribute to speciation, as has been observed for host-plant preferences in phytophagous insects. Geographic variation in host preference can provide insight into the causes of preference evolution. For example, selection against maladaptive host-switching occurs only when multiple hosts are available in the local environment and can result in greater divergence in regions with multiple vs. a single host. Conversely, costs of finding a suitable host can select for preference even in populations using a single host. Some populations of Timema cristinae occur in regions with only one host-plant species present (in allopatry, surrounded by unsuitable hosts) whereas others occur in regions with two host-plant species adjacent to one another (in parapatry). Here, we use host choice and reciprocal-rearing experiments to document genetic divergence in host preference among 33 populations of T. cristinae. Populations feeding on Ceanothus exhibited a stronger preference for Ceanothus than did populations feeding on Adenostoma. Both allopatric and parapatric pairs of populations using the different hosts exhibited divergent host preferences, but the degree of divergence tended to be greater between allopatric pairs. Thus, gene flow between parapatric populations apparently constrains divergence. Host preferences led to levels of premating isolation between populations using alternate hosts that were comparable in magnitude to previously documented premating isolation caused by natural and sexual selection against migrants between hosts. Our findings demonstrate how gene flow and different forms of selection interact to determine the magnitude of reproductive isolation observed in nature.  相似文献   

13.
In theory, natural selection can drive adaptation within species while simultaneously promoting the formation of new species by causing the evolution of reproductive isolation. Cryptic coloration is widespread in nature and is generally considered to be a clear visual example of adaptation. I provide evidence that population divergence in cryptic coloration can also cause reproductive isolation. First, a manipulative field experiment using walking-stick insects demonstrates that the relative survival of different colour-pattern morphs depends on the host-plant species on which they are resting, but only in the presence of avian predation. Second, natural populations adapted to different host plants have diverged in colour-pattern-morph frequencies such that between-host migrants are more likely to be the locally less-cryptic morph than are residents. Collectively, these data indicate that high rates of visual predation on less-cryptic migrants are likely to reduce encounters, and thus interbreeding, between host-associated populations. Comparison with previous estimates of sexual isolation reveals that the contribution of selection against between-host migrants to total premating isolation is as strong as, or stronger than, that of sexual isolation. These findings highlight the potential role of natural selection against migrants between divergent environments in the formation of new species.  相似文献   

14.
Significant assortative mating in laboratory studies has been previously shown between two populations of Drosophila melanogaster collected from micro-climactically contrasting and opposing slopes of 'Evolution Canyon' (Lower Nahal Oren, Israel; Korol et al., 2000). Coupled with evidence that the two populations are adapted to their respective environments, this has been suggested as a rare example of ongoing behaviourally mediated speciation occurring in the face of gene flow. Reproductive isolation between these populations, however, has never been confirmed by replicate experiments in an independent laboratory. For this reason, we tested recent collections of these populations for premating isolation in both the original (Haifa) and a new (Burnaby) laboratory under a variety of experimental protocols. Although non-random mating was found in the majority of trials conducted in Haifa, we were unable to replicate these strong results in Burnaby. Most notably, we failed to detect assortative mating in four separate double choice experiments. Significant non-random mating was detected, however, in three of six single choice experiments in Burnaby, suggesting that the populations are behaviourally differentiated in some manner. Why nonrandom mating was weaker in Burnaby than Haifa is not understood, but suggests that assortative mating may be sensitive to unknown environmental factors.  相似文献   

15.
Through the process of ecological speciation, insect populations that adapt to new host plant species or to different plant tissues could speciate if such adaptations cause reproductive isolation. One of the key issues in this process is identifying the mechanisms by which adaptation in ecological traits leads directly to reproductive isolation. Here I show that within a radiation of specialist moths that pollinate and feed on yuccas, shifts in egg placement resulted in changes in female moth egg‐laying structures that led to concomitant changes in male reproductive morphology. As pollinator moths evolved to circumvent the ability of yuccas to selectively abscise flowers that contain pollinator eggs, ovipositor length became shorter. Because mating occurs through the ovipositor, shortening of the ovipositor also led to significantly shorter and wider male intromittent organs. In instances where two pollinator moth species occur in sympatry and on the same host plant species, there is one short and one long ovipositor species that are reproductively isolated. Given that many plant‐feeding insects lay eggs into plant tissues, changes in ovipositor morphology that lead to correlated changes in reproductive morphology may be a mechanism that maintains reproductive isolation among closely related species using the same host plant species.  相似文献   

16.
The origin of premating reproductive isolation continues to help elucidate the process of speciation and is the central event in the evolution of biological species. Therefore, during the process of species formation the diverging populations must acquire some means of reproductive isolation so that the genes from one gene pool are prevented from dispersing freely into a foreign gene pool. In the genus Drosophila, the phenomenon of behavioural reproductive isolation, which is an important type of premating (prezygotic) reproductive isolating mechanisms, has been extensively studied and interesting data have been documented. In many cases incomplete sexual isolation has been observed and the pattern and degree of isolation within and between the species have often been used to elucidate the phylogenetic relationships. The present review documents an overview of speciation mediated through behavioural incompatibility in different species groups of Drosophila with particular reference to the models proposed on the basis of one-sided ethological isolation to predict the direction of evolution. This study is crucial for understanding the mechanism of speciation through behavioural incompatibility and also for an understanding of speciation genetics in future prospects.  相似文献   

17.
While the feasibility of bottleneck-induced speciation is in doubt, population bottlenecks may still affect the speciation process by interacting with divergent selection. To explore this possibility, I conducted a laboratory speciation experiment using Drosophila pseudoobscura involving 78 replicate populations assigned in a two-way factorial design to both bottleneck (present vs. absent) and environment (ancestral vs. novel) treatments. Populations independently evolved under these treatments and were then tested for assortative mating and male mating success against their common ancestor. Bottlenecks alone did not generate any premating isolation, despite an experimental design that was conducive to bottleneck-induced speciation. Premating isolation also did not evolve in the novel environment treatment, neither in the presence nor absence of bottlenecks. However, male mating success was significantly reduced in the novel environment treatment, both as a plastic response to this environment and as a result of environment-dependent inbreeding effects in the bottlenecked populations. Reduced mating success of derived males will hamper speciation by enhancing the mating success of immigrant, ancestral males. Novel environments are generally thought to promote ecological speciation by generating divergent natural selection. In the current experiment, however, the novel environment did not cause the evolution of any premating isolation and it reduced the likelihood of speciation through its effects on male mating success.  相似文献   

18.
Abstract 1. The evolution of reproductive isolation between recently diverged or incipient species is a critical component of speciation and a major focus of speciation models. In phytophagous insects, host plant fidelity (the habit of mating and ovipositing on a single host species) can contribute to assortative mating and reproductive isolation between populations adapting to alternative hosts. The potential role of host plant fidelity in the evolution of reproductive isolation was examined in a pair of North American blue butterfly species, Lycaeides idas and L. melissa .
2. These species are morphologically distinct and populations of each species utilise different host plants; however they share 410 bp haplotypes of the mitochondrial cytochrome oxidase subunit I (COI) gene, indicating recent divergence.
3. Some populations using native hosts exhibited strong fidelity for their natal host plant over the hosts used by nearby populations. Because these butterflies mate on or near the host plant, the development of strong host fidelity may create reproductive isolation among populations on different hosts and restrict gene flow.
4. Tests of population differentiation using allozyme allele frequency data did not provide convincing evidence of restricted gene flow among populations. Based on morphological differences, observed ecological specialisation, and the sharing of genetic markers, these butterflies appear to be undergoing adaptive radiation driven at least partially by host shifts. Neutral genetic markers may fail to detect the effects of very recent host shifts in these populations due to gene flow and/or the recency of divergence and shared ancestral polymorphism.  相似文献   

19.
Secondary contact between incipient species and selection against maladaptive hybridization can drive reinforcement between populations in contact and result in reproductive character displacement (RCD). Resultant divergence in mating traits within a species may generate downstream reproductive isolation between populations with displaced and non-displaced traits, referred to as the cascade reinforcement hypothesis. We examined this hypothesis using three allopatric populations of the ground beetle Carabus maiyasanus with a genital lock-and-key system. This species shows RCD in male and female genital morphologies in populations in contact with the sister species C. iwawakianus. In a reciprocal mating experiment using three allopatric populations with differences in male and female genital sizes, insemination failure increased as the difference in genital size increased. Based on the reproductive isolation index, insemination failure was the major postmating-prezygotic isolation barrier, at least in one population pair with comparable total isolation to those of other species pairs. By contrast, there was only incomplete premating isolation among populations. These results suggest that RCD in genital morphologies drives incipient allopatric speciation, supporting the cascade reinforcement hypothesis. These findings provide insight into the roles of interspecific interactions and subsequent trait diversification in speciation processes.  相似文献   

20.
Information obtained from laboratory studies regarding the efficacy of barriers to gene flow (reproductive isolation) between species is often incomplete or misleading, so detailed genetic analyses are needed to determine whether hybridization and introgression occur in nature. Previous laboratory studies of the cactophilic species Drosophila mojavensis and Drosophila arizonae suggest that reproductive isolation is incomplete and that gene flow may occur in sympatry. We sampled 18 nuclear and one mitochondrial loci from multiple populations of D. arizonae and D. mojavensis to test for the signature of recent or historic gene flow between these two species. We located chromosomal regions that were inverted between these species and analyzed those regions independently of others. Statistical tests for introgression using all loci or only collinear loci failed to reject expectations of an isolation model. Further tests using average nucleotide differences between species and phylogenetic analyses also failed to find support for introgression between D. mojavensis and D. arizonae. Additional ecological and behavioral studies of these species in their natural habitats are required to explain why the signature of gene flow was not detected at the DNA sequence level in populations when laboratory studies suggest such gene flow should be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号