首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Introduction

Mammalian cells like Chinese hamster ovary (CHO) cells are routinely used for production of recombinant therapeutic proteins. Cells require a continuous supply of energy and nutrients to sustain high cell densities whilst expressing high titres of recombinant proteins. Cultured mammalian cells are primarily dependent on glucose and glutamine metabolism for energy production.

Objectives

The TCA cycle is the main source of energy production and its continuous flow is essential for cell survival. Modulated regulation of TCA cycle can affect ATP production and influence CHO cell productivity.

Methods

To determine the key metabolic reactions of the cycle associated with cell growth in CHO cells, we transiently silenced each gene of the TCA cycle using RNAi.

Results

Silencing of at least four TCA cycle genes was detrimental to CHO cell growth. With an exception of mitochondrial aconitase (or Aco2), all other genes were associated with ATP production reactions of the TCA cycle and their resulting substrates can be supplied by other anaplerotic and cataplerotic reactions. This study is the first of its kind to have established key role of aconitase gene in CHO cells. We further investigated the temporal effects of aconitase silencing on energy production, CHO cell metabolism, oxidative stress and recombinant protein production.

Conclusion

Transient silencing of mitochondrial aconitase inhibited cell growth, reduced ATP production, increased production of reactive oxygen species and reduced cell specific productivity of a recombinant CHO cell line by at least twofold.
  相似文献   

2.

Background

Alzheimer’s disease (AD) is one of the most frequent cause of neurodegenerative disorder in the elderly. Inflammation has been implicated in brain degenerative processes and peripheral markers of brain AD related impairment would be useful. Plasma levels of alpha-1-antichymotrypsin (ACT), an acute phase protein and a secondary component of amyloid plaques, are often increased in AD patients and high blood ACT levels correlate with progressive cognitive deterioration. During inflammatory responses changes in the micro-heterogeneity of ACT sugar chains have been described.

Methods

N-Glycanase digestion from Flavobacterium meningosepticum (PNGase F) was performed on both native and denatured purified ACT condition and resolved to Western blot with the purpose to revealed the ACT de-glycosylation pattern.Further characterization of the ACT glycan profile was obtained by a glycoarray; each lectin group in the assay specifically recognizes one or two glycans/epitopes. Lectin-bound ACT produced a glyco-fingerprint and mayor differences between AD and controls samples were assessed by a specific algorithms.

Results

Western blot analysis of purified ACT after PNGase F treatment and analysis of sugar composition of ACT showed significantly difference in “glyco-fingerprints” patterns from controls (CTR) and AD; ACT from AD showing significantly reduced levels of sialic acid. A difference in terminal GlcNac residues appeared to be related with progressive cognitive deterioration.

Conclusions

Low content of terminal GlcNac and sialic acid in peripheral ACT in AD patients suggests that a different pattern of glycosylation might be a marker of brain inflammation. Moreover ACT glycosylation analysis could be used to predict AD clinical progression and used in clinical trials as surrogate marker of clinical efficacy.
  相似文献   

3.

Objectives

To establish stable infliximab-expressing Chinese hamster ovary (CHO) cells with high tolerance to serum-free culture.

Results

Bcl-2 antagonist/killer 1 (BAK1), which is a key mediator of the apoptosis pathway, was disrupted, and infliximab, which is a broadly used monoclonal antibody for the treatment of rheumatoid arthritis and other autoimmune diseases, was incorporated into the BAK1 locus of the CHO chromosome using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome-editing technique. The activating effects of serum starvation on BAK1 and cytochrome C (CytC) were suppressed in the genome-edited cells, and the ability of the cells to resist the serum starvation-induced loss of mitochondrial membrane potential and apoptosis was increased, as indicated by the results of polymerase chain reaction (PCR), flow cytometry, enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC) analysis. In addition, during subsequent passages, infliximab could be stably produced in the genome-edited CHO cells, and the recombinant antibody could effectively antagonize the cytotoxic effect of tumor necrosis factor α (TNFα).

Conclusions

A CHO cell line capable of stably expressing infliximab and adapting to serum-free culture was constructed. This work lays the foundation for the development of infliximab biosimilars.
  相似文献   

4.

Objectives

To establish a high-throughput method for determination of antibodies intra- and extracellular light chain (LC) to heavy chain (HC) polypeptide ratio as screening parameter during cell line development.

Results

Chinese Hamster Ovary (CHO) TurboCell pools containing different designed vectors supposed to result in different LC:HC polypeptide ratios were generated by targeted integration. Cell culture supernatants and cell lysates of a fed batch experiment were purified by combined Protein A and anti-kappa affinity batch purification in 96-well format. Capture of all antibodies and their fragments allowed the determination of the intra- and extracellular LC:HC peptide ratios by reduced SDS capillary electrophoresis. Results demonstrate that the method is suitable to show the significant impact of the vector design on the intra- and extracellular LC:HC polypeptide ratios.

Conclusion

Determination of LC:HC polypeptide ratios can give important information in vector design optimization leading to CHO cell lines with optimized antibody assembly and preferred product quality.
  相似文献   

5.
6.

Objectives

To evaluate MDCK and MDCK-SIAT1 cell lines for their ability to produce the yield of influenza virus in different Multiplicities of Infection.

Results

Yields obtained for influenza virus H1N1 grown in MDCK-SIAT1 cell was almost the same as MDCK; however, H3N2 virus grown in MDCK-SIAT1 had lower viral titers in comparison with MDCK cells. The optimized MOIs to infect the cells on plates and microcarrier were selected 0.01 and 0.1 for H1N1 and 0.001 and 0.01 for H3N2, respectively.

Conclusions

MDCK-SIAT1 cells may be considered as an alternative mean to manufacture cell-based flu vaccine, especially for the human strains (H1N1), due to its antigenic stability and high titer of influenza virus production.
  相似文献   

7.

Background

Xanthurenic acid is an endogenous molecule produced by tryptophan degradation, produced in the cytoplasm and mitochondria. Its accumulation can be observed in aging-related diseases, e.g. senile cataract and infectious disease. We previously reported that xanthurenic acid provokes apoptosis, and now present a study of the response of mitochondria to xanthurenic acid.

Results

Xanthurenic acid at 10 or 20 μM in culture media of human aortic smooth muscle cells induces translocation of the proteins Bax, Bak, Bclxs, and Bad into mitochondria. In 20 μM xanthurenic acid, Bax is also translocated to the nucleus. In isolated mitochondria xanthurenic acid leads to Bax and Bclxs oligomerization, accumulation of Ca2+, and increased oxygen consumption.

Conclusion

Xanthurenic acid interacts directly with Bcl-2 family proteins, inducing mitochondrial pathways of apoptosis and impairing mitochondrial functions.
  相似文献   

8.

Objective

To compare stably-transfected Drosophila melanogaster S2 and mammalian Chinese hamster ovary (CHO) cells for the expression and secretion efficiency of biologically-active human coagulation factor IX (hFIX).

Result

Selection of an hFIX-expressing cell line derived from stably-transfected S2 cells was performed over 2 weeks, while the same procedure required 2 months for stably-transfected CHO cells. Furthermore, the selected S2 cell line was superior in producing of total hFIX protein (70 % increase), biologically-active hFIX (35 % increase), and specific hFIX activity (20 % increase) relative to the selected CHO cell line. Enrichment for functional, fully γ-carboxylated hFIX species via barium citrate adsorption demonstrated that up to 90 % of the hFIX expressed by S2 cells was γ-carboxylated versus 79 % of CHO-expressed hFIX. Inhibition of N-glycosylation by tunicamycin indicated that N-glycosylation of S2-expressed hFIX had occurred to a similar extent as in the CHO-produced hFIX.

Conclusion

The Drosophila S2 cell system is an attractive candidate for the efficient production of recombinant hFIX as it has the potential of significantly reducing the cell development time, while producing functional hFIX.
  相似文献   

9.

Background

Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancy. Semaphorin 3F (SEMA3F) is highly conserved but present at a lower level in various cancers than in healthy tissues. While it has been reported that SEMA3F is involved in cancer cell proliferation, migration and invasion, its function in OSCC remains unknown.

Methods

The expression of SEMA3F in OSCC tissues and OSCC-derived cells was analyzed using qRT-PCR and western blotting. Using SAS and HSC2 cells, we also monitored the effect of SEMA3F on OSCC cell proliferation, migration and invasion using MTT, colony formation and transwell assays. The function of SEMA3F in OSCC tumor formation was also assessed in vivo.

Results

SEMA3F was significantly downregulated in OSCC tissues and OSCC-derived cells. SEMA3F shows growth inhibitory activity in SAS and HSC2 cells and may act as a tumor suppressor. It can inhibit the migration and invasion potential of OSCC cells. Our results also demonstrate that SEMA3F can suppress the growth of OSCC cells in vivo.

Conclusions

This study revealed that SEMA3F plays a role as a tumor suppressor in OSCC cell proliferation, migration and invasion. Our finding provides new insight into the progression of OSCC. Therapeutically, SEMA3F has some potential as a target for OSCC treatment, given sufficient future research.
  相似文献   

10.

Objective

To explore the impact of taurine on monoclonal antibody (mAb) basic charge variants in Chinese hamster ovary (CHO) cell culture.

Results

In fed-batch culture, adding taurine in the feed medium slightly increased the maximum viable cell density and mAb titers in CHO cells. What’s more, taurine significantly decreased the lysine variant and oxidized variant levels, which further decreased basic variant contents from 32 to 27%. The lysine variant content in the taurine culture was approximately 4% lower than that in control condition, which was the main reason for the decrease in basic variants. Real-time PCR and cell-free assay revealed that taurine played a critical role in the upregulation of relative basic carboxypeptidase and stimulating extracellular basic carboxypeptidase activities.

Conclusion

Taurine exhibits noticeable impact on lower basic charge variants, which are mainly due to the decrease of lysine variant and oxidized protein variants.
  相似文献   

11.

Background

Sorafenib is an effective clinical drug in therapy of hepatocellular carcinoma, having led to improved prognosis in hepatocellular carcinoma patients. However acquired resistance is still being encountered. So, it is urgently to develop alternative strategies to overcome drug resistance. Exosomes can be modified with a variety of molecules, thereby acting as a vehicle for the delivery of therapeutic agents. The GRP78 is overexpressed in Sorafenib resistant cancer cells compared to Sorafenib sensitive cancer cells and thus is able to act as a target for therapy of hepatocellular carcinoma.

Results

In this study, we modified BM-MSCs to express the exosomal siGRP78. And we show that siGRP78 modified exosomes combined with Sorafenib is able to target GRP78 in hepatocellular carcinoma cells and inhibit the growth and invasion of the cancer cells in vitro. Further, siGRP78 modified exosomes combined with Sorafenib also inhibit the growth and metastasis of the cancer cells in vivo.

Conclusions

siGRP78 modified exosomes could sensitize Sorafenib resistant cancer cells to Sorafenib and reverse the drug resistance.
  相似文献   

12.

Objective

An oral lactococcal-based vaccine which haboured the haemagglutinin1 (HA1) antigen fused to nisP anchor protein for the purpose of surface displaying the HA1 antigen was developed against H1N1 virus.

Results

Recombinant L. lactis strains expressed HA1-nisP fusion proteins when induced with nisin, as confirmed through western blotting. However, immunofluorescense did not detect any surface-displayed proteins, suggesting that the protein was either unsuccessfully translocated or improperly displayed. Despite this, oral administration of recombinant L. lactis strains to BALB/c mice revealed that significant levels of anti-HA1 sIgA antibodies were detected in mice fecal suspension samples of mice group NZ9000 (pNZ:HN) when compared to the negative control NZ9000 (pNZ8048) group.

Conclusion

Specific anti-HA1 sIgA antibodies were locally produced and live recombinant lactococcal vaccine was able to elicit humoral response of BALB/c mice despite unsuccessful surface display of the HA1 epitope.
  相似文献   

13.

Background

Tyro3, Axl, and Mertk (TAMs) are a family of three conserved receptor tyrosine kinases that have pleiotropic roles in innate immunity and homeostasis and when overexpressed in cancer cells can drive tumorigenesis.

Methods

In the present study, we engineered EGFR/TAM chimeric receptors (EGFR/Tyro3, EGFR/Axl, and EGF/Mertk) with the goals to interrogate post-receptor functions of TAMs, and query whether TAMs have unique or overlapping post-receptor activation profiles. Stable expression of EGFR/TAMs in EGFR-deficient CHO cells afforded robust EGF inducible TAM receptor phosphorylation and activation of downstream signaling.

Results

Using a series of unbiased screening approaches, that include kinome-view analysis, phosphor-arrays, RNAseq/GSEA analysis, as well as cell biological and in vivo readouts, we provide evidence that each TAM has unique post-receptor signaling platforms and identify an intrinsic role for Axl that impinges on cell motility and invasion compared to Tyro3 and Mertk.

Conclusion

These studies demonstrate that TAM show unique post-receptor signatures that impinge on distinct gene expression profiles and tumorigenic outcomes.
  相似文献   

14.

Aims

The objective of this study was to investigate how plants maintain productivity under a limited supply of water and N along the topographical soil water and N gradients in semi-arid forests.

Methods

We investigated forest structure and productivity, N cycling, and water and N use by plants at three different slope positions in a forested area near an arid boundary on a loess plateau in China.

Results

Net primary production (NPP) and aboveground N uptake decreased as soil water and/or N availability decreased on upper slopes; however, NPP and aboveground N uptake were only slightly lower than those of more humid forest ecosystems. Water use efficiency (WUE), N use efficiency (NUE), and fine root biomass increased as soil water and/or N supply decreased with altitude. High NUE was linked to higher N mean residence time, caused by higher N resorption efficiency rather than increasing N productivity.

Conclusions

Our results suggest that NPP and N uptake can be maintained by increasing WUE and NUE and increasing fine root biomass in water and N co-limited semi-arid forest ecosystems near arid boundaries. Such changes in resource use and acquisition strategy can affect production and N cycling via plant-soil feedback systems.
  相似文献   

15.

Background

Nitrous oxide (N2O), a long-standing anesthetic, is also neurotoxic by interfering with the bioavailability of vitamin B12 if abused. A few case studies have reported the neurological and psychiatric complications of N2O.

Case presentation

Here, we reported a patient of N2O induced subacute combined degeneration (SCD) with longitudinally extensive myelopathy with inverted V-sign exhibiting progressive limb paresthesia and unsteady gait.

Conclusions

This case raises the awareness of an important mechanism of neural toxicity of N2O, and clinical physicians should be well recognized this in the field of substance-related disorders.
  相似文献   

16.

Background

In recent years the visualization of biomagnetic measurement data by so-called pseudo current density maps or Hosaka-Cohen (HC) transformations became popular.

Methods

The physical basis of these intuitive maps is clarified by means of analytically solvable problems.

Results

Examples in magnetocardiography, magnetoencephalography and magnetoneurography demonstrate the usefulness of this method.

Conclusion

Hardware realizations of the HC-transformation and some similar transformations are discussed which could advantageously support cross-platform comparability of biomagnetic measurements.
  相似文献   

17.

Objective

To design a specific polyclonal antibody against Deinagkistrodon acutus venom (DA-pAb) by immunizating New Zealand white rabbits.

Results

The IgG fraction was purified by affinity chromatography, and specific antibodies were purified by immunoaffinity chromatography. Polyclonal antibodies were subjected to ELISA and western blotting to evaluate their immune reactivity. We identified the mimotopes by screening a phage display 12-mer peptide library against D. acutus venom. After three rounds of biopanning with DA-pAb, 30 positive clones were identified. Eighteen phage clones were sequenced, and their corresponding amino acid sequences were deduced. Additional immunoassays with the peptides and DA-pAb identified five sequences as possible epitopes. Recombinant antigens synthesized with the five epitopes were used for the immunization of BALB/c mice.

Conclusion

The antibodies induced by these peptides recognized the recombinant antigen and D. acutus venom and protected mice against the hemorrhagic effects of the venom.
  相似文献   

18.

Background

Inflammatory bowel disease is a group of pathologies characterised by chronic inflammation of the intestine and an unclear aetiology. Its main manifestations are Crohn’s disease and ulcerative colitis. Currently, biopsies are the most used diagnostic tests for these diseases and metabolomics could represent a less invasive approach to identify biomarkers of disease presence and progression.

Objectives

The lipid and the polar metabolite profile of plasma samples of patients affected by inflammatory bowel disease have been compared with healthy individuals with the aim to find their metabolomic differences. Also, a selected sub-set of samples was analysed following solid phase extraction to further characterise differences between pathological samples.

Methods

A total of 200 plasma samples were analysed using drift tube ion mobility coupled with time of flight mass spectrometry and liquid chromatography for the lipid metabolite profile analysis, while liquid chromatography coupled with triple quadrupole mass spectrometry was used for the polar metabolite profile analysis.

Results

Variations in the lipid profile between inflammatory bowel disease and healthy individuals were highlighted. Phosphatidylcholines, lyso-phosphatidylcholines and fatty acids were significantly changed among pathological samples suggesting changes in phospholipase A2 and arachidonic acid metabolic pathways. Variations in the levels of cholesteryl esters and glycerophospholipids were also found. Furthermore, a decrease in amino acids levels suggests mucosal damage in inflammatory bowel disease.

Conclusions

Given good statistical results and predictive power of the model produced in our study, metabolomics can be considered as a valid tool to investigate inflammatory bowel disease.
  相似文献   

19.

Background

The p73 protein is a tumor suppressor that shares structural and functional similarity with p53. p73 is expressed in two major isoforms; the TA isoform that interacts with p53 pathway, thus acting as tumor suppressor and the N-terminal truncated ΔN isoform that inhibits TAp73 and p53 and thus, acts as an oncogene.

Results

By employing a drug repurposing approach, we found that protoporphyrin IX (PpIX), a metabolite of aminolevulinic acid applied in photodynamic therapy of cancer, stabilizes TAp73 and activates TAp73-dependent apoptosis in cancer cells lacking p53. The mechanism of TAp73 activation is via disruption of TAp73/MDM2 and TAp73/MDMX interactions and inhibition of TAp73 degradation by ubiquitin ligase Itch. Finally, PpIX showed potent antitumor effect and inhibited the growth of xenograft human tumors in mice.

Conclusion

Our findings may in future contribute to the successful repurposing of PpIX into clinical practice.
  相似文献   

20.

Objectives

To determine the role of miR-190b in radio-sensitivity of gastric cancer (GC).

Results

In radio-resistant GC cells, down-regulation of miR-190b and up-regulation of Bcl-2 were observed. The protein expression of Bcl-2 was negatively regulated by miR-190b. Overexpression of miR-190b significantly decreased cell viability and enhanced radio-sensitivity of GC cells. Of note, these effects of miR-190b on GC cells radio-sensitivity were abolished by Bcl-2.

Conclusion

miR-190b confers radio-sensitivity of GC cells, possibly via negative regulation of Bcl-2.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号