首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caseous lymphadenitis (CLA) is a small ruminant disease characterized by the development of granulomatous lesions in superficial and internal lymph nodes, as well as in some organs, and causes significant economic losses worldwide. The aetiological agent of CLA is the bacterium Corynebacterium pseudotuberculosis; however, the commercially available diagnostic tools present problems with regard to specificity, which can lead to false-negative results. This study aimed to develop an indirect enzyme-linked immunosorbent assay (ELISA) for the detection of specific immunoglobulins in goats and sheep using recombinant C. pseudotuberculosis PLD, CP40, PknG, DtxR and Grx proteins. For validation of the ELISAs, 130 goat serum samples and 160 sheep serum samples were used. The best ELISA for goats was developed using a combination of PLD and CP40 as antigens at a 1:1 ratio, which presented 96.9% sensitivity and 98.4% specificity. The most effective ELISA for sheep presented 91% sensitivity and 98.7% specificity when recombinant PLD alone was used as the antigen. These ELISAs can be used as highly accurate tools in epidemiological surveys and for the serodiagnosis of C. pseudotuberculosis infection in goats and sheep.  相似文献   

2.
To establish accurate detection methods of process-specific Escherichia coli residual host cell protein (HCP) and residual host cell DNA (rcDNA) in recombinant biological preparations. Taking the purification process of GLP expressed by E. coli as a specific-process model, the HCP of empty E. coli was intercepted to immunize mice and rabbits. Using IgG from immunized rabbits as the coating antibody and mouse immune serum as the second sandwich antibody, a process-specific enzyme-linked immunosorbent assay (ELISA) for E. coli HCP was established. Targeting the 16S gene of E. coli, ddPCR was used to obtain the absolute copies of rcDNA in samples. Non-process-specific commercial ELISA kit and the process-specific ELISA established in this study were used to detect the HCP in GLP preparation. About 62% of HCPs, which should be process-specific HCPs, could not be detected by the non-process-specific commercial ELISA kit. The sensitivity of established ELISA can reach 338 pg/mL. The rcDNA could be absolutely quantitated by ddPCR, for the copies of rcDNA in three multiple diluted samples showed a reduced gradient. While the copies of rcDNA in three multiple diluted samples could not be distinguished by the qPCR. Process-specific ELISA has high sensitivity in detecting process-specific E. coli HCP. The absolutely quantitative ddPCR has much higher accuracy than the relatively quantitative qPCR, it is a nucleic acid quantitative method that is expected to replace qPCR in the future.  相似文献   

3.
Monitoring host cell proteins (HCPs) is one of the most important analytical requirements in production of recombinant biopharmaceuticals to ensure product purity and patient safety. Enzyme-linked immunosorbent assay (ELISA) is the standard method for monitoring HCP clearance. It is important to validate that the critical reagent of an ELISA, the HCP antibody, covers a broad spectrum of the HCPs potentially present in the purified drug substance. Current coverage methods for assessing HCP antibody coverage are based on 2D-Western blot or immunoaffinity-purification combined with 2D gel electrophoresis and have several limitations. In the present study, we present a novel coverage method combining ELISA-based immunocapture with protein identification by liquid chromatography–tandem mass spectrometry (LC–MS/MS): ELISA-MS. ELISA-MS is used to accurately determine HCP coverage of an early process sample by three commercially available anti-Escherichia coli HCP antibodies, evading the limitations of current methods for coverage analysis, and taking advantage of the benefits of MS analysis. The results obtained comprise a list of individual HCPs covered by each HCP antibody. The novel method shows high sensitivity, high reproducibility, and enables tight control of nonspecific binding through inclusion of a species-specific isotype control antibody. We propose that ELISA-MS will be a valuable supplement to existing coverage methods or even a replacement. ELISA-MS will increase the possibility of selecting the best HCP ELISA, thus improving HCP surveillance and resulting in a final HCP profile with the lowest achievable risk. Overall, this will be beneficial to both the pharmaceutical industry and patient safety.  相似文献   

4.
In the control strategy for process related impurities in biopharmaceuticals, the enzyme linked immunosorbent assay (ELISA) is the method of choice for the quantification of host cell proteins (HCPs). Besides two dimensional-western blots (2D-WB), the coverage of ELISA antibodies is increasingly evaluated by affinity purification-based liquid chromatography–tandem mass spectrometry (AP-MS) methods. However, all these methods face the problem of unspecific binding issues between antibodies and the matrix, involving the application of arbitrarily defined thresholds during data evaluation. To solve this, a new approach (optimized AP-MS) was developed in this study, for which a cleavable linker was conjugated to the ELISA antibodies enabling the subsequent isolation of specifically interacting HCPs. By comparing both approaches in terms of method variability and the number of false positive or negative hits, we could demonstrate that the optimized AP-MS method is very reproducible and superior in the identification of antibody detection gaps, while previously described strategies suffered from over- or underestimating the coverage. As only antibody associated HCPs were identified, we demonstrated that the method is beneficial for hitchhiker analysis. Overall, the method described herein has proven as a powerful tool for reliable coverage determination of ELISA antibodies, without the need to arbitrarily exclude HCPs during the coverage evaluation.  相似文献   

5.
Multiple control strategies, including a downstream purification process with well-controlled parameters and a comprehensive release or characterization for intermediates or drug substances, were implemented to mitigate the potential risk of host cell proteins (HCPs) in one concentrated fed-batch (CFB) mode manufactured product. A host cell process specific enzyme-linked immunosorbent assay (ELISA) method was developed for the quantitation of HCPs. The method was fully validated and showed good performance including high antibody coverage. This was confirmed by 2D Gel-Western Blot analysis. Furthermore, a LC-MS/MS method with non-denaturing digestion and a long gradient chromatographic separation coupled with data dependent acquisition (DDA) on a Thermo/QE-HF-X mass spectrometer was developed as an orthogonal method to help identify the specific types of HCPs in this CFB product. Because of the high sensitivity, selectivity and adaptability of the new developed LC-MS/MS method, significantly more species of HCP contaminants were able to be identified. Even though high levels of HCPs were observed in the harvest bulk of this CFB product, the development of multiple processes and analytical control strategies may greatly mitigate potential risks and reduce HCPs contaminants to a very low level. No high-risk HCP was identified and the total amount of HCPs was very low in the CFB final product.  相似文献   

6.
The production of biopharmaceutical proteins in plants requires efficient downstream processing steps that remove impurities such as host cell proteins (HCPs) and adventitious endotoxins produced by bacteria during transient expression. We therefore strived to develop effective routines for endotoxin removal from plant extracts and the subsequent use of the extracts to generate antibodies detecting a broad set of HCPs. At first, we depleted the superabundant protein ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RuBisCO) for which PEG precipitation achieved the best results, preventing a dominant immune reaction against this protein. We found that a mixture of sera from rabbits immunized with pre‐depleted or post‐depleted extracts detected more HCPs than the individual sera used alone. We also developed a powerful endotoxin removal procedure using Polymyxin B for extracts from wild type plants or a combination of fiber‐flow filtration and EndoTrap Blue for tobacco plants infiltrated with Agrobacterium tumefaciens. The antibodies we generated will be useful for quality and performance assessment in future process development and the methods we present can easily be transferred to other expression systems rendering them useful in the field of plant molecular farming.  相似文献   

7.
Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle and sheep belonging to the genus Pestivirus of the family Flaviviridae. Although the BVDV non-structural N-terminal protease (Npro) acts as an interferon antagonist and subverts the host innate immunity, little is known about its immunogenicity. Hence, we expressed a recombinant BVDV Npro-His fusion protein (28 kDa) in E. coli and determined the humoral immune response generated by it in rabbits. The antigenicity of the Npro protein was confirmed by western blot using anti-BVDV hyperimmune cattle, sheep and goat serum, and anti-Npro rabbit serum. When rabbits were immunized with the Npro protein, a humoral immune response was evident by 4 weeks and persisted till 10 weeks post immunization as detected by ELISA and western blot. Despite Npro-specific antibodies remaining undetectable in 80 serum samples from BVDV-infected sheep and goats, BVDV hyperimmune sera along with some of the field cattle, sheep and goat sera with high BVDV neutralizing antibody titres were found positive for Npro antibodies. Our results provide evidence that despite the low immunogenicity of the BVDV Npro protein, a humoral immune response is induced in cattle, sheep and goats only with repeated BVDV exposure.  相似文献   

8.
1. Several pathways of drug metabolizing enzyme activity were measured in hepatic fractions of cattle, sheep, goats, chickens, turkeys, ducks, rabbits and rats. The pathways examined included the O-demethylation of p-nitrophenol, microsomal ester hydrolysis of procaine and glucuronidation of p-nitrophenol, and the cytosolic acetylation of sulfamethazine and sulfation of 2-naphthol. 2. For most enzymatic pathways measured, goats were more similar to sheep (wether) than to cattle (steers). The exception was UDP-glucuronyltransferase activity, which was significantly higher for the goat than for any other species studied. 3. Within the avian subset, the chicken and turkey were usually the most similar species. 4. The activities of arylsulfotransferase isozymes III and IV were particularly low for the duck compared to the chicken and turkey. 5. N-acetyltransferase activity was very high for rabbits and very low for sheep and goats.  相似文献   

9.
The consumption of ovine and caprine meat is considered one of the major transmission routes for Toxoplasma gondii infection in humans. The present study aimed at obtaining epidemiological and molecular data on T. gondii infection in small ruminants slaughtered or commercialized in Italy. Meat juices from 227 sheep and 51 goats were analyzed with a commercial ELISA and antibodies were detected in 28.6% sheep and 27.5% goats. A significant difference was highlighted between adult sheep and the other considered categories (young sheep, young and adult goats) concerning the detection of antibodies (94.1%; p-value = .008). Muscles of positives samples were submitted to molecular analysis, and T. gondii DNA was detected in 15 sheep and three goats; sequencing of B1 gene showed that all belonged to Type II. The present study confirmed small ruminants' meat as a possible source of T. gondii infection for consumers eating raw or undercooked meat, particularly in those countries where the consumption of sheep and goats' meat products is a traditional gastronomic habit.  相似文献   

10.
Therapeutic monoclonal antibodies (mAb) production relies on multiple purification steps before release as a drug product (DP). A few host cell proteins (HCPs) may co-purify with the mAb. Their monitoring is crucial due to the considerable risk they represent for mAb stability, integrity, and efficacy and their potential immunogenicity. Enzyme-linked immunosorbent assays (ELISA) commonly used for global HCP monitoring present limitations in terms of identification and quantification of individual HCPs. Therefore, liquid chromatography tandem mass spectrometry (LC-MS/MS) has emerged as a promising alternative. Challenging DP samples show an extreme dynamic range requiring high performing methods to detect and reliably quantify trace-level HCPs. Here, we investigated the benefits of adding high-field asymmetric ion mobility spectrometry (FAIMS) separation and gas phase fractionation (GPF) prior to data independent acquisition (DIA). FAIMS LC-MS/MS analysis allowed the identification of 221 HCPs among which 158 were reliably quantified for a global amount of 880 ng/mg of NIST mAb Reference Material. Our methods have also been successfully applied to two FDA/EMA approved DPs and allowed digging deeper into the HCP landscape with the identification and quantification of a few tens of HCPs with sensitivity down to the sub-ng/mg of mAb level.  相似文献   

11.
Residual host cell proteins (HCPs) in biotherapeutics can present potential safety risks to patients or compromise product stability. As such, their levels are typically monitored using a multicomponent HCP enzyme-linked immunosorbent assay (ELISA) to ensure adequate removal. However, it is not possible to guarantee ELISA coverage of every possible HCP impurity, and the specific HCPs remaining following purification are rarely identified. In the current study, we characterized the ability of an advanced two-dimensional liquid chromatography/mass spectrometry platform (2D-LC/MS(E)) to identify and quantify known low-level spiked protein impurities in a therapeutic peptide Fc fusion protein. The label-free quantification procedure based on the "top 3" intensity tryptic peptides per protein was applied and improved on for this application. Limits of detection for unknown HCPs were approximated from the spiked protein data along with estimates for the quantitative accuracy of the method. In all, we established that most protein impurities present at 13±4ppm can be identified with a quantitative error of less than 2-fold using the more sensitive of two tested method formats. To conclude the study, we characterized all detectable Escherichia coli proteins present in this Fc fusion protein drug substance and discuss future applications of the method.  相似文献   

12.
Cathelicidins are small, cationic, antimicrobial peptides found in humans and other species, including farm animals (cattle, horses, pigs, sheep, goats, chickens, rabbits and in some species of fish). These proteolytically activated peptides are part of the innate immune system of many vertebrates. These peptides show a broad spectrum of antimicrobial activity against bacteria, enveloped viruses and fungi. Apart from exerting direct antimicrobial effects, cathelicidins can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied in mice and humans, but there are limited information about their expression sites and activities in livestock. The aim of the present review is to summarize current information about these antimicrobial peptides in farm animals, highlighting peptide expression sites, activities, and future applications for human and veterinary medicine.  相似文献   

13.
The use of biological systems to synthesize complex therapeutic products has been a remarkable success. However, during product development, great attention must be devoted to defining acceptable levels of impurities that derive from that biological system, heading this list are host cell proteins (HCPs). Recent advances in proteomic analytics have shown how diverse this class of impurities is; as such knowledge and capability grows inevitable questions have arisen about how thorough current approaches to measuring HCPs are. The fundamental issue is how to adequately measure (and in turn monitor and control) such a large number of protein species (potentially thousands of components) to ensure safe and efficacious products. A rather elegant solution is to use an immunoassay (enzyme‐linked immunosorbent assay [ELISA]) based on polyclonal antibodies raised to the host cell (biological system) used to synthesize a particular therapeutic product. However, the measurement is entirely dependent on the antibody serum used, which dictates the sensitivity of the assay and the degree of coverage of the HCP spectrum. It provides one summed analog value for HCP amount; a positive if all HCP components can be considered equal, a negative in the more likely event one associates greater risk with certain components of the HCP proteome. In a thorough risk‐based approach, one would wish to be able to account for this. These issues have led to the investigation of orthogonal analytical methods; most prominently mass spectrometry. These techniques can potentially both identify and quantify HCPs. The ability to measure and monitor thousands of proteins proportionally increases the amount of data acquired. Significant benefits exist if the information can be used to determine critical HCPs and thereby create an improved basis for risk management. We describe a nascent approach to risk assessment of HCPs based upon such data, drawing attention to timeliness in relation to biosimilar initiatives. The development of such an approach requires databases based on cumulative knowledge of multiple risk factors that would require national and international regulators, standards authorities (e.g., NIST and NIBSC), industry and academia to all be involved in shaping what is the best approach to the adoption of the latest bioanalytical technology to this area, which is vital to delivering safe efficacious biological medicines of all types. Biotechnol. Bioeng. 2015;112: 1727–1737. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

14.
An advanced liquid chromatography/mass spectrometry (MS) platform was used to identify and quantify residual Escherichia coli host cell proteins (HCPs) in the drug substance (DS) of several peptibodies (Pbs). Significantly different HCP impurity profiles were observed among different biotherapeutic Pbs as well as one Pb purified via multiple processes. The results can be rationally interpreted in terms of differences among the purification processes, and demonstrate the power of this technique to sensitively monitor both the quantity and composition of residual HCPs in DS, where these may represent a safety risk to patients. The breadth of information obtained using MS is compared to traditional multiproduct enzyme‐linked immunosorbent assay (ELISA) values for total HCP in the same samples and shows that, in this case, the ELISA failed to detect multiple HCPs. The HCP composition of two upstream samples was also analyzed and used to demonstrate that HCPs that carry through purification processes to be detectable in DS are not always among those that are the most abundant upstream. Compared to ELISA, we demonstrate that MS can provide a more comprehensive, and accurate, characterization of DS HCPs, thereby facilitating process development as well as more rationally assessing potential safety risks posed by individual, identified HCPs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:951–957, 2013  相似文献   

15.
An interstrain crossreactive idiotype (ID 1), present on rat antibodies to streptococcal group A carbohydrate (SACHO), was examined for both antigen and species specificity. In a test employing a sensitive radioimmunoassay, ID 1 was undetectable in both preimmunization sera and on rat antibodies to poly-glutamic acid50-alanine50 obtained from animals which subsequently expressed ID 1 on anti-SACHO antibodies. Antigenically distinct from lambda light (L)-chain isotypic determinants, ID 1 was found to require antibody heavy-chain and L-chain interaction for complete expression. The inability to detect ID 1 on anti-SACHO antibodies produced by goats, rabbits, chickens, and nurse sharks suggests the species specificity of ID 1. These and previous observations on idiotypy favor the theory that germline genes are important in coding for rat antibody diversity to SACHO.  相似文献   

16.
Recombinant protein products such as monoclonal antibodies (mAbs) for use in the clinic must be clear of host cell impurities such as host cell protein (HCP), DNA/RNA, and high molecular weight immunogenic aggregates. Despite the need to remove and monitor HCPs, the nature, and fate of these during downstream processing (DSP) remains poorly characterized. We have applied a proteomic approach to investigate the dynamics and fate of HCPs in the supernatant of a mAb producing cell line during early DSP including centrifugation, depth filtration, and protein A capture chromatography. The primary clarification technique selected was shown to influence the HCP profile that entered subsequent downstream steps. MabSelect protein A chromatography removed the majority of contaminating proteins, however using 2D‐PAGE we could visualize not only the antibody species in the eluate (heavy and light chain) but also contaminant HCPs. These data showed that the choice of secondary clarification impacts upon the HCP profile post‐protein A chromatography as differences arose in both the presence and abundance of specific HCPs when depth filters were compared. A number of intracellularly located HCPs were identified in protein A elution fractions from a Null cell line culture supernatant including the chaperone Bip/GRP78, heat shock proteins, and the enzyme enolase. We demonstrate that the selection of early DSP steps influences the resulting HCP profile and that 2D‐PAGE can be used for monitoring and identification of HCPs post‐protein A chromatography. This approach could be used to screen cell lines or hosts to select those with reduced HCP profiles, or to identify HCPs that are problematic and difficult to remove so that cell‐engineering approaches can be applied to reduced, or eliminate, such HCPs. Biotechnol. Bioeng. 2013; 110: 240–251. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process-related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP-ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb-production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up- and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in-process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.  相似文献   

18.
The aims of this study were to investigate the prevalence of Moniezia spp. in domestic ruminants in central Vietnam and to develop a polymerase chain reaction (PCR) technique to distinguish M. expansa from M. benedeni. Among 2040 examined domestic animals (540 cattle, 800 goats, 700 sheep) Moniezia was recovered from 5.4% of cattle, 16.4% of sheep and 20.6% of goats. A set of primers for PCR was designed to classify M. expansa and M. benedeni based on the amplification of DNA corresponding to the internal transcribed spacer of 5.8S rRNA. The 457 specimens (75 from cattle, 162 from goats, 150 from sheep, 30 from horses, 30 from chickens and 10 from dogs) were subjected to PCR for classification of Moniezia spp. PCR products with the expected sizes were amplified from bovine, ovine and caprine specimens. No specific PCR products were found for specimens from horses, chickens and dogs. Of the 75 specimens from cattle, nine were classified as M. expansa and 66 were M. benedeni. Among 162 caprine specimens, 138 were M. expansa and 24 were M. benedeni. The distribution of M. expansa and M. benedeni in 150 ovine specimens was 132 and 18, respectively. These results show that M. expansa is dominant in goats and sheep, whereas M. benedeni is more common in cattle; PCR can be used for classification of these two species.  相似文献   

19.
We report biological data of two generations of Amblyomma triste in laboratory and compared the suitability of different host species. Infestations by larval and nymphal stages were performed on guinea pigs (Cavia porcellus), chickens (Gallus gallus), rats (Rattus norvegicus), rabbits (Oryctolagus cuniculus), wild mice (Calomys callosus), dogs (Canis familiaris) and capybaras (Hydrochaeris hydrochaeris). Infestations by adult ticks were performed on dogs, capybaras and rabbits. Tick developmental periods were observed in an incubator at 27 degrees C and RH 90%. Guinea pigs were the most suitable hosts for larvae and nymphs, followed by chickens. The remaining host species were less suitable for immature ticks as fewer engorged ticks were recovered from them. Mean larval feeding periods varied from 3.8 to 4.7 d between different host species. Mean larval premolt periods ranged from 8.9 to 10.4 d. Nymphal mean feeding periods varied from 4.2 to 6.2 d for ticks fed on different host species. Premolt period of male nymphs (mean: 15.4 d) was significantly longer than that of female nymphs (14.7 d). Female nymphs were significantly heavier than male nymphs. The overall sex ratio of the adult ticks emerged from nymphs was 0.9:1 (M:F). Capybaras were the most suitable host for the tick adult stage as significantly more engorged females were recovered from them and these females were significantly heavier than those recovered from dogs or rabbits. The life cycle of A. triste in laboratory could be completed in an average period of 155 d. The potential role of guinea pigs, birds and capybaras, as hosts for A. triste in nature, is discussed.  相似文献   

20.
Transgenic animal platforms for the discovery of human monoclonal antibodies have been developed in mice, rats, rabbits and cows. The immune response to human proteins is limited in these animals by their tolerance to mammalian-conserved epitopes. To expand the range of epitopes that are accessible, we have chosen an animal host that is less phylogenetically related to humans. Specifically, we generated transgenic chickens expressing antibodies from immunoglobulin heavy and light chain loci containing human variable regions and chicken constant regions. From these birds, paired human light and heavy chain variable regions are recovered and cloned as fully human recombinant antibodies. The human antibody-expressing chickens exhibit normal B cell development and raise immune responses to conserved human proteins that are not immunogenic in mice. Fully human monoclonal antibodies can be recovered with sub-nanomolar affinities. Binning data of antibodies to a human protein show epitope coverage similar to wild type chickens, which we previously showed is broader than that produced from rodent immunizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号