首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The tropical parasite Schistosoma mansoni causes granulomatous inflammation after its eggs lodge in hepatic portal capillaries. In vitro studies indicate that the host's response involves the production of reactive oxygen species, although whether this occurs in vivo at the site of the infection is unknown. The role of oxidative processes in mice infected with S. mansoni was investigated in the current study using the antioxidant melatonin. In Experiment 1, the survival rate of infected mice with and without daily melatonin (10 mg/kg) administration was determined. After 56 d, 25 of 25 infected mice that were diluent treated had died. In contrast, 22 or 25 infected mice (88%) given melatonin were still alive at 56 d. Of these 22 surviving mice, melatonin injections were continued in 11 while the 11 others were switched to diluent. Within 10 d, 11 of 11 diluent-injected mice that were infected with S. mansoni were dead while 6 of 11 melatonin-treated mice survived. In Experiment 2, S. mansoni-infected mice were treated for 30 d with either melatonin or diluent. Uninfected, untreated mice served as controls. In these mice, the levels of lipid peroxidation (LPO) products, vitamin E, nitric oxide (NO), glutathione (GSH), and superoxide dismutase (SOD) activity in the liver, kidney, and spleen were measured. In the serum, cholesterol levels and liver damage (alkaline phosphatase (ALP), aspartate transaminases (AST), total protein, and albumin) were monitored. In addition, peroxynitrite anion (ONOO(-)) in the liver and kidney and inducible nitric oxide synthase (iNOS) in the spleen were immunocytochemically localized. Also, histopathological changes in the liver, kidney, and spleen were examined. The results documented increased LPO and NO levels and decreased vitamin E, GSH, and SOD activity in the liver, kidney, and spleen of S. mansoni-infected mice. Also, there was an increase in serum cholesterol and evidence of liver damage in the infected mice. Immunohistochemical results indicated positive staining of ONOO(-) in the liver and kidney and positive iNOS staining in the spleen of S. mansoni-infected mice. Histopathological observations revealed granuloma formation in the liver with eosinophil infiltration, a large number of megakaryocytes in the spleen, and degeneration with necrotic cells in some tubules of the kidney cortex in the infected mice. Melatonin administration after S. mansoni infection prevented most of the previously described changes. These results suggest that oxidative processes occur at the site of inflammation and are involved in the damaging effects of schistosomiasis and indicate that free radicals may be a major component of the disease. Likewise, melatonin, presumably due to its antioxidant and free radical scavenging activity, is highly protective against the pathological changes associated with schistosomiasis.  相似文献   

2.
In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We used immunogold electron microscopic (EM) techniques with antibodies raised against 4-hydroxy-2-nonenal (HNE) -modified proteins, dinitrophenol, and nitrotyrosine to quantify and localize the age-dependent accrual of oxidative damage in rhesus monkey vastus lateralis skeletal muscle. Using immunogold EM analysis of muscle from rhesus monkeys ranging in age from 2 to 34 years old, a fourfold maximal increase in levels of HNE-modified proteins was observed. Likewise, carbonyl levels increased approximately twofold with aging. Comparing 17- to 23-year-old normally fed to age-matched monkeys subjected to CR for 10 years, levels of HNE-modified proteins, carbonyls, and nitrotyrosine in skeletal muscle from the CR group were significantly less than control group values. Oxidative damage largely localized to myofibrils, with lesser labeling in other subcellular compartments. Accumulation of lipid peroxidation-derived aldehydes, such as malondialdehyde and 4-hydroxy-2-alkenals, and protein carbonyls were measured biochemically and confirmed the morphological data. Our study is the first to quantify morphologically and localize the age-dependent accrual of oxidative damage in mammalian skeletal muscle and to demonstrate that oxidative damage in primates is lowered by CR.  相似文献   

3.
Mitochondrial dysfunction and oxidative damage in parkin-deficient mice   总被引:18,自引:0,他引:18  
Loss-of-function mutations in parkin are the predominant cause of familial Parkinson's disease. We previously reported that parkin-/- mice exhibit nigrostriatal deficits in the absence of nigral degeneration. Parkin has been shown to function as an E3 ubiquitin ligase. Loss of parkin function, therefore, has been hypothesized to cause nigral degeneration via an aberrant accumulation of its substrates. Here we employed a proteomic approach to determine whether loss of parkin function results in alterations in abundance and/or modification of proteins in the ventral midbrain of parkin-/- mice. Two-dimensional gel electrophoresis followed by mass spectrometry revealed decreased abundance of a number of proteins involved in mitochondrial function or oxidative stress. Consistent with reductions in several subunits of complexes I and IV, functional assays showed reductions in respiratory capacity of striatal mitochondria isolated from parkin-/- mice. Electron microscopic analysis revealed no gross morphological abnormalities in striatal mitochondria of parkin-/- mice. In addition, parkin-/- mice showed a delayed rate of weight gain, suggesting broader metabolic abnormalities. Accompanying these deficits in mitochondrial function, parkin-/- mice also exhibited decreased levels of proteins involved in protection from oxidative stress. Consistent with these findings, parkin-/- mice showed decreased serum antioxidant capacity and increased protein and lipid peroxidation. The combination of proteomic, genetic, and physiological analyses reveal an essential role for parkin in the regulation of mitochondrial function and provide the first direct evidence of mitochondrial dysfunction and oxidative damage in the absence of nigral degeneration in a genetic mouse model of Parkinson's disease.  相似文献   

4.
Tomato consumption modulates oxidative DNA damage in humans.   总被引:3,自引:0,他引:3  
Consumption of a single serving of tomatoes by healthy human volunteers was sufficient to alter levels of oxidative DNA base damage in white cell DNA within 24 h. Levels of the mutagenic oxidized purine base 8-hydroxyguanine decreased, especially in those subjects whose initial levels of this base were higher than the mean. However, total DNA base damage remained unchanged since levels of 8-hydroxyadenine rose. The ability of tomato consumption to modulate oxidative DNA damage in the short term may indicate why daily consumption of fruits and vegetables is beneficial in decreasing cancer incidence.  相似文献   

5.
6.
The role of selenium, a trace element in the human diet, has been extensively studied against cancer, immunity and infectious/inflammatory diseases. The purpose of the present study was to investigate the beneficial effect of ebselen, an organo-selenium compound, against cyclophosphamide-induced oxidative stress and DNA damage in mice. Malondialdehyde and total glutathione were estimated in the liver to detect the oxidative stress induced by cyclophosphamide. Standard and modified comet assays (the latter incorporated lesion-specific enzymes, formamidopyrimidine-DNA glycosylase and endonuclease-III) were used to detect the normal and oxidative stress-induced DNA damage by cyclophosphamide in the mouse bone marrow and the peripheral blood lymphocytes. In addition, a micronucleus assay capable of detecting DNA damage was also carried out in the mouse bone marrow and the peripheral blood reticulocytes induced by cyclophosphamide. The results confirm that pre-treatment with ebselen (2.5, 5 and 10 mg/kg) for 5 consecutive days decreased the oxidative stress induced by cyclophosphamide (100 mg/kg) based on the restoration in concentration of malondialdehyde and glutathione in the liver and decreased DNA damage and micronuclei count in the bone marrow and the peripheral blood. It is concluded that pre-treatment with ebselen attenuates cyclophosphamide-induced oxidative stress and the resultant DNA damage in mice.  相似文献   

7.
The aim of this study was to assess the influence of regular daily consumption of white wine on oxidative stress and cardiovascular risk markers. Forty-two healthy male volunteers consumed 375 ml of white wine daily. Each participant provided three venous blood samples (before wine consumption, following the wine consumption period and again a month later). Levels of superoxide dismutase, glutathione peroxidase, reduced glutathione, total antioxidant capacity, total cholesterol, HDL-cholesterol, apolipoprotein A I, apolipoprotein B, triglycerides, paraoxonase 1, C-reactive protein, homocysteine, thiobarbituric acid reactive substances (TBARS) and advanced oxidation protein products (AOPP) were measured. Immediately following the month of white wine consumption there was a significant increase in HDL-cholesterol (p<0.0001), paraoxonase 1 (p<0.001), glutathione peroxidase (p<0.001) and reduced glutathione (p<0.01) levels, a decrease in superoxide dismutase activities (p<0.0001), and a decrease in oxidation protein products (p<0.001) and TBARS (p<0.05) concentrations. However, there was also a clear increase in homocysteine (p<0.0001) after a month of white wine consumption. The results of our non-placebo controlled trial suggest that regular daily white wine consumption is associated not only with both antioxidative and antiatherogenic effects but also with a potentially proatherogenic increase of homocysteine concentrations.  相似文献   

8.
Protection against whole body gamma-irradiation (WBI) of Swiss mice orally fed with Triphala (TPL), an Ayurvedic formulation, in terms of mortality of irradiated animals as well as DNA damage at cellular level has been investigated. It was found that radiation induced mortality was reduced by 60% in mice fed with TPL (1g/kg body weight/day) orally for 7 days prior to WBI at 7.5 Gy followed by post-irradiation feeding for 7 days. An increase in xanthine oxidoreductase activity and decrease in superoxide dismutase activity was observed in the intestine of mice exposed to WBI, which, however, reverted back to those levels of sham-irradiated controls, when animals were fed with TPL for 7 days prior to irradiation. These data have suggested the prevention of oxidative damage caused by whole body radiation exposure after feeding of animals with TPL. To further understand the mechanisms involved, the magnitude of DNA damage was studied by single cell gel electrophoresis (SCGE) in blood leukocytes and splenocytes obtained from either control animals or those fed with TPL for 7 days followed by irradiation. Compared to irradiated animals without administering TPL, the mean tail length was reduced about three-fold in blood leukocytes of animals fed with TPL prior to irradiation. Although, similar protection was observed in splenocytes of TPL fed animals, the magnitude of prevention of DNA damage was significantly higher than that observed in leukocytes. It has been concluded that TPL protected whole body irradiated mice and TPL induced protection was mediated through inhibition of oxidative damage in cells and organs. TPL seems to have potential to develop into a novel herbal radio-protector for practical applications.  相似文献   

9.
In this work, we investigated whether cold exposure-induced hyperthyroidism increases oxidative damage and susceptibility to oxidants of rat liver, heart and skeletal muscle. All tissues exhibited gradual increases in hydroperoxide and protein-bound carbonyl levels. Glutathione peroxidase activity increased in all tissues after 2 days and further increased in the muscle after 10 days of cold exposure. Liver glutathione reductase activity increased after 10 days of cold exposure, while heart and muscle activities were not modified. Vitamin E levels were not affected by cold, while coenzyme Q9 and coenzyme Q10 levels decreased in heart and muscle after 2-day cold exposure and were not further modified after 10 days. Liver coenzyme Q9 levels increased after 2 days whereas coenzyme Q10 levels increased after 10 days in the cold. The whole antioxidant capacity was lowered, while parameters positively correlated with susceptibility to oxidants were increased by cold. Lipid fatty acid composition was modified in all tissues. In particular, fatty acid unsaturation degree increased in heart and muscle. Cytochrome oxidase activity increased, suggesting an increased content of hemoproteins, which are able to generate .OH radical. This view was supported by the observation that the tissue susceptibility to H(2)O(2) treatment, which is strongly correlated to iron-ligand content, increased after cold exposure. In this frame, it is apparent that the increase in oxidative capacity, necessary for homeotherm survival in low temperature environments, has potential harmful effects, because it results in increased susceptibility to oxidative challenge.  相似文献   

10.
Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-κB, IKK, MAPK, MEK, and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.  相似文献   

11.
12.
BackgroundLead (Pb) is ubiquitous in the environment and is an environmental genotoxic metal. Pb accumulation in the body could cause the oxidative stress.ObjectiveThis meta-analysis aimed to perform a systematic evaluation of the extent of oxidative damage in rats/mice induced by lead.MethodsAll relevant articles in English or Chinese were retrieved from Embase, PubMed, Web of Science, Medline, China National Knowledge Infrastructure, and Chinese Biological Medicine databases from their inception date until July 22, 2018.ResultsA total of 108 eligible articles were included in this study. The indicators of oxidative stress included malondialdehyde (MDA), glutathione disulfide (GSSG), reactive oxygen species (ROS), hydrogen peroxide (H2O2), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione-s-transferase (GST). The meta-analysis showed that lead significantly increased oxidants levels, such as MDA, GSSG, ROS, and H2O2 (P < 0.05), and significantly reduced the level of antioxidants, such as CAT, GPx, GR, GSH, SOD, and GST (P < 0.05). The intraperitoneal mode was more effective than water drinking mode in reducing the levels of CAT, GPx, GSH, and SOD (P < 0.05). Other factors that influenced the overall oxidative stress, including species of animals, type of tissues, and intervention dosage and time, were comprehensively evaluated.ConclusionThe results of meta-analysis indicated that mice were more sensitive to lead than rats, and intraperitoneal mode was an effective intervention mean. High doses and long periods of lead treatment can cause serious oxidative damage. Moreover, testicular was more vulnerable to lead than other tissues. These results provided scientific evidence for preventing and treating lead toxicity.  相似文献   

13.
Approximately 12% of Americans do not consume the recommended level of zinc and could be at risk for marginal zinc deficiency. Zinc functions in antioxidant defense and DNA repair and could be important for prostate health. We hypothesized that marginal zinc deficiency sensitizes the prostate to oxidative stress and DNA damage. Rats were fed a zinc-adequate (ZA; 30 mg Zn/kg) or marginally zinc-deficient (MZD; 5–6 mg Zn/kg) diet for 6 weeks. MZD increased p53 and PARP expression but no change in 8-hydroxy-2′-deoxyguanosine levels was detected. To examine the susceptibility to exogenous oxidative stress, rats fed a ZA or MZD diet were assigned to exercising (EXE) or sedentary (SED) groups for 9 weeks. MZD or EXE alone did not affect oxidative DNA damage in the prostate; however, combined MZD + EXE increased DNA damage in the dorsolateral lobe. PARP and p53 expression was not further induced with MZD + EXE, suggesting that MZD interferes with DNA repair responses to stress. Finally, the addition of phytase to the MZD diet successfully restored zinc levels in the prostate and decreased DNA damage back to ZA levels. Overall, this study suggests that marginal zinc deficiency sensitizes the prostate to oxidative stress and demonstrates the importance of maintaining optimal zinc nutrition in physically active populations.  相似文献   

14.
15.
16.
A role for oxidative damage in normal aging is supported by studies in experimental animals, but there is limited evidence in man. We examined markers of oxidative damage to DNA, lipids, and proteins in 66 muscle biopsy specimens from humans aged 25 to 93 years. There were age-dependent increases in 8-hydroxy-2-deoxyguanosine (OH8dG), a marker of oxidative damage to DNA, in malondialdehyde (MDA), a marker of lipid peroxidation, and to a lesser extent in protein carbonyl groups, a marker of protein oxidation. The increases in OH8dG were significantly correlated with increases in MDA. These results provide evidence for a role of oxidative damage in human aging which may contribute to age-dependent losses of muscle strength and stamina.  相似文献   

17.
Acute neuroprotective effects of cinnamophilin (CINN; (8R, 8'S)-4, 4'-dihydroxy-3, 3'-dimethoxy-7-oxo-8, 8'-neolignan), a novel antioxidant and free radical scavenger, were studied in a mouse model of transient middle cerebral artery (MCA) occlusion. CINN was administered intraperitoneally either 15 min before (pretreatment) or 2 h after the onset of MCA occlusion (postischemic treatment). Relative to vehicle-treated controls, animals pretreated with CINN, at 20-80 mg/kg, had significant reductions in brain infarction by 33-46% and improvements in neurobehavioral outcome. Postischemic administration with CINN (80 mg/kg) also significantly reduced brain infarction by 43% and ameliorated neurobehavioral deficits. Additionally, CINN administration significantly attenuated in situ accumulation of superoxide anions (O2-) in the boundary zones of infarct at 4 h after reperfusion. Consequently, CINN-treated animals exhibited significantly decreased levels of oxidative damage, as assessed by immunopositive reactions for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 4-hydroxynonenal (4-HNE), and the resultant inflammatory reactions at 24 h post-insult. It is concluded that CINN effectively reduced brain infarction and improved neurobehavioral outcome following a short-term recovery period after severe transient focal cerebral ischemia in mice. The finding of a decreased extent of reactive oxygen species and oxidative damage observed with CINN treatment highlights that its antioxidant and radical scavenging ability is contributory.  相似文献   

18.
The effect of silicon on the growth, boron concentrations, malondialdehyde (MDA) content, lipoxygenase (LOX) activity, proline (PRO) and H2O2 accumulation, and the activities of major antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)] and non-enzymatic antioxidants (AA) of wheat grown in soil originally with toxic B concentrations were investigated. Applied of 5.0 and 10.0 mM Si to the B toxic soil significantly increased Si concentration of the wheat and counteracted the deleterious effects of B on shoot growth. The contents of PRO, H2O2, MDA, and LOX activity of wheat grown in B toxic soil were significantly reduced by Si treatments. Compared with control plants, the activities of SOD, CAT, APX and content of AA were decreased by applied Si. Based on the present work, it can be concluded that Si alleviates B toxicity of wheat by preventing oxidative membrane damage and also translocation of B from root to shoot and/or soil to plant.  相似文献   

19.
A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse (“PolG” mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.  相似文献   

20.
The Vitamin E (VE) effect was examined on oxidative damage to DNA, lipids, and protein in mice that were fed various levels of lipid diets after total body irradiation (TBI) with X-rays at 2 Gy. No increase of 8-hydroxydeoxyguanosine (8OHdG) by TBI was observed in the + VE group; however, in the case of the -VE group, a significantly higher 8OHdG level was observed in the high-lipid group than in the low- or basal-lipid group. In the groups with TBI, the concentration of thiobarbituric reactive substances (TBARS) only significantly increased in the high-lipid (-VE) group. These changes in TBARS, due to TBI, were not detected in other groups. The contents of protein carbonyls only increased in the (-VE) group. The contents of protein carbonyls was significantly different between the (+VE) and the (-VE) groups, regardless of the lipid levels. The concentrations of GSH, vitamins C and E in the liver were lower, and the concentration of non-heme iron in the liver was higher in the high-lipid group than in the low- and basal-lipid groups. These concentrations in the high-lipid group were significantly different between the (+VE) and the (-VE) groups. These results strongly suggest that mice that are fed a high-lipid diet are susceptible to TBI-induced oxidative damage. Also, decreases in the GSH levels and an increase in the iron level are involved in the mechanism of this susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号