首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundIn Traditional Korean and Chinese medicine, the herbal remedy Yijin (Erchen)-Tang (YJT) is widely used to treat obesity-related disorders, and its therapeutic potential has been demonstrated in numerous studies. However, the systemic effect of YJT on obesity status and change of lipid metabolism by YJT still remains unknown.PurposeThis study aimed to investigate the therapeutic mechanism of the YJT on obesity by using lipidomics.MethodsTo evaluate the effects of treatment with YJT on obesity, C57BL/6 J mice were fed a high-fat and high-cholesterol (HFHC, 40% fat and 1% cholesterol) diet for 8 weeks and treated them with YJT for an additional 6 weeks. We then performed untargeted lipidomic analysis using ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry mass spectroscopy coupled with multivariate statistical analysis.ResultsYJT ameliorated obesity induced systemic inflammation and improved insulin resistance. Additionally, YJT protected against HFHC-diet-induced hepatic inflammation. To explore specific changes in lipid metabolism associated with the therapeutic effects of YJT, we performed untargeted lipid profiling of the plasma. Partial least squares-discriminant analysis (PLS-DA) score plots showed that YJT altered the lipid metabolic pattern of HFHC mice. In particular, ceramides and triglycerides with saturated fatty acids and monounsaturated fatty acids were significantly changed by YJT, which were significantly associated with insulin resistance, the AGE-RAGE signaling pathway in diabetic complications and adipocytokine signaling pathway in pathway enrichment analysis. Thus, we analyzed the changes in adipocytes and adipokine caused by YJT, and confirmed that YJT alleviated adipocytes inflammation and macrophage infiltration, and reversed HFHC-induced alterations in leptin and adiponectin levels in adipose tissue and plasma.ConclusionThese data suggest that YJT ameliorates obesity-induced systemic inflammation and insulin resistance by regulating lipid metabolism, and demonstrated that lipidomic profiling is a useful method to investigate the therapeutic effects of herbal decoctions in traditional Korean and Chinese medicine.  相似文献   

2.
3.
BackgroundStructural disruption of gut microbiota contributes to the development of non-alcoholic fatty liver disease (NAFLD) and modulating the gut microbiota represents a novel strategy for NAFLD prevention. Although previous studies have demonstrated that curcumin alleviates hepatic steatosis, its effect on the gut microbiota modulation has not been investigated.MethodsNext generation sequencing and multivariate analysis were utilized to evaluate the structural changes of gut microbiota in a NAFLD rat model induced by high fat-diet (HFD) feeding.ResultsWe found that curcumin attenuated hepatic ectopic fat deposition, improved intestinal barrier integrity, and alleviated metabolic endotoxemia in HFD-fed rats. More importantly, curcumin dramatically shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean rats fed a normal diet and altered the gut microbial composition. The abundances of 110 operational taxonomic units (OTUs) were altered by curcumin. Seventy-six altered OTUs were significantly correlated with one or more hepatic steatosis associated parameters and designated ‘functionally relevant phylotypes’. Thirty-six of the 47 functionally relevant OTUs that were positively correlated with hepatic steatosis associated parameters were reduced by curcumin.ConclusionThese results indicate that curcumin alleviates hepatic steatosis in part through stain-specific impacts on hepatic steatosis associated phylotypes of gut microbiota in rats.General significanceCompounds with antimicrobial activities should be further investigated as novel adjunctive therapies for NAFLD.  相似文献   

4.
Recent findings have revealed that gut microbiota plays a substantial role in modulating diseases such as autism, rheumatoid arthritis, allergies, and cancer that occur at sites distant to the gut. Athymic nude mice have been employed for tumorigenic research for decades; however, the relationships between the gut microbiome and host’s response in drug treatment to the grafted tumors have not been explored. In this study, we analyzed the fecal microbiome of nonxenograft and xenograft nude mice treated with phytosaponins from a popular medicinal plant, Gynostemma pentaphyllum (Gp). Analysis of enterobacterial repetitive intergenic consensus (ERIC)-PCR data showed that the microbiota profile of xenograft mice departed from that of the nonxenograft mice. After ten days of treatment with Gp saponins (GpS), the microbiota of the treated mice was closer to the microbiota at Day 0 before the implantation of the tumor. Data obtained from 16S pyrosequencing of fecal samples reiterates the differences in microbiome between the nonxenograft and xenograft mice. GpS markedly increased the relative abundance of Clostridium cocleatum and Bacteroides acidifaciens, for which the beneficial effects on the host have been well documented. This study, for the first time, characterizes the properties of gut microbiome in nude mice responding to tumor implant and drug treatment. We also demonstrate that dietary saponins such as GpS can potentially regulate the gut microbial ecosystem by increasing the number of symbionts. Interestingly, this regulation of the gut ecosystem might, at least in part, be responsible for or contribute to the anticancer effect of GpS.  相似文献   

5.
6.
7.
Resveratrol is a natural polyphenol that has been reported to reduce the risk of obesity and nonalcoholic fatty liver disease (NAFLD). Recent evidence has demonstrated that the gut microbiota plays an important role in the protection against NAFLD and other metabolic diseases. The present study aimed to investigate the relationship between the gut microbiota and the beneficial effects of resveratrol on the amelioration of NAFLD in mice. We observed marked decreases in body weight and liver steatosis and improved insulin resistance in high-fat diet (HFD)-fed mice treated with resveratrol. Furthermore, we found that resveratrol treatment alleviated NAFLD in HFD-fed mice by improving the intestinal microenvironment, including gut barrier function and gut microbiota composition. On the one hand, resveratrol improved gut intestinal barrier integrity through the repair of intestinal mucosal morphology and increased the expression of physical barrier- and physiochemical barrier-related factors in HFD-fed mice. On the other hand, in HFD-fed mice, resveratrol supplementation modulated the gut bacterial composition. The resveratrol-induced gut microbiota was characterized by a decreased abundance of harmful bacteria, including Desulfovibrio, Lachnospiraceae_NK4A316_group and Alistipes, as well as an increased abundance of short-chain fatty acid (SCFA)-producing bacteria, such as Allobaculum, Bacteroides and Blautia. Moreover, transplantation of the HFDR-microbiota into HFD-fed mice sufficiently decreased body weight, liver steatosis and low-grade inflammation and improved hepatic lipid metabolism. Collectively, resveratrol would provide a potentially dietary intervention strategy against NAFLD through modulating the intestinal microenvironment.  相似文献   

8.
9.
PPARδ regulates systemic lipid homeostasis and inflammation, but its role in hepatic lipid metabolism remains unclear. Here, we examine whether intervening with a selective PPARδ agonist corrects hepatic steatosis induced by a high-fat, cholesterol-containing (HFHC) diet. Ldlr−/− mice were fed a chow or HFHC diet (42% fat, 0.2% cholesterol) for 4 weeks. For an additional 8 weeks, the HFHC group was fed HFHC or HFHC plus GW1516 (3 mg/kg/day). GW1516-intervention significantly attenuated liver TG accumulation by induction of FA β-oxidation and attenuation of FA synthesis. In primary mouse hepatocytes, GW1516 treatment stimulated AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation in WT hepatocytes, but not AMPKβ1−/− hepatocytes. However, FA oxidation was only partially reduced in AMPKβ1−/− hepatocytes, suggesting an AMPK-independent contribution to the GW1516 effect. Similarly, PPARδ-mediated attenuation of FA synthesis was partially due to AMPK activation, as GW1516 reduced lipogenesis in WT hepatocytes but not AMPKβ1−/− hepatocytes. HFHC-fed animals were hyperinsulinemic and exhibited selective hepatic insulin resistance, which contributed to elevated fasting FA synthesis and hyperglycemia. GW1516 intervention normalized fasting hyperinsulinemia and selective hepatic insulin resistance and attenuated fasting FA synthesis and hyperglycemia. The HFHC diet polarized the liver toward a proinflammatory M1 state, which was reversed by GW1516 intervention. Thus, PPARδ agonist treatment inhibits the progression of preestablished hepatic steatosis.  相似文献   

10.
Western-style diet (WSD), which is high in fat and low in fiber, lacks nutrients to support gut microbiota. Consequently, WSD reduces microbiota density and promotes microbiota encroachment, potentially influencing colonization resistance, immune system readiness, and thus host defense against pathogenic bacteria. Here we examined the impact of WSD on infection and colitis in response to Citrobacter rodentium. We observed that, relative to mice consuming standard rodent grain-based chow (GBC), feeding WSD starkly altered the dynamics of Citrobacter infection, reducing initial colonization and inflammation but frequently resulting in persistent infection that associated with low-grade inflammation and insulin resistance. WSD’s reduction in initial Citrobacter virulence appeared to reflect that colons of GBC-fed mice contain microbiota metabolites, including short-chain fatty acids, especially acetate, that drive Citrobacter growth and virulence. Citrobacter persistence in WSD-fed mice reflected inability of resident microbiota to out-compete it from the gut lumen, likely reflecting the profound impacts of WSD on microbiota composition. These studies demonstrate potential of altering microbiota and their metabolites by diet to impact the course and consequence of infection following exposure to a gut pathogen.  相似文献   

11.
BackgroundBile acids (BAs) participate in lipid absorption and serve as metabolic regulatory factors in gut-liver communication. To date, there are no studies on the systemic patterns of BAs in the serum, liver, and gut in the same non-alcoholic fatty liver disease (NAFLD) model.MethodsA targeted metabolomics approach and 16S rRNA sequencing were used to identify the profile of BAs and connection between BAs and microbiota. The role and mechanism of altered BAs on hepatic steatosis were investigated.FindingsIn the liver, the composition of taurocholic acid (TCA) was increased, but taurohyodeoxycholic acid (THDCA) and ursodeoxycholic acid (UDCA) were decreased. In the gut, the deconjugated form of TCA (cholic acid (CA)) was increased, while the deconjugated forms of THDCA (α-hyodeoxycholic acid (HDCA)) and ω-muricholic acid (ωMCA) were decreased. In the serum, the composition of TCA was increased, while both HDCA and THDCA were decreased. THDCA induced the gene expression of apolipoprotein, bile secretion-related proteins, and cytochrome P450 family but suppressed inflammatory response genes expression in steatotic hepatocytes by RNAseq analysis. THDCA ameliorated neutral lipid accumulation and improved insulin sensitivity in primary rat hepatocytes. The decreased HDCA level correlated with the level of Bacteroidetes, while the level of CA correlated with the levels of Firmicutes and Verrucomicrobia but correlated inversely with Bacteroidetes.ConclusionBAs profiles in the serum, liver and caecal content were altered in a rat NAFLD model, which may affect hepatic lipid accumulation and correlate with gut dysbiosis.  相似文献   

12.
Outside the nutrition community the effects of diet on immune-mediated diseases and experimental outcomes have not been appreciated. Investigators that study immune-mediated diseases and/or the microbiome have overlooked the potential of diet to impact disease phenotype. We aimed to determine the effects of diet on the bacterial microbiota and immune-mediated diseases. Three different laboratory diets were fed to wild-type mice for 2 weeks and resulted in three distinct susceptibilities to dextran sodium sulfate (DSS)-induced colitis. Examination of the fecal microbiota demonstrated a diet-mediated effect on the bacteria found there. Broad-spectrum antibiotics disturbed the gut microbiome and partially eliminated the diet-mediated changes in DSS susceptibility. Dietary changes 2 days after DSS treatment were protective and suggested that the diet-mediated effect occurred quickly. There were no diet-mediated effects on DSS susceptibility in germ-free mice. In addition, the diet-mediated effects were evident in a gastrointestinal infection model (Citrobacter rodentium) and in experimental autoimmune encephalomyelitis. Taken together, our study demonstrates a dominant effect of diet on immune-mediated diseases that act rapidly by changing the microbiota. These findings highlight the potential of using dietary manipulation to control the microbiome and prevent/treat immune-mediated disease.  相似文献   

13.
【目的】采用高通量测序方法研究强化玉米饮食对小鼠肠道菌群结构的影响以及可提高宿主糖代谢相关菌群功能基因的分析。【方法】分别给予两组小鼠(各10只)常规饮食和强化玉米饮食(1/4的玉米粉加3/4的常规饮食成分),喂养10周,之后采集小鼠粪便样本,提取DNA,使用高通量测序仪进行宏基因组测序分析,比较两组小鼠肠道菌群和功能基因的差异。【结果】两组小鼠的终末体重没有明显差异。各样本DNA的测序有效率足够,肠道菌群的多样性存在一定差异。属放线菌门(Actinobacteria)的双歧杆菌(Bifidobacteriales)-B.pseudolongum分支和Coriobacteriia-Collinsella/Enterorhabdus分支的丰度在强化玉米饮食组的小鼠中显著升高,相应的宏基因组中涉及糖酵解和胆汁酸合成的一些酶和功能单元的含量也在强化玉米饮食组显著升高。【结论】强化玉米饮食可以提高肠道菌群中双歧杆菌等益生菌的丰度,增加宏基因组糖脂代谢相关基因和通路的含量,从而可能促进宿主的糖代谢功能。  相似文献   

14.
BackgroundGut microbiota is increasingly recognized as the key participant in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) by translocation of its products, such as lipopolysaccharide (LPS), via the dysfunctional intestinal barrier. Qushi Huayu decoction (QHD), a traditional Chinese medicine, is developed specially for NAFLD and used in clinic in China for more than a decade and previously found to ameliorate non-alcoholic steatohepatitis (NASH) induced by high-fat diet (HFD) in mice accompanied with inhibited metabolic endotoxemia and hepatic LPS signalling.PurposeTo investigate the mechanism of LPS gut-leakage inhibition by QHD in NASH.MethodsEffects of QHD on gut microbioa and intestinal barrier were evaluated in NASH induced by HFD in mice. 16S rRNA sequencing is employed to analyse the gut microbiota composition. To identify the potential signalling pathway responsible for tight junction regulation, the colonic phosphoprotein profile is screened via the Phospho Explorer Antibody Array and verified in NASH, intestinal barrier dysfunctional mouse and Caco-2 cells.ResultsQHD ameliorates NASH accompanied with regulating the gut microbiota composition, protecting intestinal tight junctions and inhibiting LPS gut-leakage without decreasing the abundance of identified Gram-negative bacteria. The validated data of phosphorylated proteins suggested that mitogen-activated protein kinase (MAPK) pathway is predominantly responsible for the colonic tight junction regulation by QHD.ConclusionQHD inhibits LPS gut-leakage in NASH, which is associated with downregulation of intestinal MAPK pathway.  相似文献   

15.
16.
【目的】为了筛选能抑制鼠类柠檬酸杆菌(Citrobacter rodentium)诱发的小鼠结肠炎的益生菌,并研究其干预机制。【方法】对4株筛选的菌株进行人工模拟胃肠液耐受试验,并体外测试它们对鼠类柠檬酸杆菌的抑制能力,最终筛选出粪肠球菌(Enterococcus faecalis)MG 2108。72只雄性7周龄ICR小鼠经过适应性饲养7d后,被随机分为2组:正常对照组(MC组,24只,生理盐水)和炎症对照组(IC组,48只,1×1010CFU/mL灌胃鼠类柠檬酸杆菌),7d后各采12只小鼠,通过结肠组织HE染色和炎症因子检测实验,判断炎症模型建成。原MC组(剩下12只小鼠)更名为NC组,用以区别建模前后的正常对照组,IC组随机分成3组:自然恢复组(IR组,12只,生理盐水)、环丙沙星组(CF组,12只,4mg/mL环丙沙星)和粪肠球菌MG 2108组(EF组,12只,1×108CFU/mL粪肠球菌MG 2108)。18d后结束灌胃,所有小鼠麻醉后眼球取血,解剖。【结果】粪肠球菌MG 2108可以缓解和修复鼠类柠檬酸杆菌引发的小鼠结肠和肝脏损伤,并且通过降低炎症细胞因子的表达水平和增加紧密连接蛋白的表达水平,促进了结肠炎症组织的修复。它改变了肠道微生物菌群结构,EF组的肠杆菌属(Enterorhabdus)和阿克曼菌属(Akkermansia)等有益菌群的丰度增加,同时短链脂肪酸也显著增加(P<0.05),并且优于CF组和IR组。【结论】粪肠球菌MG2108是一株有利于肠道健康的益生菌,治疗鼠类柠檬酸杆菌诱导的小鼠结肠炎效果优于环丙沙星,自然恢复组效果明显差于EF组。  相似文献   

17.
Edible insects, Bombyx mori (silkworm; SW), which feed on mulberry leaves, have been consumed by humans for a long time as supplements or traditional medication. Non-alcoholic fatty liver disease (NAFLD) is a liver metabolic disorder that affects many people worldwide. We examined the hepatoprotective effects of SW using in vitro and high-fat and high-fructose (HFHF) diet-induced obese in vivo model mice by real-time PCR, immunoblot analysis, and fecal microbiota analysis. SW significantly reduced lipid accumulation and expression of the lipogenic genes in HepG2 cells and the livers of HFHF-induced mice. SW caused significant reductions in triglycerides, and total cholesterol in serum and upregulation of fatty acid oxidation markers compared to the HFHF group. Besides, SW significantly induced phosphorylation of AMPK and ACC in both models, suggesting roles in AMPK activation and the ACC signaling pathway. Furthermore, the gut microbiota analysis demonstrated that SW treatment reduced Firmicutes to Bacteroidetes ratios and the relative abundance of the Lachnospiraceae family compared to HFHF-induced obese mice. These results provide a novel therapeutic agent of hepatoprotective effects of SW for non-alcoholic hepatic steatosis that targets hepatic AMPK and ACC-mediated lipid metabolism.  相似文献   

18.
Lentinula edodes-derived polysaccharides possess many therapeutic characteristics, including anti-tumor and immuno-modulation. The gut microbes play a critical role in modulation of immune function. However, the impact of Lentinula edodes-derived polysaccharides on the gut microbes have not yet been explored. In this study, high-throughput pyrosequencing technique was employed to investigate the effects of a new heteropolysaccharide L2 from Lentinula edodes on microbiota diversity and composition of small intestine, cecum, colon and distal end of colon (feces) in mice. The results demonstrated that along mouse intestine the microbiota exhibit distinctly different space distribution. L2 treatment reduced the diversity and evenness of gut microbiota along the intestine, especially in the cecum and colon. In the fecal microbial communities, the decrease of Bacteroidetes by significantly increasing Proteobacteria were observed, which were characterized by the increased Helicobacteraceae and reduced S24-7 at family level. Some OTUs, corresponding to Bacteroides acidifaciens, Alistipes and Helicobacter suncus, were found to be significantly increased in L2 treated-mice. In particular, 4 phyla Chloroflexi, Gemmatimonadetes, Nitrospirae and Planctomycetes are exclusively present in L2-treated mice. This is helpful for further demonstrating healthy action mechanism of Lentinula edodes-derived polysaccharide L2.  相似文献   

19.
Epiberberine (EPI), extracted from Rhizome Coptidis, has been shown to attenuate hyperlipidemia in vivo. Herein we have studied the mechanism by which EPI is active against non-alcoholic steatohepatitis (NASH) using, mice fed on a methionine- and choline-deficient (MCD) diet and HepG2 cells exposed to free fatty acids (FFA). We show that small heterodimer partner (SHP) protein is key in the regulation of lipid synthesis. In HepG2 cells and in the livers of MCD-fed mice, EPI elevated SHP levels, and this was accompanied by a reduction in sterol regulatory element-binding protein-1c (SREBP-1c) and FASN. Therefore, EPI reduced triglyceride (TG) accumulation in steatotic hepatocytes, even in HepG2 cells treated with siRNA-SHP, and also improved microbiota. Thus, EPI suppresses hepatic TG synthesis and ameliorates liver steatosis by upregulating SHP and inhibiting the SREBP1/FASN pathway, and improves gut microbiome.  相似文献   

20.

Background

Intestinal bacteria are known to regulate bile acid (BA) homeostasis via intestinal biotransformation of BAs and stimulation of the expression of fibroblast growth factor 19 through intestinal nuclear farnesoid X receptor (FXR). On the other hand, BAs directly regulate the gut microbiota with their strong antimicrobial activities. It remains unclear, however, how mammalian BAs cross-talk with gut microbiome and shape microbial composition in a dynamic and interactive way.

Results

We quantitatively profiled small molecule metabolites derived from host-microbial co-metabolism in mice, demonstrating that BAs were the most significant factor correlated with microbial alterations among all types of endogenous metabolites. A high-fat diet (HFD) intervention resulted in a rapid and significant increase in the intestinal BA pool within 12 h, followed by an alteration in microbial composition at 24 h, providing supporting evidence that BAs are major dietary factors regulating gut microbiota. Feeding mice with BAs along with a normal diet induced an obese phenotype and obesity-associated gut microbial composition, similar to HFD-fed mice. Inhibition of hepatic BA biosynthesis under HFD conditions attenuated the HFD-induced gut microbiome alterations. Both inhibition of BAs and direct suppression of microbiota improved obese phenotypes.

Conclusions

Our study highlights a liver–BA–gut microbiome metabolic axis that drives significant modifications of BA and microbiota compositions capable of triggering metabolic disorders, suggesting new therapeutic strategies targeting BA metabolism for metabolic diseases.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号