首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
Effects of lanthanum on Ca2+-ATPase, Mg2+-ATPase, Na+-K+-ATPase, and calcium binding activities were studied in rat heart sarcolemma. Ten to 100 micrometers lanthanum depressed significantly the Ca2+-ATPase activity and 50--200 micrometers lanthanum inhibited the calcium binding activity. Lineweaver-Burk plots of the Ca2+-ATPase activity showed that the inhibition by lanthanum was competitive with calcium concentration. Neither Mg2+-ATPase nor Na+-K+-ATPase activities were affected by lanthanum when the assay medium contained 1 mM EDTA; however, in the absence of EDTA, these enzyme activities were significantly decreased by 10--100 micrometers lanthanum. Rat hearts perfused with HEPES buffer containing 0.5 mM lanthanum showed electron-dense deposits restricted to the outer cell surface and the sarcolemma obtained from these hearts also had the deposits, indicating that the membrane fraction isolated by the hypotonic shock--LiBr treatment method is of sarcolemmal origin. The Ca2+-ATPase activity of the sarcolemma isolated from lanthanum-perfused hearts, unlike the Mg2+-ATPase, Na+-K+-ATPase, and calcium binding activities, was significantly less than the control value. From these observations it is suggested that lanthanum may influence calcium movement across the sarcolemma by affecting sarcolemmal ATPase and calcium binding activities.  相似文献   

2.
We have studied the effects of local anesthetics (dibucaine, tetracaine, lidocaine, and procaine) on calcium fluxes through the plasma membrane of synaptosomes. All these local anesthetics inhibit the ATP-dependent calcium uptake by inverted plasma membrane vesicles at concentrations close to those that promote an effective blockade of the action potential. The values obtained for the K0.5 of inhibition of calcium uptake are the following: 23 microM (dibucaine), 0.44 mM (lidocaine), 1.5 mM (procaine), and 0.8 mM (tetracaine). There is a good correlation between these K0.5 values and the concentrations of the local anesthetics that inhibit the Ca2(+)-dependent Mg2(+)-ATPase of these membranes. In addition, except for procaine, these local anesthetics stimulate severalfold the Ca2+ outflow via the Na+/Ca2+ exchange in these membranes. This effect, however, is observed at concentrations slightly higher than those that effectively inhibit the ATP-dependent Ca2+ uptake, e.g., 80-700 microM dibucaine, 2-10 mM lidocaine, and 1-3 mM tetracaine. The results suggest that the Ca2+ buffering of neuronal cytosol is altered by these anesthetics at pharmacological concentrations.  相似文献   

3.
Beta-adrenoceptor blocking agents may have, in addition to their primary action, also ancillary effects on the cell membrane. In the present paper the non-specific interaction of exaprolol with the ATPase systems in isolated rat heart sarcolemmal membranes was investigated. When preincubated with sarcolemmal membranes in vitro, exaprolol in concentrations below 10(-4) mol.l-1 had no significant effect on sarcolemmal Mg2+-, Ca2+- and (Na+ + K+)-ATPase activities. At exaprolol concentration of 10(-4) mol.l-1 the Mg2+- and Ca2+-ATPase activities became inhibited whereas the (Na+ + K+)-ATPase activity was markedly stimulated. A kinetic analysis of these interactions revealed a non-competitive inhibition of Mg2+- and Ca2+-ATPase. In the case of (Na+ + K+)-ATPase a synergistic type of stimulation characterized by an exaprolol-induced conversion of an essential sulfhydryl group in the active site of the enzyme to the more reactive [S-] form has been observed thus increasing the affinity of the enzyme to ATP. Exaprolol concentrations exceeding 5 X 10(-4) mol.l-1 induced an overall depression of the investigated enzyme activities.  相似文献   

4.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1.10(-4) M. The sarcolemmal markers, ouabain-sensitive (Na+ +K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ +Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27-39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ +Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ +Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K1/2 for inhibition approx. 1.5 microM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

5.
Preparations of rabbit small intestine smooth muscle cell sarcolemma are capable of hydrolyzing ATP in the presence of millimolar concentrations of Mg2+ and Ca2+ and possess the activity of Mg2+,Ca2+-ATPase having a high affinity for Ca2+ (Km = 5.8 X 10(-6) M). The optimal conditions for the Mg2+,Ca2+-ATPase reaction were established. It was demonstrated that sarcolemmal preparations hydrolyze ATP, GTP, ITP and UTP almost at the same rates. The enzyme contains SH-groups that are unequally exposed to the water phase and are inhibited by 50% by p-chloromercurybenzoate and by 90% by dithionitrobenzoate. The Mg2+,Ca2+-ATPase activity is highly sensitive to oxytocin: at the concentration of 10(-7) MU/ml, the hormone completely inhibits the enzyme without affecting its Mg2+-, Ca2+- and Na+,K+-ATPase activities.  相似文献   

6.
mitoKATP通道参与心肌缺血预处理保护作用的机制   总被引:1,自引:0,他引:1  
目的:探讨血管紧张素转换酶抑制剂(ACEI)和阈下缺血预处理联合预处理诱导的心肌保护作用中mi-toKatp通道激动后的作用机制:方法:采用离体大鼠心脏Langendorff灌流模型,观察心脏电脱耦联发生时间、细胞膜Na^+/K^+-ATPase和Ca^2+/Mg^2+-ATPase活性的改变:结果:单独使用卡托普利、或给予大鼠心脏2min缺血/10min复灌作为阈下缺血预处理,均不能改善长时间缺血/复灌引起的心脏收缩功能下降?而卡托普利和阂下缺血预处理联合使用可增高心脏收缩功能。mitoKatp通道特异性阻断剂5-HD可取消这一联合预处理的作用一联合预处理可引起缺血后电脱耦联发生时间延长,缺血心肌细胞膜Na^+/K^+-ATPase和Ca^2+/Mg^2+-ATPase活性增高;5-HD可取消此作用结论:mitoKatp通道参与了联合预处理延迟缺血引起的细胞间脱耦联和促进细胞膜离子通道稳定性维持的作用。  相似文献   

7.
Rat heart sarcolemma prepared by the hypotonic shock-LiBr treatment method was found to bind calcium by a concentration-dependent and saturable process. The calcium binding values at 50 muM and 1.25 mM Ca2+ concentrations were about 30 and 250 nmoles/mg protein, respectively. Both Mg2+ and ATP inhibited calcium binding and no evidence for energy-linked calcium binding with sarcolemmn was found. z sn the other hand, maximal ATP hydrolysis by heart sarcolemma was seen at 4 mM Mg2+ or Ca2+. The Ca2+-ATPase LEO) of Ca2+ failed to stimulate ATP hydrolysis in the presence of various concentrations of Mg-ATP. These results indicate the absence of a "calcium pump" mechanism in the heart sarcolemmal membrane preparation employed in this study.  相似文献   

8.
The local anesthetics dibucaine and tetracaine inhibit the (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum [DeBoland, A. R., Jilka, R. L., & Martonosi, A. N. (1975) J. Biol. Chem. 250, 7501-7510; Suko, J., Winkler, F., Scharinger, B., & Hellmann, G. (1976) Biochim. Biophys. Acta 443, 571-586]. We have carried out differential scanning calorimetry and fluorescence measurements to study the interaction of these drugs with sarcoplasmic reticulum membranes and with purified (Ca2+ + Mg2+)-ATPase. The temperature range of denaturation of the (Ca2+ + Mg2+)-ATPase in the sarcoplasmic reticulum membrane, determined from our scanning calorimetry experiments, is ca. 45-55 degrees C and for the purified enzyme ca. 40-50 degrees C. Millimolar concentrations of dibucaine and tetracaine, and ethanol at concentrations higher than 1% v/v, lower a few degrees (degrees C) the denaturation temperature of the (Ca2+ + Mg2+)-ATPase. Other local anesthetics reported to have no effect on the ATPase activity, such as lidocaine and procaine, did not significantly alter the differential scanning calorimetry pattern of these membranes up to a concentration of 10 mM. The order parameter of the sarcoplasmic reticulum membranes, calculated from measurements of the polarization of the fluorescence of diphenylhexatriene, is not significantly altered at the local anesthetic concentrations that shift the denaturation temperature of the (Ca2+ + Mg2+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of ether, chloroform, and halothane on calcium accumulation and ATPase activity of rat heart microsomes and mitochondria as well as on myofibrillar ATPase activity were investigated. Chloroform and halothane depressed microsomal and mitochondrial calcium uptake and binding in a parallel fashion. Ether decreased microsomal calcium binding and mitochondrial calcium uptake to varying degrees, while mitochondrial calcium binding was slightly enhanced. Whereas ether had no effect, chloroform depressed microsomal and mitochondrial total APTase activities and halothane decreased microsomsl ATPase and slightly stimulated mitochondrial total ATPase activities. Halothane was found to depress myofibrillar Mg2+-ATPase and ether was capable of decreasing myofibrillar Ca2+-ATPase. Chloroform was seen to inhibit both myofibrillar enzymes. These results suggest that the cardiodepressant actions of volatile anesthetic agents may be due to alterations in the calcium accumulating abilities of microsomal and mitochondrial membranes while direct myofibrillar effects may contribute to the depression seen with relatively higher concentrations of anesthetics.  相似文献   

10.
J Mas-Oliva 《Cell calcium》1982,3(2):113-129
A reconstitution procedure for a cardiac sarcolemmal enriched fraction is described. In the reconstituted cardiac sarcolemmal inside-out vesicles, a difference in calcium transport and (Ca2+ + Mg2+)-ATPase activity was found depending on the side of the membrane at which sodium and potassium were placed. Having inhibited the (Na+ + K+)- ATPase activity with ouabain, the active transport of calcium was increased when potassium was located outside and sodium inside the reconstituted vesicles. Nevertheless, this activity was maximal having potassium present on both sides. During calcium transport it was also shown that 86Rb moves opposite to calcium. When the experiment was carried out having 22Na located at the inside, there was no movement of this cation despite the low calcium transport observed. The present study supports the possibility of potassium having a stimulatory effect upon the sarcolemmal (Ca2+ + Mg2+)-ATPase activity and suggests the existence of a Ca2+, K+ co-transport carried out by this enzyme.  相似文献   

11.
Islet cell plasma membranes contain a calcium-stimulated and magnesium-dependent ATPase (Ca2+ + Mg2+)-ATPase) which requires calmodulin for maximum enzyme activity (Kotagal, N., Patke, C., Landt, M., McDonald, J., Colca, J., Lacy, P., and McDaniel, M. (1982) FEBS Lett. 137, 249-252). Investigations indicated that exogenously added calmodulin increases the velocity and decreases the Km for Ca2+ of the high affinity (Ca2+ + Mg2+)-ATPase. These studies routinely employed the chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to maintain Ca2+ concentrations in the submicromolar range. During the course of these investigations, it was found unexpectedly that increasing the concentrations of EGTA (0.1-4 mM) and total calcium in the media, while maintaining constant free Ca2+ levels, increased the velocity of the high affinity (Ca2+ + Mg2+)-ATPase. The free calcium concentrations under these conditions were verified by a calcium-sensitive electrode. The (Ca2+ + Mg2+)-ATPase maximally activated by 2-4 mM EGTA was not further stimulated by calmodulin, whereas camodulin stimulation increased as the concentration of EGTA in the media was decreased. A similar enhancement by Ca-EGTA was observed on active calcium transport by the plasma membrane-enriched fraction. Moreover, Ca-EGTA had a negligible effect on both active calcium transport as well as Ca2+-stimulated ATPase activity by the islet cell endoplasmic reticulum, processes which are not stimulated by calmodulin. The results indicate that stimulation by Ca-EGTA may be used to differentiate calcium transport systems by these subcellular organelles. Furthermore, the concentration of EGTA routinely employed to maintain free Ca2+ levels may itself obscure effects of calmodulin and other physiological agents on calcium-dependent activities.  相似文献   

12.
In the absence of ATP, increasing concentrations of calcium within a range between 0.1--8.0 mmol . 1(-1) gradually lowered the alpha-helix content of proteins in rat heart sarcolemma requiring no energy supply. In the presence of ATP, similar concentrations of calcium stepwise activated the sarcolemmal low-affinity Ca2+-ATPase. A mathematical analysis of the data obtained revealed a quantitative relationship between calcium-induced stimulation of the Ca2+-ATPase activity and a diminution of the alpha-helix contents of membrane proteins in cardiac sarcolemma. The cooperation between changes in protein conformation and energy consumption in relation to the supposed role of low-affinity Ca2+-ATPase in gating the calcium channel are discussed.  相似文献   

13.
The effects of tertiary amine local anesthetics (procaine, lidocaine, tetracaine and dibucaine) and chlorpromazine were investigated for three enzyme activities associated with rat brain synaptosomal membranes, i.e., (Na+ + K+)-ATPase (ouabain-sensitive), Mg2+-ATPase (ouabain-insensitive) and acetylcholinesterase. Approximately the same concentrations of each agent gave 50% inhibition of both ATPase, for example 7.9 and 10 mM tetracaine for Mg2+-ATPase and (Na+ + K+)-ATPase, respectively; these concentrations are 10-fold higher than required for inhibition of mitochondrial F1-ATPase. The relative inhibitory potency of the several agents was proportional to their octanol/water partition coefficients. Acetylcholinesterase was inhibited by all agents tested, but the ester anesthetics (procaine and tetracaine) were considerably more potent than the others after correction for partition coefficient differences. For tetracaine, 0.18 mM gave 50% inhibition and showed competitive inhibition on a Lineweaver-Burk plot, but for dibucaine a mixed type of inhibition was observed, and 0.63 mM was required for 50% inhibition. Tetracaine evidently binds at the active site, and dibucaine at the peripheral or modulator site, on this enzyme.  相似文献   

14.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump.  相似文献   

15.
Treatment with calcitriol of isolated cartilage cells derived from epiphyseal growth plates of rachitic chicks results in reduced intracellular calcium concentrations. The reduction in calcium was found to correlate with increased activity of Ca2+-ATPase. The activities of Na+-K+-ATPase and of Mg2+-ATPase did not change in response to the treatment with calcitriol. It is suggested that calcitriol regulates intracellular calcium by modulating the activity of the Ca2+-pumping ATPase.  相似文献   

16.
Calcium-Stimulated Adenosine Triphosphatases in Synaptic Membranes   总被引:14,自引:12,他引:2  
We have investigated the properties of several ATPases present in synaptic membrane preparations from the cerebral cortex of rat. In addition to the intrinsic (Na+ + K+)-ATPase and a low level of contaminating Mg2+-ATPase of mitochondrial origin, both of which could be controlled by the addition of ouabain and azide, respectively, four activities were studied: (1) a Mg2+-ATPase; (2) a Mg2+-independent activity requiring Ca2+ ions at high concentrations; (3) a (Ca2+ + Mg2+)-ATPase with a high affinity for Ca2+, which were enhanced further (4) by the inclusion of calmodulin (33 nM for half-maximal activity). In the presence of 0.5 mM-EGTA in the buffer used, half saturation for these respective metal ions was observed at 0.9 mM for (1), 1.0 mM for (2), and approximately 0.3 mM for (3) and (4); the latter values correspond to concentrations of free Ca2+ of 0.38 and 0.18 microM for (3) and (4), respectively. The level of activities observed, all in nmol X min-1 X mg-1, under optimal conditions of 37 degrees C, was in a number of preparations (n in parenthesis): for (1) 446 +/- 19 (19); for (2) 362 +/- 18 (3) for (3) 87 +/- 13 (12); and for (4) 161 +/- 29 (12). The (Ca2+ + Mg2+)-ATPase, both in the presence and absence of calmodulin, could be inhibited specifically by a number of agents (approximate I0.5 in parentheses) which, at these concentrations, showed little or no potency against the other activities; among them were vanadate (less than or equal to 10 microM), La3+ (75 microM), trifluoperazine, and other phenothiazines (50 microM). These properties suggest that the (Ca2+ + Mg2+)-ATPase described may be responsible for calcium transport across one (or more) of the several membranes present in nerve endings and contained in the preparation used.  相似文献   

17.
Extracellular calcium at millimolar concentrations inhibits collective motility of ejaculated ram spermatozoa. In untreated cells, or when motility was made dependent upon glycolytic activity, there is very small inhibition, but when motility was made dependent upon mitochondrial respiration there is very high inhibition in motility by increasing extracellular Ca2+ concentration. Quercetin, which inhibits (Ca2+ + Mg2+)-ATPase activity in isolated plasma membranes, also inhibits motility mainly in cells that have been made dependent upon glycolytic activity, but there is also inhibition in untreated cells. When motility was made dependent upon mitochondrial activity, there is no inhibition but rather some stimulation in motility by quercetin. The inhibitory effect of quercetin is enhanced by increasing Ca2+ concentration in the medium. Quercetin also inhibits uptake of calcium into the cells, in a mechanism by which a calcium channel is involved. This inhibition is high only when the glycolysis is inhibited in the cells. The rate of glycolysis is decreased by quercetin or ouabain, but their effects on motility are quite different. Based on these data, it appears that the plasma membrane (Ca2+ + Mg2+)-ATPase or the Ca2+ pump have a functional role in the regulation of spermatozoa motility. This motility regulation is functioning through mechanisms which include glycolytic activity and maintenance of intracellular calcium concentrations.  相似文献   

18.
The effects of quinidine and lidocaine on frog ventricle were studied by using a single sucrose gap voltage clamp technique. In Ca2+-Ringer, quinidine (80 microM) caused slight prolongation of action potential duration (APD50) and significant inhibition of twitch tension. Lidocaine (40 microM) shortened APD50 without significant effect on twitch tension. In tetrodotoxin (TTX)-treated preparations, quinidine caused significant prolongation of APD50 from 529 +/- 19 msec to 597 +/- 11 msec, (n = 9) and inhibition of twitch tension, but lidocaine did not affect APD50 and twitch tension. Under voltage clamp condition, quinidine reduced peak inward current in the absence of TTX, but enhanced peak inward current in the presence of TTX. The steady state outward current was increased by quinidine. Lidocaine didn't affect peak inward current in the absence or in the presence of TTX. Membrane current through the inward rectifier (IK1) was slightly increased by lidocaine, but significantly inhibited by quinidine. The enhancement of peak inward current by quinidine was retarded or reversed in preparation bathed with Sr2+-Ringer. When Ni2+ was added to a preparation bathed in Ca2+-Ringer, an inhibition of calcium inward current and action potential plateau was observed. The spike amplitude of the action potential was, however, unaffected by Ni2+. In this Ni2+-treated preparation, lidocaine (20 microM) caused significant shortening of APD50 without significant effect on action potential amplitude. The shortening of APD50 was associated with a slight increase of steady state outward current. The increase of steady state outward current by lidocaine was absent in the TTX-treated preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of cholesterol incorporation and depletion of the cardiac sarcolemmal sacs on (Ca2+ + Mg2+)-ATPase activity was examined. Cholesterol incorporation to the sarcolemmal sacs was achieved utilizing an in vivo and an in vitro procedure. Cholesterol depleted membranes were obtained in vitro after incubation of the sarcolemmal sacs with inactivated plasma. Arrhenius plots of the (Ca2+ + Mg2+)-ATPase activity showed a triphasic curve when the assays were carried out using a temperature range between 0 and 40 degrees C. The sarcolemmal (Ca2+ + Mg2+)-ATPase activity was shown to be inversely proportional to the cholesterol concentration of the membranes, showing a low ATPase activity with a high cholesterol content and a high ATPase activity when the cholesterol concentration was low. Although the (Ca2+ + Mg2+)-ATPase activity was found to be inhibited in the cholesterol incorporated sarcolemmal sacs, the withdrawal of small amounts of cholesterol from the membranes produced an important stimulatory effect. Changes in (Ca2+ + Mg2+)-ATPase activity due to variation in the membrane cholesterol concentration were shown to be reversible. Our results indicate the possibility of a slow exchange of cholesterol between the tightly bound lipid surrounding the (Ca2+ + Mg2+)-ATPase and the bulk lipid of the sarcolemma.  相似文献   

20.
Gingerol, isolated as a potent cardiotonic agent from the rhizome of ginger, stimulated the Ca2+-pumping activity of fragmented sarcoplasmic reticulum (SR) prepared from rabbit skeletal and dog cardiac muscles. The extravesicular Ca2+ concentrations of the heavy fraction of the fragmented SR (HSR) were measured directly with a Ca2+ electrode to examine the effect of gingerol on the SR. Gingerol (3-30 microM) accelerated the Ca2+-pumping rate of skeletal and cardiac SR in a concentration-dependent manner. The rate of 45Ca2+ uptake of HSR was also increased markedly by 30 microM gingerol without affecting the 45Ca2+ efflux from HSR. Furthermore, gingerol activated Ca2+-ATPase activities of skeletal and cardiac SR (EC50, 4 microM). The activation of SR Ca2+-ATPase activity by gingerol (30 microM) was completely reversed by 100-fold dilution with the fresh saline solution. Kinetic analysis of activating effects of gingerol suggests that the activation of SR Ca2+-ATPase is uncompetitive and competitive with respect to Mg . ATP at concentrations of 0.2-0.5 mM and above 1 mM, respectively. Kinetic analysis also suggests that the activation by gingerol is mixed-type with respect to free Ca2+ and this enzyme is activated probably due to the acceleration of enzyme-substrate complex breakdown. Gingerol had no significant effect on sarcolemmal Ca2+-ATPase, myosin Ca2+-ATPase, actin-activated myosin ATPase and cAMP-phosphodiesterase activities, indicating that the effect of gingerol is rather specific to SR Ca2+-ATPase activity. Gingerol may provide a valuable chemical tool for studies aimed at clarifying the regulatory mechanisms of SR Ca2+-pumping systems and the causal relationship between the Ca2+-pumping activity of SR and muscle contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号