首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Monoclonal antibodies that inhibit IgE binding   总被引:12,自引:0,他引:12  
Four monoclonal antibodies were produced that inhibit IgE binding to the high affinity IgE receptor (Fc epsilon R) on rat basophilic leukemia cells. The four monoclonal antibodies (mAb) fall into two groups. The first group was comprised of 3 antibodies (mAb BC4, mAb CD3, and mAb CA5) that reacted with the Fc epsilon R at epitopes close or identical to the IgE-binding site. With 125I-labeled antibodies there was reciprocal cross-inhibition between the antibodies and IgE. The antibodies activated both RBL-2H3 cells and normal rat mast cells for histamine release. The 3 antibodies immunoprecipitated the previously described alpha, beta, and gamma components of the receptor. The number of radiolabeled Fab fragments of 2 of these antibodies bound per cell was similar or equal to the number of IgE receptors. In contrast, the mAb BC4 Fab bound to 2.1 +/- 0.4 times the number of IgE receptor sites. Therefore, the portion of the Fc epsilon R exposed on the cell surface must have two identical epitopes and an axis of symmetry. These 3 monoclonal antibodies recognize different but closely related epitopes in the IgE-binding region of the Fc epsilon R. The fourth monoclonal antibody (mAb AA4) had different characteristics. In cross-inhibition studies, IgE and the other 3 monoclonals did not inhibit the binding of this 125I-labeled monoclonal antibody. The number of molecules of this antibody bound per cell was approximately 14-fold greater than the Fc epsilon R number. This monoclonal antibody caused the inhibition of histamine release and it appears to bind to several cell components.  相似文献   

2.
We have produced three different mAb specific for human IgE-Fc. Their binding pattern to either heat-denatured IgE or a family of overlapping IgE-derived recombinant peptides and their ability to affect interaction of IgE with its low affinity receptor Fc epsilon R2/CD23 demonstrate that they recognize distinct epitopes on the IgE molecule. All three mAb were able to induce basophil degranulation as measured by the induction of histamine release. mAb 173 recognizes a thermolabile epitope in the CH4 domain. It does not affect the binding of IgE to Fc epsilon R2/CD23. mAb 272 recognizes a thermostable epitope that maps to a sequence of 36 amino acids (AA) spanning part of the CH2 and CH3 domain and it does not affect the binding of IgE to Fc epsilon R2/CD23. mAb 27 recognizes a thermolabile epitope located on a 10 AA stretch (AA 367-376) in the CH3 domain. This area contains one N-linked oligosaccharide (Asn-371), but the antibody is not directed against carbohydrate because it binds to Escherichia coli-derived IgE peptides. mAb 27 inhibits the binding of IgE to Fc epsilon R2/CD23 but is still capable of reacting with IgE already bound to Fc epsilon R2/CD23. These data suggest that upon binding to Fc epsilon R2/CD23, the IgE molecule engages one of two equivalent-binding sites close to the glycosylated area of the CH3 domain.  相似文献   

3.
A mAb was isolated (mAb BD6) that recognized a surface glycoprotein on rat basophilic leukemia cells (RBL-2H3). The antibody bound to 2 x 10(6) molecules/cell and specifically blocked IgE binding (50% inhibition with 3.48 +/- 0.51 micrograms/ml; mean +/- SEM), although neither IgE nor anti-high affinity IgE receptor (anti-Fc epsilon RI) mAb blocked mAb BD6 binding to the cells. mAb BD6 did not affect the rate of dissociation of cell-bound IgE, nor did it induce or inhibit the internalization of IgE. mAb BD6 did not release histamine. However, it did cause rapid spreading of the cells. By 1 h the cells had retracted to a spherical shape with their surface covered with membranous spikes, and they could easily be detached from the tissue culture plate. These changes differed from those observed after Fc epsilon RI activation. mAb BD6 immunoprecipitated a complex of two proteins, 38 to 50 kDa and 135 kDa from 125I-surface labeled rat basophilic leukemia cells that are not subunits of Fc epsilon RI. Chemical cross-linking studies showed that these molecules are associated on the cell surface. By immunoblotting, mAb BD6 reacted with a 40-kDa protein. Therefore, mAb BD6 binds to a surface protein that is close to the Fc epsilon RI and sterically inhibits 125I-IgE binding.  相似文献   

4.
A monoclonal antibody (mAb), AD1, was isolated that recognized a cell surface protein on rat basophilic leukemia cells (RBL-2H3). At high concentration, this antibody inhibited IgE-mediated but not calcium ionophore-induced histamine release (49% inhibition at 100 micrograms/ml). The mAb AD1 did not inhibit the binding of IgE or of several antibodies directed to the high affinity IgE receptor (Fc epsilon RI). Likewise, IgE did not inhibit mAb AD1 binding. However, several anti-Fc epsilon RI antibodies did inhibit mAb AD1 binding as intact molecules but not as Fab fragments. Therefore, the sites on the cell surface to which mAb AD1 binds are close to Fc epsilon RI. The mAb AD1 immunoprecipitated a broad, 50-60-kDa band from 125I-surface-labeled RBL-2H3 cells that upon peptide N-glycosidase F treatment was transformed into a sharp 27-kDa band. A similar 27-kDa protein was immunoprecipitated from surface-radiolabeled cells after culture with tunicamycin. Thus, the protein recognized by mAb AD1 is highly glycosylated with predominantly N-linked oligosaccharides. The N-terminal sequence of 43 amino acids was found to be different from any subunit of Fc epsilon RI but nearly identical to that of the human melanoma-associated antigen ME491. Therefore, mAb AD1 binds to a surface glycoprotein on RBL-2H3 cells sterically close to the Fc epsilon RI but distinct from the recognized subunits of the receptor.  相似文献   

5.
A rat hybridoma producing a high-affinity IgG2a monoclonal antibody (B3B4) directed against against the murine lymphocyte IgE receptor (Fc epsilon R) was established by using purified Fc epsilon R from Fc epsilon R+ murine hybridoma B cells as immunogen. The monoclonal and polyclonal anti-Fc epsilon R inhibited the binding of IgE to the murine lymphocyte Fc epsilon R and were also used to isolate the Fc epsilon R. B3B4 specifically recognized only the 49-Kd Fc epsilon R on murine B lymphocyte as determined by immunoprecipitation and SDS-PAGE analysis. In addition to its reaction with intact Fc epsilon R, B3B4 also recognized Fc epsilon R fragments that were present in the culture media of Fc epsilon R+ hybridoma cells. The predominant fragments isolated were 38 Kd and 28 Kd by SDS-PAGE analysis. When tested for reactivity with other cell types, B3B4 was highly specific for murine B lineage cells in that it did not significantly react with Fc epsilon R on macrophages and T cells and, in addition, did not react with the high affinity mast cell Fc epsilon R. B3B4 completely blocked IgE rosetting, and a reciprocal inhibition of binding was seen in a dose-dependent fashion between IgE and B3B4, indicating a close proximity of the IgE and B3B4 binding sites. Saturation binding analysis indicated that the Fab' fragment of B3B4 bound to twice as many sites/cell as IgE, suggesting that there are two identical B3B4 determinants per 49-Kd Fc epsilon R or that the IgE binding site is formed by the association of at least two 49-Kd Fc epsilon R. However, unlike IgE, neither B3B4 nor F(ab')2-B3B4 nor Fab'-B3B4 were very effective in causing Fc epsilon R upregulation on murine hybridoma B cells; in fact, B3B4 prevented this upregulation when added in combination with IgE. These results suggest that a site-specific interaction provided only by IgE may be essential for ligand-specific upregulation. Both polyclonal and monoclonal antibodies will be useful in further studies concerning the functional relationship between the membrane Fc epsilon R and the soluble Fc epsilon R fragments.  相似文献   

6.
Our results support the hypothesis that binding the low affinity Fc epsilon R (Fc epsilon R-II, CD23) on IgE-secreting B cells, directly suppresses IgE production. IgE production from AF-10/U266 (a human IgE plasmacytoma) decreased upon incubation with anti-IgE mAb or IgE:anti-IgE immune complexes (IgE-IC). Synthesis was suppressed a maximum of 51% with 10 micrograms/ml of IgE-IC after a 24-h incubation. Spontaneous in vitro IgE synthesis from the B cells of highly atopic individuals was also inhibited in a similar fashion. This effect was isotype specific as IgA or IgG immune complexes did not alter IgE production from AF-10 nor did IgE-IC affect IgA or IgG synthesis from lymphoblastoid cell lines making IgG (GM1500 and RPMI 8866) or IgA (GM1056). U266/AF-10 cells displayed both membrane IgE (greater than 90%) and Fc epsilon R-II (23%). To evaluate the role of these membrane proteins in the observed suppression of IgE synthesis, we treated U266/AF-10 cells with IgE-IC that bound Fc epsilon R-II but could not bind membrane IgE, as the mAb used was directed against an idiotypic determinant on the myeloma IgE (PS) used to make the IgE-IC. Suppression was maximal (greater than 50%) with these complexes at 0.1 micrograms/ml and at a 1/1 ratio of mAb anti-IgE to human myeloma IgE. When IgE-IC were used that were constructed with heat denatured IgE or F(ab')2 fragments of IgE, suppression was abrogated indicating IgE-Fc epsilon R binding was required. Neither PS IgE nor mAb 5.1 (the components of IgE-IC) alone affected IgE synthesis. Furthermore, a mAb binding directly to CD23 suppressed IgE synthesis from AF-10 up to 60%. Using limiting dilution analysis, we determined that IgE production per AF-10 cell was constant (0.9 pg/cell/24 h), independent of cell density and cells incubated with IgE-IC were uniformly suppressed. To clarify the mechanism of IgE-IC-induced suppression on AF-10 cells, we assessed both the proliferative rate and cell cycle distribution upon incubation with IgE-IC. There was no correlation between IgE production and [3H]TdR incorporation by AF-10 cells incubated with IgE-IC or anti-CD23 mAb. The distribution of cells within the cell cycle was unaffected by these treatments, with 60% of the cells in G1. These results define a direct role for the Fc epsilon R-II on B cells in the regulation of ongoing IgE synthesis.  相似文献   

7.
Rodent B cells respond to culture with IgE by increasing their IgE-specific Fc receptors (Fc epsilon R). The mechanism of this upregulation was characterized on Fc epsilon R+ murine B cell hybridoma lines. Measurements of [35S]methionine incorporated into the Fc epsilon R over time indicated that IgE did not appreciably increase the rate of Fc epsilon R synthesis. In contrast analysis of Fc epsilon R decay from surface radioiodinated B hybridoma cells demonstrated that IgE acted to slow the rate of Fc epsilon R degradation. Very little endocytosis of monomeric IgE was seen; this, combined with the observation that lysomotropic agents failed to inhibit Fc epsilon R degradation suggested that decay occurs at the cell surface. A soluble receptor immunoassay was developed, using monoclonal anti-Fc epsilon R, and this assay demonstrated that cell-bound IgE inhibited the release into the culture media of soluble immunoreactive Fc epsilon R. Examination of the soluble Fc epsilon R by SDS-PAGE after isolation with monoclonal anti-Fc epsilon R demonstrated that it was 10,000 m.w. smaller than the cell-associated Fc epsilon R. IgE affinity columns failed to bind the Fc epsilon R fragment, indicating that the ligand binding activity was largely lost. Thus this study demonstrated that IgE-dependent Fc epsilon R induction on B cells occurs because IgE upon binding to the B cell surface, inhibits the proteolytic cleavage and release of the Fc epsilon R into the surrounding medium, and it is this inhibition of degradation that causes the higher Fc epsilon R levels.  相似文献   

8.
Two types of activation Ag, low affinity FcR for IgE (Fc epsilon R2)/CD23 and IL-2R (Tac/p55), were expressed and differently regulated on human eosinophilic leukemia cell lines (EoL-1 and EoL-3). Because the binding of IgE on EoL-3 cells was completely inhibited by H107 (anti-Fc epsilon R2/CD23 mAb) but not by irrelevant mAb, essentially all the low affinity Fc epsilon R2 on EoL-3 seemed to be the Fc epsilon R2/CD23 molecules. Both IL-4 and IFN-gamma enhanced the surface expression of Fc epsilon R2, whereas IL-1, IL-2, and IL-5 showed no effects, as determined by surface staining with anti-Fc epsilon R2 antibody (H107). In contrast to Fc epsilon R2 up-regulation, IL-4 and IFN-gamma showed a differential effect on the regulation of IL-2R (Tac/p55). Whereas IFN-gamma up-regulated the receptor expression of IL-2R/Tac, IL-4 did not. The result suggests that these lymphokines are involved in the different aspects of the activation pathway of the eosinophils. The possible role of Fc epsilon R2 and IL-2R on the function of eosinophils in allergic reaction is discussed.  相似文献   

9.
IgA plays a key role in immune defence of the mucosal surfaces. IgA can trigger elimination mechanisms against pathogens through the interaction of its Fc region with Fc alpha Rs (receptors specific for the Fc region of IgA) present on neutrophils, macrophages, monocytes and eosinophils. The human Fc alpha R (CD89) shares homology with receptors specific for the Fc region of IgG (Fc gamma Rs) and IgE (Fc epsilon RIs), but is a more distantly related member of the receptor family. CD89 interacts with residues lying at the interface of the two domains of IgA Fc, a site quite distinct from the homologous regions at the top of IgG and IgE Fc recognized by Fc gamma R and Fc epsilon RI respectively. Certain pathogenic bacteria express surface proteins that bind to human IgA Fc. Experiments with domain-swap antibodies and mutant IgAs indicate that binding of three such proteins (Sir22 and Arp4 of Streptococcus pyogenes and beta protein of group B streptococci) depend on sites in the Fc interdomain region of IgA, the binding region also used by CD89. Further, we have found that the streptococcal proteins can inhibit interaction of IgA with CD89, and have thereby identified a mechanism by which a bacterial IgA-binding protein may modulate IgA effector function.  相似文献   

10.
Three biologically active monoclonal antibodies (mAbs) specific for the monovalent, high-affinity membrane receptor for IgE (Fc epsilon R) were employed in analysing the secretory response of mast cells of the RBL-2H3 line to crosslinking of their Fc epsilon R. All three mAbs (designated F4, H10 and J17) compete with each other and with IgE for binding to the Fc epsilon R. Their stoichiometry of binding is 1 Fab:1 Fc epsilon R, hence, the intact mAbs can aggregate the Fc epsilon Rs to dimers only. Since all three mAbs induce secretion, we conclude that Fc epsilon R dimers constitute a sufficient 'signal element' for secretion of mediators for RBL-2H3 cells. The secretory dose-response of the cells to these three mAbs are, however, markedly different: F4 caused rather high secretion, reaching almost 80% of the cells' content, while J17 and H10 induced release of only 30-40% mediators content. Both the intrinsic affinities and equilibrium constants for the receptor dimerization were derived from analysis of binding data of the Fab fragments and intact mAbs. These parameters were used to compute the extent of Fc epsilon R dimerization caused by each of the antibodies. However, the different secretory responses to the three mAbs could not be rationalized simply in terms of the extent of Fc epsilon R dimerization which they produce. This suggests that it is not only the number of crosslinked Fc epsilon Rs which determines the magnitude of secretion-causing signal, but rather other constraints imposed by each individual mAb are also important.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Rat basophilic leukemia (RBL-2H3) cells, like mast cells and basophils, carry monovalent membrane receptors with high affinity for IgE (Fc epsilon R). Cross-linking of these receptors provides the immunologic stimulus which initiates a series of biochemical events, culminating in secretion of inflammatory mediators. In an attempt to identify membrane components involved in the stimulus-secretion coupling of these cells, hybridomas were produced from splenocytes of mice immunized with intact RBL-2H3 cells. Here we report the production of a mAb (designated G63) that inhibits the Fc epsilon R-mediated secretion from RBL cells. At low degrees of Fc epsilon R aggregation, the mAb G63-induced inhibition may be complete, whereas at the maximum of secretion the inhibition is in the range of 30 to 40%. The relative degree of inhibition of secretion is dependent on the dose of mAb G63. Furthermore, inhibition requires the bivalency of G63, as the Fab fragments are inactive. The number of antigenic epitopes recognized by G63 per RBL-2H3 cell is 1.8 x 10(4) epitopes/cell, as determined by direct binding studies of 125I-labeled Fab fragments of G63. This number is 20 to 30 times smaller than that of Fc epsilon R on the same cells. The membrane component to which G63 binds has been identified by immunoprecipitation as a glycoprotein with an apparent Mr of 58 to 70 kDa. All of these results, and the fact that no competition for binding to RBL cells between mAb G63 and IgE can be resolved, indicate that mAb G63 binds to a membrane component which is distinct from the Fc epsilon R. mAb G63 suppresses the Fc epsilon R-mediated rise in cytoplasmic concentration of free Ca2+ ions, known to be one of the biochemical signals involved in the stimulus-secretion coupling in RBL-2H3 cells. G63 does not affect, however, the degranulation induced by the Ca2+ ionophore A23187. Therefore, mAb G63 probably exerts its inhibitory effect on a step preceding the rise in cytoplasmic free Ca2+. Thus, mAb G63 defines a previously unidentified membrane component that is involved in one of the early steps of the RBL-2H3 activation mediated by their Fc epsilon R.  相似文献   

12.
13.
A Nissim  M H Jouvin    Z Eshhar 《The EMBO journal》1991,10(1):101-107
Identification of the precise region(s) on the IgE molecule that take part in the binding of IgE to its high affinity receptor (Fc epsilon RI) may lead to the design of IgE analogues able to block the allergic response. To localize the Fc epsilon RI-binding domain of mouse IgE, we attempted to confer on human IgE, which normally does not bind to the rodent receptor, the ability to bind to the rat Fc epsilon RI. Employing exon shuffling, we have expressed chimeric epsilon-heavy chain genes composed of a mouse (4-hydroxy-3-nitrophenyl)acetic acid (NP)-binding VH domain, and human C epsilon in which various domains were replaced by their murine counterparts. This has enabled us to test the Fc epsilon RI-binding of each mouse IgE domain while maintaining the overall conformation of the molecule. All of the chimeric IgE molecules which contain the murine C epsilon 3, bound equally to both the rodent and human receptor, as well as to monoclonal antibodies recognizing a site on IgE which is identical or very close to the Fc epsilon RI binding site. Deletion of the second constant region domain did not impair either the binding capacity of the mutated IgE or its ability to mediate mast cell degradation. These results assign the third epsilon domain of IgE as the principal region involved in the interaction with the Fc epsilon RI.  相似文献   

14.
We report the first application of polarized fluorescence depletion (PFD), a technique which combines the sensitivity of fluorescence detection with the long lifetimes of triplet probes, to the measurement of membrane protein rotational diffusion on individually selected, intact mammalian cells. We have examined the rotation of type I Fc epsilon receptors (Fc epsilon RI) on rat mucosal mast cells of the RBL-2H3 line in their resting monomeric and differently oligomerized states using as probes IgE and three monoclonal antibodies (mAbs; H10, J17, and F4) specific for the Fc epsilon RI. PFD experiments using eosin (EITC)-IgE show that individual Fc epsilon RI on cells have a rotational correlation time (RCT) at 4 degrees C of 79 +/- 4 microseconds. Similarly, Fc epsilon RI-bound EITC-Fab fragments of the J17 Fc epsilon RI-specific mAb exhibit an RCT of 76 +/- 6 microseconds. These values agree with previous measurements of Fc epsilon RI-bound IgE rotation by time-resolved phosphorescence anisotropy methods. Receptor-bound EITC-conjugated divalent J17 antibody exhibits an increased RCT of 140 +/- 6 microseconds. This is consistent with the ability of this mAb to form substantial amounts of Fc epsilon RI dimers on these cell surfaces. The ratio of limiting to initial anisotropy in these experiments remains constant at about 0.5 from 5 degrees C through 25 degrees C for IgE, Fab, and intact mAb receptor ligands. Extensive cross-linking by second antibody of cell-bound IgE, of intact Fc epsilon RI-specific mAbs or of their Fab fragments, however, produced large fixed anisotropies demonstrating, under these conditions, receptor immobilization in large aggregates. PFD using the mAbs H10 and F4 as receptor probes yielded values for triplet lifetimes, RCT values, and anisotropy parameters essentially indistinguishable from those obtained with the mAb J17 clone. Possible explanations for these observations are discussed.  相似文献   

15.
Three monoclonal antibodies, 1-7 (gamma 2b), 3-5 (gamma 1), and 8-30 (mu), specific to Fc epsilon receptors (Fc epsilon R) on human B cells were established. The two monoclonals (1-7 and 8-30) could inhibit the binding of IgE to Fc epsilon R in rosette formation assays, as well as FACS analysis, and were shown to recognize the same epitope of Fc epsilon R. The other monoclonal antibody (3-5) recognized the same molecule but a different epitope, and marginally inhibited the IgE binding. The molecules on RPMI 8866 cells recognized by these monoclonal antibodies had Mr of 46,000 and 25,000 to 30,000 daltons as determined by immunoprecipitation and SDS-PAGE analysis. By employing these monoclonal antibodies, the expression of Fc epsilon R on circulating lymphocytes was studied. Approximately 50% of B cells from normal, nonatopic individuals were found to express Fc epsilon R, and a remarkable increase in the expression of Fc epsilon R was observed in B cells of atopic patients. The expression of Fc epsilon R was not detected in T cells from atopic patients (including hyper IgE syndrome) as well as normal individuals. Incubation of B cells with PHA-conditioned medium plus IgE augmented the expression of Fc epsilon R in the Fc epsilon R+ B cell population but not in Fc epsilon R- population. PHA-conditioned medium plus IgE did not induce Fc epsilon R expression on T cells.  相似文献   

16.
Antigenic relationships between the low affinity Fc epsilon R present on murine B and T lymphocytes were studied. A rat mAb (B3B4) and two polyclonal antisera produced by immunizing with the murine B lymphocyte Fc epsilon RII were examined for their ability to inhibit binding of IgE to murine B or T lymphocytes, using an IgE-specific rosette assay. One polyclonal antiserum (goat-anti-mouse Fc epsilon R) inhibited binding of IgE to both B and T lymphocytes, whereas another polyclonal antiserum (rabbit-anti-mouse Fc epsilon R) and the rat mAb inhibited the binding of IgE to B lymphocytes but did not influence the binding of IgE to T lymphocytes. When lymphocytes were surface labeled with 125I, 49-kDa and 38-kDa IgE-binding proteins were immunoprecipitated from B lymphocyte lysates by B3B4 and from B and T lymphocyte lysates by the goat antiserum. Taken together, these results suggest that the Fc epsilon R present on murine B and T lymphocytes are structurally related receptors that share some, but not all, epitopes.  相似文献   

17.
I Pecht  E Ortega  T M Jovin 《Biochemistry》1991,30(14):3450-3458
The rotational motions of the type I receptor for the Fc epsilon domains (Fc epsilon RI) present on mast cells were investigated by measuring the phosphorescence emission and anisotropy decay kinetics of erythrosin (Er) covalently bound to several Fc epsilon RI-specific macromolecular ligands. The latter consisted of three murine monoclonal antibodies (IgG class) raised against the Fc epsilon RI of rat mast cells (RBL-2H3 line), their Fab fragments, and a murine monoclonal IgE. Different anisotropy decay patterns were observed for the three monovalent Er-Fab fragments bound to the Fc epsilon RI, reflecting the rotational motion of the Fe epsilon RI reported by each specific macromolecular probe bound to its particular epitope. Internal motions of the tethered Er-labeled ligands may also contribute to the observed anisotropy decay, particularly in the case of cell-bound IgE. The results corroborate an earlier study with rat Er-IgE in which the Fc epsilon RI-IgE complex was shown to be mobile throughout the temperature range examined (5-37 degrees C). The anisotropy decays of the three Er-labeled, Fc epsilon RI-specific intact mAbs bound to cells also differed markedly. Whereas the decay curves of one mAb (H10) were characterized by temperature-dependent positive amplitudes and rather short rotational correlation times, the decay of a second mAb (J17) showed complex qualitative variations with temperature, and in the case of the third antibody (F4), there was no apparent decay of anisotropy over the time and temperature ranges examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Monoclonal antibody specific for T cell-derived human IgE binding factors   总被引:3,自引:0,他引:3  
A B cell hybridoma secreting monoclonal antibody against human IgE binding factors was obtained by immunization of BALB/c mice with partially purified IgE binding factors, and fusion of their spleen cells with SP-2/0-AG14 cells. The monoclonal antibody bound all of the 60,000, 30,000, and 15,000 dalton IgE binding factors from two T cell hybridomas and those from activated T cells of a normal individual. The antibody bound both IgE-potentiating factors, which had affinity for lentil lectin, and IgE-suppressive factors, which had affinity for peanut agglutinin. However, the monoclonal anti-IgE-binding factor bound neither Fc epsilon R on RPMI 8866 cells nor IgE binding factors from the B lymphoblastoid cells. A monoclonal antibody against Fc epsilon R on B cells (H107) bound the 60,000 and 30,000 dalton IgE binding factors from both T cell hybridomas and RPMI 8866 cells but did not bind the 15,000 dalton IgE binding factors from either T cells or B cells. The results indicate that T cell-derived IgE binding factors have a unique antigenic determinant that is lacking in both Fc epsilon R on B cells and B cell-derived IgE binding factors. The anti-IgE binding factor and anti-Fc epsilon R monoclonal antibodies both failed to stain cell surface components of IgE binding factor-producing T cell hybridomas. However, both antibodies induced the T cell hybridoma to form IgE binding factors. The results suggest that the T cell hybridomas bear low numbers of Fc epsilon R that share antigenic determinants with IgE binding factors secreted from the cells.  相似文献   

19.
Polymorphonuclear neutrophils (PMNs) are important effector cells in host defense and the inflammatory response to antigen. The involvement of PMNs in inflammation is mediated mainly by the Fc receptor family, including IgE receptors. Recently, PMNs were shown to express two IgE receptors (CD23/Fc epsilon RII and galectin-3). In allergic diseases, the dominant role of IgE has been mainly ascribed to its high-affinity receptor, Fc epsilon RI. We have examined the expression of Fc epsilon RI by PMNS: mRNA and cell surface expression of Fc epsilon RI alpha chain was identified on PMNs from asthmatic subjects. Furthermore, preincubation with human IgE Fc fragment blocks completely the binding of anti-Fc epsilon RI alpha chain (mAb15--1) to human PMNS: Conversely, preincubation of PMNs with mAb15--1 inhibits significantly the binding of IgE Fc fragment to PMNs, indicating that IgE bound to the cell surface of PMNs mainly via the Fc epsilon RI. Peripheral blood and bronchoalveolar lavage (BAL) PMNs from asthmatic subjects also express intracellular Fc epsilon RI alpha and beta chain immunoreactivity. Engagement of Fc epsilon RI induces the release of IL-8 by PMNS: Collectively, these observations provide new evidence that PMNs express the Fc epsilon RI and suggest that these cells may play a role in allergic inflammation through an IgE-dependent activation mechanism.  相似文献   

20.
Human recombinant gamma interferon (IFN-gamma), which is free from other lymphokines, significantly increased expression of receptors for IgE (Fc epsilon R) on the human monocyte cell line U-937. Fc epsilon R were measured by assaying specific (saturable) binding of 125I-labeled or fluorescein isothiocyanate (FITC)-labeled human IgE (Sha) to U-937 cells. Cell-bound IgE was analyzed by gamma counting and by flow cytometry. IFN-gamma-induced enhancement in IgE binding was a consequence of an increase in the number and density of Fc epsilon R, as cell size did not change significantly after treatment. Scatchard analysis of 125I-IgE binding curves revealed the presence of a homogeneous population of binding sites for IgE in control and in IFN-gamma-treated cells. IFN-gamma treatment did not change the value of the dissociation constant of Fc epsilon R for 125I-IgE. IFN-alpha and IFN-beta had only slight effects on the expression of Fc epsilon R. Dexamethasone (200 nM) diminished the IFN-gamma-induced enhancement in the number of Fc epsilon R by about 50%, the same extent as in control cells. IFN-gamma treatment did not cause a significant alteration in cell number, cell cycle kinetics, or macromolecular synthesis, and enhanced expression of Fc epsilon R was probably not mediated through the cyclic AMP system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号