首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The BALB/c inbred mouse strain is one of the most commonly used for immunological studies and is an animal model for natural killer (NK) cell function during pathogen infection and tumorigenesis. To understand better NK cell function in this strain, the complete BALB/c Ly49 haplotype was deduced. The BALB/c haplotype spans approximately 300 kb with a gene order and content of Ly49q, e, x, i, g, l, c, and a. Functional BALB/c alleles of Ly49q and e were isolated and found to be conserved. The BALB/c cluster represents a minimal haplotype as it contains many fewer functional genes than the 129 or B6 mouse strains. The small number of BALB/c Ly49 genes is due mainly to an absent group of genes (relative to B6 and 129) between Ly49x and i, although other smaller deletions are present. These gene deletions provide a genetic basis for the lack of certain Ly49-associated NK cell functions in this mouse strain. Finally, the mapping of a third Ly49 haplotype reveals that the basic murine Ly49 repertoire is composed of three framework gene pairs (Ly49q and e, Ly49i and g, and Ly49c and a) that are interspersed with variable numbers of strain-specific Ly49.  相似文献   

2.
3.
Wilhelm BT  Mager DL 《Genomics》2004,84(1):218-221
The cytotoxic activity of mouse natural killer cells is regulated in part through cell surface molecules belonging to the Ly49 multigene family. In mice, the genomic sequence of the Ly49 gene cluster has been examined in detail and this analysis provided a model of the expansion of this multigene family. In the present study, we have analyzed a 1.8-Mb region of the draft rat genome revealing surprising differences in size and gene content between the mouse and the rat Ly49 clusters. The rat cluster contains at least 36 Ly49 genes, including pseudogenes, while dot-plot analysis of the cluster reveals an equidistant spacing of genes, suggesting that duplication of genes in the cluster occurred through a mechanism similar to that in the mouse. Phylogenetic analysis of the predicted rat genes reveals a number of distinct gene clusters and indicates that the majority of gene duplication events occurred after the divergence of mice and rats. Thus, the rodent Ly49 locus is subject to extremely rapid gene amplification and diversification.  相似文献   

4.
Wilhelm BT  Gagnier L  Mager DL 《Genomics》2002,80(6):646-661
The cytotoxic activity of murine natural killer cells is controlled in part through the action of genes belonging to the Ly49 family. Members of this multigene family are found in a region on mouse chromosome 6 termed the natural killer gene complex. Using data available through public databases, we performed sequence analysis of a 620-kb region in C57Bl/6 (B6) mice that contains the Ly49 genes. The contiguous genomic sequence has allowed us to describe the complete B6 Ly49 gene repertoire, which includes two recently described genes as well as three partial genes. We have shown that the genes in the cluster have evolved through a series of large duplication events involving units of one or more genes and we have attempted to characterize the nature of the duplication end points. Finally, we have used information regarding gene sequence relationships and insertion of repetitive elements to construct a model for the evolution of the gene cluster. Our study illustrates that the Ly49 cluster represents an example of a rapidly evolving gene family, and continued analysis of this region in other strains will undoubtedly provide further insight into mechanisms for generating genomic diversity.  相似文献   

5.
Many receptors on natural killer (NK) cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.  相似文献   

6.
7.
8.
Mouse strains are either resistant or susceptible to murine cytomegalovirus (MCMV). Resistance is determined by the Cmv1(r) (Ly49h) gene, which encodes the Ly49H NK cell activation receptor. The protein encoded by the m157 gene of MCMV has been defined as a ligand for Ly49H. To find out whether the m157 protein is the only Ly49H ligand encoded by MCMV, we constructed the m157 deletion mutant and a revertant virus. Viruses were tested for susceptibility to NK cell control in Ly49H+ and Ly49H- mouse strains. Deletion of the m157 gene abolished the viral activation of Ly49H+ NK cells, resulting in higher virus virulence in vivo. Thus, in the absence of m157, Ly49H+ mice react like susceptible strains. 129/SvJ mice lack the Ly49H activation NK cell receptor but express the inhibitory Ly49I NK cell receptor that binds to the m157 protein. The Deltam157 inhibitory phenotype was weak because MCMV encodes a number of proteins that mediate NK inhibition, whose contribution could be shown by another mutant.  相似文献   

9.
NK cells are implicated in antiviral responses, bone marrow transplantation and tumor immunosurveillance. Their function is controlled, in part, through the Ly49 family of class I binding receptors. Inhibitory Ly49s suppress signaling, while activating Ly49s (i.e., Ly49D) activate NK cells via the DAP12 signaling chain. Activating Ly49 signaling has been studied primarily in C57BL/6 mice, however, 129 substrains are commonly used in gene-targeting experiments. In this study, we show that in contrast to C57BL/6 NK cells, cross-linking of DAP12-coupled receptors in 129/J mice induces phosphorylation of DAP12 but not calcium mobilization or cytokine production. Consistent with poor-activating Ly49 function, 129/J mice reject bone marrow less efficiently than C57BL/6 mice. Sequence analysis of receptors and DAP12 suggests no structural basis for inactivity, and both the 129/J and C57BL/6 receptors demonstrate normal function in a reconstituted receptor system. Most importantly, reconstitution of Ly49D in 129/J NK cells demonstrated that the signaling deficit is within the NK cells themselves. These unexpected findings bring into question any NK analysis of 129/J, 129Sv, or gene-targeted mice derived from these strains before complete backcrossing, and provide a possible explanation for the differences observed in the immune response of 129 mice in a variety of models.  相似文献   

10.
11.
Human killer immunoglobulin-like receptors (KIR) are expressed on natural killer (NK) cells and are involved in their immunoreactivity. While KIR with a long cytoplasmic tail deliver an inhibitory signal when bound to their respective major histocompatibility complex class I ligands, KIR with a short cytoplasmic tail can activate NK responses. The expansion of the KIR gene family originally appeared to be a phenomenon restricted to primates (human, apes, and monkeys) in comparison to rodents, which via convergent evolution have numerous C-type lectin-like Ly49 molecules that function analogously. Further studies have shown that multiple KIR are also present in cow and horse. In this study, we have identified by comparative genomics the first and possibly only KIR gene, named KIR2DL1, in the domesticated pig (Sus scrofa) allowing further evolutionary comparisons to be made. It encodes a protein with two extracellular immunoglobulin domains (D0 + D2), and a long cytoplasmic tail containing two inhibitory motifs. We have mapped the pig KIR2DL1 gene to chromosome 6q. Flanked by LILRa, LILRb, and LILRc, members of the leukocyte immunoglobulin-like receptor (LILR) family, on the centromeric end, and FCAR, NCR1, NALP7, NALP2, and GP6 on the telomeric end, pig demonstrates conservation of synteny with the human leukocyte receptor complex (LRC). Both the porcine KIR and LILR genes have diverged sufficiently to no longer be clearly orthologous with known human LRC family members.  相似文献   

12.
Chicken avidin is a biotin-binding protein expressed under inflammation in several chicken tissues and in the oviduct after progesterone induction. The gene encoding avidin belongs to a family that has been shown to include multiple genes homologous to each other. The screening and chromosomal localization studies performed to reveal the structure and organization of the complete avidin gene family is described. The avidin gene family is arranged in a single cluster within a 27-kb genomic region. The cluster is located on the sex chromosome Z on band q21. The organization of the genes was determined and two novel avidin-related genes, AVR6 and AVR7, were cloned and sequenced.  相似文献   

13.
The Ly49 family of genes encode NK cell receptors that bind class I MHC Ags and transmit negative signals if the cytoplasmic domains have immunoregulatory tyrosine-based inhibitory motifs (ITIMs). 5E6 mAbs recognize Ly49C and Ly49I receptors and depletion of 5E6+ NK cells prevents rejection of allogeneic or parental-strain H2d bone marrow cell (BMC) grafts. To determine the function of the Ly49I gene in the rejection of BMC grafts, we transfected fertilized eggs of FVB mice with a vector containing DNA for B6 strain Ly49I (Ly49IB6). Ly49IB6 is ITIM+ and is recognized by 5E6 as well as Ly49I-specific 8H7 mAbs. Normal FVB H2q mice reject H2b but not H2d BMC allografts, and the rejection of H2b BMC was inhibited partially by anti-NK1.1 and completely by anti-asialo GM1, but not by anti-CD8, Abs. In FVB mice, NK1.1 is expressed on only 60% NK cells. FVB. Ly49IB6 hosts failed to reject H2d or H2b BMC, but did reject class I-deficient TAP-1-/- BMC, indicating that NK cells were functional. Nondepleting doses of anti-Ly49I Abs reversed the acceptance of H2b BMC by FVB.Ly49IB6 mice. FVB.Ly49IB6+/- mice were crossed and back-crossed with 129 mice-H2b, 5E6-, poor responders to H2d BMC grafts. While transgene-negative H2b/q F1 or first-generation back-crossed mice rejected H2b marrow grafts (hybrid resistance), transgene-positive mice did not. Thus B6 strain Ly49I receptors transmit inhibitory signals from H2b MHC class I molecules. Moreover, Ly49IB6 has no positive influence on the rejection of H2d allografts.  相似文献   

14.
The majority of the known Ly49 family members have been isolated from either C57BL/6 (B6) or BALB/c mice. Interestingly, the anti-Ly49 Ab reactivities observed in 129/J mice are different from those of B6 mice. Furthermore, immunoprecipitation of 129/J NK cell lysates with YE1/32 and YE1/48, Abs specific for the inhibitory Ly49A in B6, resulted in detection of the activation-associated DAP12 molecule. These results indicated a need for a more detailed study of this strain. Therefore, a cloning strategy was devised to isolate Ly49 cDNAs from 129/J mice. An immunoreceptor tyrosine-based inhibitory motif-containing, Ly49D-related clone was discovered that we have named Ly49O, and one immunoreceptor tyrosine-based inhibitory motif-lacking, Ly49A-related clone was discovered that we have named Ly49P. No anti-Ly49 mAb reacted with Ly49O, whereas the molecule encoded by the Ly49P cDNA was found to react with YE1/32 and YE1/48. Ly49P was found to associate with mouse DAP12, and Ab-mediated cross-linking of Ly49P resulted in mouse DAP12 phosphorylation and Ca2+ mobilization, indicating that Ly49P is a competent activation receptor. Ly49P, therefore, represents a novel member of the Ly49 activating receptor subfamily.  相似文献   

15.
The Ly49 family of natural killer (NK) receptors is encoded by a highly polymorphic multigene family in the mouse and is also present in multiple copies in the rat. However, this gene exists as a single copy in primates and is mutated to non-function in humans. We recently showed that the cow also likely has only one Ly49 gene, but it is unclear what the Ly49 gene content is for other mammals. We have now isolated Ly49 cDNAs from the domestic cat, dog and pig and show that the corresponding gene appears to be single copy in these three species. The open reading frame is intact in all the genes and the putative proteins contain an immune tyrosine-based inhibition motif (ITIM), suggesting a role as an inhibitory receptor. In contrast to the other mammals, several Ly49-like genes appear to exist in the horse, indicating that amplification of this locus has occurred in a non-rodent lineage. Finally, phylogenetic analysis suggests that the rodent Ly49 genes have evolved more rapidly than their counterparts in mammals where the gene has remained as a single copy.  相似文献   

16.
Hao L  Nei M 《Immunogenetics》2004,56(5):343-354
Ly49 genes regulate the cytotoxic activity of natural killer (NK) cells in rodents and provide important protection against virus-infected or tumor cells. About 15 Ly49 genes have been identified in mice, but only a few genes have been reported to date in rats. Here we studied all Ly49 genes in the entire rat genome sequence and identified 17 putative functional and 16 putative non-functional genes together with their genomic locations in a 1.8-Mb region of chromosome 4. Phylogenetic analysis of these genes indicated that the Ly49 gene family expanded rapidly in recent years, and this expansion was mediated by both tandem and genomic block duplication. The joint phylogenetic analysis of mouse and rat genes suggested that the most recent common ancestor of the two species had at least several Ly49 genes, but that the majority of current duplicate genes were generated after divergence of the two species. In both species Ly49 genes are apparently subject to birth-and-death evolution, but the birth and death rates of Ly49 genes are higher in rats than in mice. The rate of gene expansion in the Ly49 gene family in rats is one of the highest among all mammalian multigene families so far studied. The biochemical function of Ly49 genes is essentially the same as that of KIR genes in primates, but the molecular structures of the two groups of NK cell receptors are very different. A hypothesis was presented to explain the origin of the differential use of Ly49 and KIR genes in rodents and primates.  相似文献   

17.
18.
 Nine genes belonging to the mouse Ly49 multigene family of natural killer cell receptors have been identified to date. Two of these genes, Ly49h and i, are very closely related to the well characterized Ly49c gene in the carbohydrate recognition domain. Here we show by Southern blotting that at least two additional new sequences exist in C57BL/6 mice that are also closely related to Ly49c in the carbohydrate recognition domain. Furthermore, in contrast to Ly49a, extensive variation in the arrangement and number of Ly49c–related genes in different mouse strains was observed. To characterize and localize the new Ly49c–related genes in C57BL/6 mice, we isolated and mapped genomic P1 clones hybridizing to an Ly49C exon 7 probe. Locations and the relative order of all Ly49 genes found within the clones was determined. We also used polymerase chain reaction to sequence exons 2, 4, and 7 from all genes. In this manner, we identified five new potential Ly49 genes which have been tentatively termed Ly49j-n. Ly49j, k, and n belong to the Ly49c–related subfamily, whereas Ly49l and Ly49m are most similar to Ly49d and g, respectively. Interestingly, the members of the Ly49c–related subfamily are not clustered as a unit but are interspersed among other Ly49 genes. These results illustrate the complex nature of the Ly49 gene family and should aid in the understanding of functions, such as the mediation of hybrid resistance, in which Ly49c–related genes play a role. Received: 10 December 1997 · Revised: 28 February 1998  相似文献   

19.
Killer immunoglobulin (Ig)-like receptors (KIRs) are the major functional natural killer (NK) cell receptors in human. The presence of KIR genes has only recently been demonstrated in other (non-primate) species, and their expression, genomic arrangement, and function in these species have yet to be investigated. In this study, we describe the KIR gene family in cattle. KIR sequences were amplified from cDNA derived from four animals. Seventeen new sequences were identified in total. Some are alleles of two previously described genes, and the remainder are representative of at least four additional genes. These cDNA data, together with analysis of the cattle genome sequence, confirm that, as in humans, cattle have multiple inhibitory and activating KIR genes, with variable haplotype composition, and putative framework genes. In contrast to human, the majority of the cattle KIR genes encode three Ig-domain KIRs; most of the inhibitory genes encode only one immunoreceptor tyrosine-based inhibitory motif (ITIM), and the activating genes encode molecules with arginine rather than the more usual lysine in the transmembrane domain. A divergent gene, 2DL1, encodes a two Ig-domain KIR with an unusual D0-D2 structure, and a distinct signaling domain with two ITIMs. Similarity to pig and human two Ig-domain (D0-D2) KIRs suggest these may be more related to an ancestral gene than the other cattle KIR genes. Cattle have multiple NKG2A-related genes and at least one Ly49 gene; thus, the data presented here suggest that they have the potential to express more major histocompatibility complex-binding NK receptors than other species.  相似文献   

20.
The segregation of killer cell immunoglobulin-like receptor ( KIR) genes was determined for a panel of 21 Caucasoid families: 23 different KIR gene patterns were found and could be assigned to combinations of 16 different haplotypes. Four loci were held in common by all haplotypes: KIR2DL4, KIR3DL2, the putative pseudogene KIR3DL3 and KIR2DL2/KIR2DL3, the latter likely being alleles of one gene. Group A haplotypes, which have a unique combination of seven KIR genes, were found at 80% frequency in the family panel, the polygenic group B haplotypes at 65% frequency. KIR gene segregation was fully determined for the nine group B haplotypes, which occurred at highest frequencies in both the family panel and a panel of unrelated individuals. The group B haplotypes carried between seven and 11 KIR genes and encoded inhibitory KIR for one, two, or all three major HLA class I epitopes. Analysis of human leucocyte antigen (HLA) class I genotypes revealed that most, but not all, individuals possess an inhibitory KIR for a self HLA class I epitope. The number of stimulatory KIR genes in group B haplotypes varied considerably between one and five. The data show that group B haplotypes possess a broad spectrum of KIR gene patterns, which is largely complementary to the KIR gene set of group A haplotypes. The results suggest that rapid diversification of group B haplotypes is the result of pathogen-mediated selection for KIR genotypes that have more than the set of KIR genes provided by the group A haplotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号