首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 971 毫秒
1.

Background

Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information.

Methods

This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression.

Results

The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate networks.

Conclusion

The research results in this work shows that the developed approach is an efficient and effective method to reverse-engineer gene networks using single-cell experimental observations.
  相似文献   

2.
3.
4.

Background  

Ordinary differential equations (ODEs) are an important tool for describing the dynamics of biological systems. However, for ODE models to be useful, their parameters must first be calibrated. Parameter estimation, that is, finding parameter values given experimental data, is an inference problem that can be treated systematically through a Bayesian framework.  相似文献   

5.

Background  

The reconstruction of genetic regulatory networks from microarray gene expression data has been a challenging task in bioinformatics. Various approaches to this problem have been proposed, however, they do not take into account the topological characteristics of the targeted networks while reconstructing them.  相似文献   

6.

Background  

The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets.  相似文献   

7.
Inference of gene pathways using mixture Bayesian networks   总被引:1,自引:0,他引:1  

Background  

Inference of gene networks typically relies on measurements across a wide range of conditions or treatments. Although one network structure is predicted, the relationship between genes could vary across conditions. A comprehensive approach to infer general and condition-dependent gene networks was evaluated. This approach integrated Bayesian network and Gaussian mixture models to describe continuous microarray gene expression measurements, and three gene networks were predicted.  相似文献   

8.
Voit and Almeida have proposed the decoupling approach as a method for inferring the S-system models of genetic networks. The decoupling approach defines the inference of a genetic network as a problem requiring the solutions of sets of algebraic equations. The computation can be accomplished in a very short time, as the approach estimates S-system parameters without solving any of the differential equations. Yet the defined algebraic equations are non-linear, which sometimes prevents us from finding reasonable S-system parameters. In this study, we propose a new technique to overcome this drawback of the decoupling approach. This technique transforms the problem of solving each set of algebraic equations into a one-dimensional function optimization problem. The computation can still be accomplished in a relatively short time, as the problem is transformed by solving a linear programming problem. We confirm the effectiveness of the proposed approach through numerical experiments.  相似文献   

9.
The inference of a genetic network is a problem in which mutual interactions among genes are inferred from time-series of gene expression levels. While a number of models have been proposed to describe genetic networks, this study focuses on a mathematical model proposed by Vohradský. Because of its advantageous features, several researchers have proposed the inference methods based on Vohradský''s model. When trying to analyze large-scale networks consisting of dozens of genes, however, these methods must solve high-dimensional non-linear function optimization problems. In order to resolve the difficulty of estimating the parameters of the Vohradský''s model, this study proposes a new method that defines the problem as several two-dimensional function optimization problems. Through numerical experiments on artificial genetic network inference problems, we showed that, although the computation time of the proposed method is not the shortest, the method has the ability to estimate parameters of Vohradský''s models more effectively with sufficiently short computation times. This study then applied the proposed method to an actual inference problem of the bacterial SOS DNA repair system, and succeeded in finding several reasonable regulations.  相似文献   

10.

Background  

Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality.  相似文献   

11.
12.
13.

Background  

Typical analysis of microarray data ignores the correlation between gene expression values. In this paper we present a model for microarray data which specifically allows for correlation between genes. As a result we combine gene network ideas with linear models and differential expression.  相似文献   

14.
From gene expression profiles, it is desirable to rebuild cellular dynamic regulation networks to discover more delicate and substantial functions in molecular biology, biochemistry, bioengineering and pharmaceutics. S-system model is suitable to characterize biochemical network systems and capable to analyze the regulatory system dynamics. However, inference of an S-system model of N-gene genetic networks has 2N(N+1) parameters in a set of non-linear differential equations to be optimized. This paper proposes an intelligent two-stage evolutionary algorithm (iTEA) to efficiently infer the S-system models of genetic networks from time-series data of gene expression. To cope with curse of dimensionality, the proposed algorithm consists of two stages where each uses a divide-and-conquer strategy. The optimization problem is first decomposed into N subproblems having 2(N+1) parameters each. At the first stage, each subproblem is solved using a novel intelligent genetic algorithm (IGA) with intelligent crossover based on orthogonal experimental design (OED). At the second stage, the obtained N solutions to the N subproblems are combined and refined using an OED-based simulated annealing algorithm for handling noisy gene expression profiles. The effectiveness of iTEA is evaluated using simulated expression patterns with and without noise running on a single-processor PC. It is shown that 1) IGA is efficient enough to solve subproblems; 2) IGA is significantly superior to the existing method SPXGA; and 3) iTEA performs well in inferring S-system models for dynamic pathway identification.  相似文献   

15.

Background  

Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure.  相似文献   

16.

Background

Reverse-engineering gene networks from expression profiles is a difficult problem for which a multitude of techniques have been developed over the last decade. The yearly organized DREAM challenges allow for a fair evaluation and unbiased comparison of these methods.

Results

We propose an inference algorithm that combines confidence matrices, computed as the standard scores from single-gene knockout data, with the down-ranking of feed-forward edges. Substantial improvements on the predictions can be obtained after the execution of this second step.

Conclusions

Our algorithm was awarded the best overall performance at the DREAM4 In Silico 100-gene network sub-challenge, proving to be effective in inferring medium-size gene regulatory networks. This success demonstrates once again the decisive importance of gene expression data obtained after systematic gene perturbations and highlights the usefulness of graph analysis to increase the reliability of inference.  相似文献   

17.
18.

Background  

Although Escherichia coli is one of the best studied model organisms, a comprehensive understanding of its gene regulation is not yet achieved. There exist many approaches to reconstruct regulatory interaction networks from gene expression experiments. Mutual information based approaches are most useful for large-scale network inference.  相似文献   

19.

Background  

We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS) estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS). The Total Least Squares (TLS) technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks.  相似文献   

20.

Background  

Allopolyploid speciation requires rapid evolutionary reconciliation of two diverged genomes and gene regulatory networks. Here we describe global patterns of gene expression accompanying genomic merger and doubling in inter-specific crosses in the cotton genus (Gossypium L.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号