首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution and proportion of the sexual species Rana lessonae to the hemiclonal hybrid R. esculenta among natural habitats suggests that these anurans may differ in adaptive abilities. I used a half-sib design to partition phenotypic and quantitative genetic variation in tadpole responses at two food levels into causal variance components. Rana lessonae displays strong phenotypic variation across food levels. Growth rate is strictly determined by environmental factors and includes weak maternal effects. Larval period and body size at metamorphosis both contain moderate levels of additive genetic variance. The sire x food interactions and the lack of environmental correlations indicate that adaptive phenotypic plasticity is present in both of these traits. In contrast, R. esculenta displays less phenotypic variation across food levels, especially for larval period. Variation in body size at metamorphosis is underlain by genetic variation as shown by high levels of additive genetic variance, yet growth rate and larval period are not. Significant environmental correlations between larval period at high food level and growth, larval period, and body size at low food, indicate phenotypic plasticity is absent. A positive phenotypic correlation between body size at metamorphosis and larval period for R. lessonae at both food levels suggests a trade-off between growing large and metamorphosing quickly to escape predation or pond drying. The lack of a similar correlation for R. esculenta at the high food level suggests it may be less constrained. Different levels of adaptive genetic variation among larval traits suggest that the sexual species and the hybridogenetic hemiclone differ in their abilities to cope with temporally and spatially heterogeneous environments.  相似文献   

2.
Keith A. Berven 《Oecologia》1982,52(3):360-369
Summary The variation in larval developmental patterns in the wood frog, Rana sylvatica, along an elevation gradient of 1,000 m was experimentally studied. Larval populations at high elevation ponds had lower growth rates, developmental rates and were larger at all stages (including metamorphic climax) than larval populations developing in low elevation ponds. There was considerable variation among ponds within each elevation in both the length of the larval period and size at metamorphic climax. Reciprocal transplant experiments and controlled laboratory experiments revealed that most of the observed variation between high and low elevation populations could be explained by the effects of temperature induction during ontogeny. Significant genetic differences in growth rates and non-genetic maternal effects on developmental rates between larvae of mountain origin and lowland origin were also demonstrated. Selection in both environments has acted to minimize the prevailing environmental effect of pond temperature on developmental rates, but has accentuated the prevailing environmental effects on larval body size. As a consequence mountain larvae were capable of completing metamorphosis sooner and at a larger size in all environments than lowland larvae.  相似文献   

3.
Phenotypic plasticity provides means for adapting to environmental unpredictability. In terms of accelerated development in the face of pond-drying risk, phenotypic plasticity has been demonstrated in many amphibian species, but two issues of evolutionary interest remain unexplored. First, the heritable basis of plastic responses is poorly established. Second, it is not known whether interpopulational differences in capacity to respond to pond-drying risk exist, although such differences, when matched with differences in desiccation risk would provide strong evidence for local adaptation. We investigated sources of within- and among-population variation in plastic responses to simulated pond-drying risk (three desiccation treatments) in two Rana temporaria populations originating from contrasting environments: (1) high desiccation risk with weak seasonal time constraint (southern population); and (2) low desiccation risk with severe seasonal time constraint (northern population). The larvae originating from the environment with high desiccation risk responded adaptively to the fast decreasing water treatment by accelerating their development and metamorphosing earlier, but this was not the case in the larvae originating from the environment with low desiccation risk. In both populations, metamorphic size was smaller in the high-desiccation-risk treatment, but the effect was larger in the southern population. Significant additive genetic variation in development rate was found in the northern and was nearly significant in the southern population, but there was no evidence for genetic variation in plasticity for development rates in either of the populations. No genetic variation for plasticity was found either in size at metamorphosis or growth rate. All metamorphic traits were heritable, and additive genetic variances were generally somewhat higher in the southern population, although significantly so in only one trait. Dominance variances were also significant in three of four traits, but the populations did not differ. Maternal effects in metamorphic traits were generally weak in both populations. Within-environment phenotypic correlations between larval period and metamorphic size were positive and genetic correlations negative in both populations. These results suggest that adaptive phenotypic plasticity is not a species-specific fixed trait, but evolution of interpopulational differences in plastic responses are possible, although heritability of plasticity appears to be low. The lack of adaptive response to desiccation risk in northern larvae is consistent with the interpretation that selection imposed by shorter growing season has favored rapid development in north (approximately 8% faster development in north as compared to south) or a minimum metamorphic size at the expense of phenotypic plasticity.  相似文献   

4.
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open‐canopy or partially closed‐canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (QST) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (FST). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in FST at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature‐induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.  相似文献   

5.
Understanding the genetic architecture of phenotypic plasticity is required to assess how populations might respond to heterogeneous or changing environments. Although several studies have examined population‐level patterns in environmental heterogeneity and plasticity, few studies have examined individual‐level variation in plasticity. Here, we use the North Carolina II breeding design and translocation experiments between two populations of Chinook salmon to detail the genetic architecture and plasticity of offspring survival and growth. We followed the survival of 50 800 offspring through the larval stage and used parentage analysis to examine survival and growth through freshwater rearing. In one population, we found that additive genetic, nonadditive genetic and maternal effects explained 25%, 34% and 55% of the variance in larvae survival, respectively. In the second population, these effects explained 0%, 24% and 61% of the variance in larvae survival. In contrast, fry survival was regulated primarily by additive genetic effects, which indicates a shift from maternal to genetic effects as development proceeds. Fry growth also showed strong additive genetic effects. Translocations between populations revealed that offspring survival and growth varied between environments, the degree of which differed among families. These results indicate genetic differences among individuals in their degree of plasticity and consequently their ability to respond to environmental variation.  相似文献   

6.
Both environmental and genetic influences can result in phenotypic variation. Quantifying the relative contributions of local adaptation and phenotypic plasticity to phenotypes is key to understanding the effect of environmental variation on populations. Identifying the selective pressures that drive divergence is an important, but often lacking, next step. High gene flow between high‐ and low‐altitude common frog (Rana temporaria) breeding sites has previously been demonstrated in Scotland. The aim of this study was to assess whether local adaptation occurs in the face of high gene flow and to identify potential environmental selection pressures that drive adaptation. Phenotypic variation in larval traits was quantified in R. temporaria from paired high‐ and low‐altitude sites using three common temperature treatments. Local adaptation was assessed using QSTFST analyses, and quantitative phenotypic divergence was related to environmental parameters using Mantel tests. Although evidence of local adaptation was found for all traits measured, only variation in larval period and growth rate was consistent with adaptation to altitude. Moreover, this was only evident in the three mountains with the highest high‐altitude sites. This variation was correlated with mean summer and winter temperatures, suggesting that temperature parameters are potentially strong selective pressures maintaining local adaptation, despite high gene flow.  相似文献   

7.
The match between functional trait variation in communities and environmental gradients is maintained by three processes: phenotypic plasticity and genetic differentiation (intraspecific processes), and species turnover (interspecific). Recently, evidence has emerged suggesting that intraspecific variation might have a potentially large role in driving functional community composition and response to environmental change. However, empirical evidence quantifying the respective importance of phenotypic plasticity and genetic differentiation relative to species turnover is still lacking. We performed a reciprocal transplant experiment using a common herbaceous plant species (Oxalis montana) among low‐, mid‐, and high‐elevation sites to first quantify the contributions of plasticity and genetic differentiation in driving intraspecific variation in three traits: height, specific leaf area, and leaf area. We next compared the contributions of these intraspecific drivers of community trait–environment matching to that of species turnover, which had been previously assessed along the same elevational gradient. Plasticity was the dominant driver of intraspecific trait variation across elevation in all traits, with only a small contribution of genetic differentiation among populations. Local adaptation was not detected to a major extent along the gradient. Fitness components were greatest in O. montana plants with trait values closest to the local community‐weighted means, thus supporting the common assumption that community‐weighted mean trait values represent selective optima. Our results suggest that community‐level trait responses to ongoing climate change should be mostly mediated by species turnover, even at the small spatial scale of our study, with an especially small contribution of evolutionary adaptation within species.  相似文献   

8.
The evolution of environmentally-induced changes in phenotype or reaction norm implies both the existence at some time of genetic variation within a population for that plasticity measured by the presence of genotype x environment interaction (G x E), and that phenotypic variation affects fitness. Otherwise, the genetic structure of polygenic traits may restrict the evolution of the reaction norm by the lack of independent evolution of a given trait in different environments or by genetic trade-offs with other traits that affect fitness. In this paper, we analyze the existence of G x E in metamorphic traits to two environmental factors, larval density and pond duration in a factorial experiment with Bufo calamita tadpoles in semi-natural conditions and in the laboratory. Results showed no plastic temporal response in metamorphosis to pond durability at low larval density. The rank of genotypes did not change across different hydroperiods, implying a high genetic correlation that may constrain the evolution of the reaction norm. At high larval density a significant G x E interaction was found, suggesting the potential for the evolution of the reaction norm. A sibship (#1) attained the presumed “optimal” reaction norm by accelerating developmental rate in short duration ponds and delaying it in longer ponds. This could be translated in fitness by an increment in metamorphic survival and size at metamorphosis in short and long ponds respectively with respect to non-plastic sibships. However, genetic variability for plasticity suggests that optimal reaction norm for developmental rates may be variable and hard to achieve in the heterogeneous pond environment. Mass at metamorphosis was not plastic across different pond durations but decreased at high larval density. Significant adaptive plasticity for growth rates appeared in environments that differed drastically in level of crowding conditions, both in the field and in the laboratory. The fact that survival of juveniles metamorphosed at high density ponds was a monotonic function of metamorphic size, implies that response to selection may occur in this population of natterjacks and that genetic variability in plasticity may be a reliable mechanism maintaining adaptive genetic variation in growth rates in the highly variable pond environment.  相似文献   

9.
A LS Houde  C C Wilson  B D Neff 《Heredity》2013,111(6):513-519
The additive genetic effects of traits can be used to predict evolutionary trajectories, such as responses to selection. Non-additive genetic and maternal environmental effects can also change evolutionary trajectories and influence phenotypes, but these effects have received less attention by researchers. We partitioned the phenotypic variance of survival and fitness-related traits into additive genetic, non-additive genetic and maternal environmental effects using a full-factorial breeding design within two allopatric populations of Atlantic salmon (Salmo salar). Maternal environmental effects were large at early life stages, but decreased during development, with non-additive genetic effects being most significant at later juvenile stages (alevin and fry). Non-additive genetic effects were also, on average, larger than additive genetic effects. The populations, generally, did not differ in the trait values or inferred genetic architecture of the traits. Any differences between the populations for trait values could be explained by maternal environmental effects. We discuss whether the similarities in architectures of these populations is the result of natural selection across a common juvenile environment.  相似文献   

10.
A trait's response to natural selection will reflect the nature of the inheritance mechanisms that mediate the transmission of variation across generations. The relative importance of genetic and nongenetic mechanisms of inheritance is predicted to be related to the degree of trait plasticity, with nongenetic inheritance playing a greater role in the cross‐generational transmission of more plastic traits. However, this prediction has never been tested. We investigated the influence of genetic effects and nongenetic parental effects in two morphological traits differing in degree of plasticity by manipulating larval diet quality within a cross‐generational split‐brood experiment using the seed beetle Callososbuchus maculatus. In line with predictions, we found that the more plastic trait (elytron length) is strongly influenced by both maternal and paternal effects whereas genetic variance is undetectable. In contrast, the less plastic trait (first abdominal sternite length) is not influenced by parental effects but exhibits abundant genetic variance. Our findings support the hypothesis that environment‐dependent parental effects may play a particularly important role in highly plastic traits and thereby affect the evolutionary response of such traits.  相似文献   

11.
The parental influences on three progeny traits (survival to eyed‐embryo stage, post‐hatching body length and yolk‐sac volume) of Arctic charr Salvelinus alpinus were studied under two thermal conditions (2 and 7° C) using a factorial mating design. The higher temperature resulted in elevated mortality rates and less advanced development at hatching. Survival was mostly attributable to maternal effects at both temperatures, but the variation among families was dependent on egg size only at the low temperature. No additive genetic variation (or pure sire effect) could be observed, whereas the non‐additive genetic effects (parental combination) contributed to offspring viability at 2° C. In contrast, any observable genetic variance in survival was lost at 7° C, most likely due to the increased environmental variance. Irrespective of temperature, dam and sire–dam interaction contributed significantly to the phenotypic variation in both larval length and yolk size. A significant proportion of the variation in larval length was also due to the sire effect at 2° C. Maternal effects were mediated partly through egg size, but as a whole, they decreased in importance at the high temperature, enabling a concomitant increase in non‐additive genetic effects. For larval length, however, the additive component, like maternal effects, decreased at 7° C. The present results suggest that an exposure to thermal stress during incubation can modify the genetic architecture of early developmental traits in S. alpinus and presumably constrain their short‐term adaptive potential and evolvability by increasing the amount of environmentally induced variation.  相似文献   

12.
Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long‐standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade‐off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti‐nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade‐off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.  相似文献   

13.
Phenotypic plasticity describes an organism's ability to produce multiple phenotypes in direct response to its environmental conditions. Over the past 15 years empiricists have found that this plasticity frequently exhibits geographic variation and often possesses a significant heritable genetic basis. However, few studies have examined both of these aspects of plasticity simultaneously. Here, we examined both the geographic and genetic variations of the plasticity for diapause incidence (the proportion of eggs that enter an arrested state of development capable of surviving over the winter) relative to temperatures and photoperiods associated with long and short season environments across six populations of the striped ground cricket, Allonemobius socius, using a half-sibling split brood quantitative genetic design. We found that plasticity, as measured by the slope of the reaction norm, was greater in the southern-low altitude region (where populations are bivoltine) relative to the southern-high and northern-low altitude regions (where populations are univoltine). However, the heritability of plasticity was only significantly different from zero in univoltine populations that experienced "intermediate" natal season lengths. These patterns suggest that selection may favor the plasticity of diapause incidence in bivoltine regions, but act against plasticity in regions in which populations are univoltine. Furthermore, our data suggest that under "intermediate" natal season length conditions, the interplay between local adaptation and gene flow may keep the plasticity of diapause incidence low (but still significant) while maintaining its genetic variation. As such, this study not only provides a novel observation into the geographic variation of phenotypic plasticity, but also provides much needed groundwork for tests of its adaptive significance.  相似文献   

14.
Determinants of geographic variation in body size are often poorly understood, especially in organisms with complex life cycles. We examined patterns of adult body size and metamorphic traits variation in Iberian spadefoot toad ( Pelobates cultripes ) populations, which exhibit an extreme reduction in adult body size, 71.6% reduction in body mass, within just about 30 km at south-western Spain. We hypothesized that size at and time to metamorphosis would be predictive of the spatial pattern observed in adult body size. Larvae from eight populations were raised in a common garden experiment at two different larval densities that allow to differentiate whether population divergence was genetically based or was simply a reflection of environmental variation and, in addition, whether this population divergence was modulated by differing crowding larval environments. Larger adult size populations had higher larval growth rates, attaining larger sizes at metamorphosis, and exhibited higher survival than smaller-sized populations at both densities, although accentuated at a low larval density. These population differences appeared to be consistent once embryo size variation was controlled for, suggesting that this phenotypic divergence is not due to maternal effects. Our results suggest considerable genetic differentiation in metamorphic traits that parallels and may be a causal determinant of geographic variation in adult body size.  相似文献   

15.
For natural populations to adapt to anthropogenic threats, heritable variation must persist in tolerance traits. Silver nanoparticles, the most widely used engineered nanoparticles, are expected to increase in concentrations in freshwaters. Little is known about how these particles affect wild populations, and whether genetic variation persists in tolerance to permit rapid evolutionary responses. We sampled wild adult whitefish and crossed them in vitro full factorially. In total, 2896 singly raised embryos of 48 families were exposed to two concentrations (0.5 μg/L; 100 μg/L) of differently sized silver nanoparticles or ions (silver nitrate). These doses were not lethal; yet higher concentrations prompted embryos to hatch earlier and at a smaller size. The induced hatching did not vary with nanoparticle size and was stronger in the silver nitrate group. Additive genetic variation for hatching time was significant across all treatments, with no apparent environmental dependencies. No genetic variation was found for hatching plasticity. We found some treatment‐dependent heritable variation for larval length and yolk volume, and one instance of additive genetic variation for the reaction norm on length at hatching. Our assessment suggests that the effects of silver exposure on additive genetic variation vary according to trait and silver source. While the long‐term fitness consequences of low‐level silver exposure on whitefish embryos must be further investigated to determine whether it is, in fact, detrimental, our results suggest that the evolutionary potential for adaptation to these types of pollutants may be low.  相似文献   

16.
The evolution of plastic traits requires phenotypic trade-offs and heritable traits, yet the latter requirement has received little attention, especially for predator-induced traits. Using a half-sib design, I examined the narrow-sense heritability of predator-induced behaviour, morphology, and life history in larval wood frogs (Rana sylvatica). Many of the traits had significant additive genetic variation in predator (caged Anax longipes) and no-predator environments. Whereas most traits had moderate to high heritability across environments, tail depth exhibited high heritability with predators but low heritability without predators. In addition, several traits had significant heritability for plasticity, suggesting a potential for selection to act on plasticity per se. Genetic correlations confirmed known phenotypic relationships across environments and identified novel relationships within each environment. This appears to be the first investigation of narrow-sense heritabilities for predator-induced traits and confirms that inducible traits previously shown to be under selection also have a genetic basis and should be capable of exhibiting evolutionary responses.  相似文献   

17.
The relative importance of genetic, environmental, and maternal effects as determinants of geographical variation in vertebrate life-histories has not often been explored. We examined the role of genetic and maternal effects as determinants of population divergence in survival and three important larval life-history traits (growth rate, age, and size at metamorphosis) using reciprocal crosses between two latitudinally separated populations of the common frog ( Rana temporaria Linnaeus). Genetic effects were important in all three traits as indicated by the significant effect of male origin, but there was also evidence for nonadditive genetic contributions on metamorphic size and growth rate. Likewise, maternal effect contributions to population divergence were large, partially environment dependent, and apparently acting primarily through egg size in two of three traits. These results suggest that both genetic and maternal effects are important determinants of geographical variation in amphibian life-histories, and that much of the differentiation resulting from maternal effects is mediated through variation in egg size. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 61–70.  相似文献   

18.
Successful reproduction is an important determinant of the fitness of an individual and of the dynamics of populations. Offspring of the European common frog (Rana temporaria) exhibit a high degree of variability in metamorphic traits. However, environmental factors alone cannot explain this phenotypic variability, and the influence of genetic factors remains to be determined. Here, we tested whether the maternal genotype influences developmental time, body size, and body condition of offspring in a forest pond in Germany. We collected fertilized eggs from all 57 clutches deposited in the pond. We used multilocus genotypes based on seven microsatellite loci to assign metamorphosed offspring to mothers and to determine the number of fathers for a single matriline. We tested the influence of genetic effects in the same environment by comparing variability of metamorphic traits within and between full‐sib offspring grouped to matrilines and tested whether multiple paternity increases the variability of metamorphic traits in a single matriline. The variability in size and body condition was higher within matrilines than between them, which indicates that these traits are more strongly influenced by environmental effects, which are counteracting underlying genetic effects. The developmental time varied considerably between matrilines and variability increased with the effective number of fathers, suggesting an additive genetic effect of multiple paternity. Our results show that metamorphic traits are shaped by environmental as well as genetic effects.  相似文献   

19.
Odour-guided behaviour is a quantitative trait determined by many genes that are sensitive to gene-environment interactions. Different natural populations are likely to experience different selection pressures on the genetic underpinnings of chemosensory behaviour. However, few studies have reported comparisons of the quantitative genetic basis of olfactory behaviour in geographically distinct populations. We generated isofemale lines of Drosophila melanogaster from six populations in Argentina and measured larval and adult responses to benzaldehyde. There was significant variation within populations for both larval and adult olfactory behaviour and a significant genotype x sex interaction (GSI) for adult olfactory behaviour. However, there is substantial variation in the contribution of GSI to the total phenotypic variance among populations. Estimates of evolvability are orders of magnitude higher for larvae than for adults. Our results suggest that the potential for evolutionary adaptation to the chemosensory environment is greater at the larval feeding stage than at the adult reproductive stage.  相似文献   

20.
The relative roles of genetic differentiation and developmental plasticity in generating latitudinal gradients in life histories remain insufficiently understood. In particular, this applies to determination of voltinism (annual number of generations) in short‐lived ectotherms, and the associated trait values. We studied different components of variation in development of Chiasmia clathrata (Lepidoptera: Geometridae) larvae that originated from populations expressing univoltine, partially bivoltine or bivoltine phenology along a latitudinal gradient of season length. Indicative of population‐level genetic differentiation, larval period became longer while growth rate decreased with increasing season length within a particular phenology, but saw‐tooth clines emerged across the phenologies. Indicative of phenotypic plasticity, individuals that developed directly into reproductive adults had shorter development times and higher growth rates than those entering diapause. The most marked differences between the alternative developmental pathways were found in the bivoltine region suggesting that the adaptive correlates of the direct development evolve if exposed to selection. Pupal mass followed a complex cline without clear reference to the shift in voltinism or developmental pathway probably due to varying interplay between the responses in development time and growth rate. The results highlight the multidimensionality of evolutionary trajectories of life‐history traits, which either facilitate or constrain the evolution of integrated traits in alternative phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号