首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replacement of cysteine at position 543 by tyrosine in the influenza virus hemagglutinin (HA) protein enables the endocytosis of the mutant protein (Tyr 543) through coated pits (Lazarovits, J., and M. G. Roth. 1988. Cell. 53:743-752). To investigate the interactions between Tyr 543 and the clathrin coats in the plasma membrane of live cells, we performed fluorescence photobleaching recovery measurements comparing the lateral mobilities of Tyr 543 (which enters coated pits) and wild-type HA (HA wt, which is excluded from coated pits), following their expression in CV-1 cells by SV-40 vectors. While both proteins exhibited the same high mobile fractions, the lateral diffusion rate of Tyr 543 was significantly slower than that of HA wt. Incubation of the cells in a sucrose-containing hypertonic medium, a treatment that disperses the membrane-associated coated pits, resulted in similar lateral mobilities for Tyr 543 and HA wt. These findings indicate that the lateral motion of Tyr 543 (but not of HA wt) is inhibited by transient interactions with coated pits (which are essentially immobile on the time scale of the lateral mobility measurements). Acidification of the cytoplasm by prepulsing the cells with NH4Cl (a treatment that arrests the pinching-off of coated vesicles from the plasma membrane and alters the clathrin lattice morphology) led to immobilization of a significant part of the Tyr 543 molecules, presumably due to their entrapment in coated pits for the entire duration of the lateral mobility measurement. Furthermore, in both untreated and cytosol-acidified cells, the restrictions on Tyr 543 mobility were less pronounced in the cold, suggesting that the mobility-restricting interactions are temperature dependent and become weaker at low temperatures. From these studies we conclude the following. (a) Lateral mobility measurements are capable of detecting interactions of transmembrane proteins with coated pits in intact cells. (b) The interactions of Tyr 543 with coated pits are dynamic, involving multiple entries of Tyr 543 molecules into and out of coated pits. (c) Alterations in the clathrin lattice structure can modulate the above interactions.  相似文献   

2.
J Lazarovits  M Roth 《Cell》1988,53(5):743-752
Through site-specific mutagenesis, three of the ten amino acids of the cytoplasmic domain of the influenza virus hemagglutinin (HA) were individually changed to tyrosines. None of these changes had significant effect on the rate of export, the rate of folding, or the antigenicity of the mutant HAs. However, one of these mutations, substituting tyrosine for cysteine at amino acid 543, changed HA from a protein that was endocytosed at a very low rate to a protein that readily entered coated pits, was internalized, and apparently recycled to the cell surface. Replacement of cysteine 543 with phenylalanine or serine did not increase the rate of internalization of HA. Phosphorylation of the mutant HA bearing a tyrosine at position 543 was not detected. These results indicate a specific and local role for the tyrosine introduced into the cytoplasmic domain of HA that is necessary for interaction of the protein with coated pits.  相似文献   

3.
Most membrane proteins are endocytosed through clathrin-coated pits via AP-2 adaptor complexes. However, little is known about the interaction of internalization signals with AP-2 in live cells in the absence of clathrin lattices. To investigate this issue, we employed cells cotransfected with pairs of antigenically distinct influenza hemagglutinin (HA) mutants containing different internalization signals of the YXXZ family. To enable studies on the possible association of the naturally trimeric HAs into higher order complexes via binding to AP-2, we exploited the inability of HAs from different influenza strains to form mutual trimers. Thus, we coexpressed HA pairs from different strains (Japan and X:31) bearing similar cytoplasmic tails mutated to include internalization signals. Using antibody-mediated immunofluorescence co-patching on live cells, we demonstrate that internalization-competent HA mutants form higher order complexes and that this clustering depends on the strength of the internalization signal. The clustering persisted in cells treated with hypertonic medium to disperse the clathrin lattices, as validated by co-immunoprecipitation experiments. The clustering of HAs bearing strong internalization signals appears to be mediated via binding to AP-2, as indicated by (i) the coprecipitation of alpha-adaptin with these HAs, even in hypertonically treated cells; (ii) the co-localization (after hypertonic treatment) of AP-2 with antibody-mediated patches of these mutants; and (iii) the dispersal of the higher order HA complexes following chlorpromazine treatment, which removes AP-2 from the plasma membrane. These results suggest that even in the absence of clathrin lattices, AP-2 exists in multivalent complexes capable of simultaneously binding several internalization signals from the same family.  相似文献   

4.
Synaptojanin 1, a polyphosphoinositide phosphatase, is expressed as two major alternatively spliced isoforms of 145 kDa (SJ145) and 170 kDa (SJ170) [1] [2], which are thought to have pleiotropic roles in endocytosis, signaling and actin function [3] [4] [5]. SJ145 is highly enriched in nerve terminals where it participates in clathrin-dependent synaptic vesicle recycling [1] [5]. SJ170, which differs from SJ145 by the presence of a carboxy-terminal extension, is the predominant isoform in developing neurons and is expressed in a variety of tissues [2]. The carboxy-terminal domain unique to SJ170 was previously shown to bind Eps15 [6], a protein involved in receptor-mediated endocytosis. Here, we show that the same domain also binds clathrin and the clathrin adaptor AP-2. These interactions occur both in vitro and in vivo and are direct. Binding of AP-2 is mediated by the ear domain of its alpha-adaptin subunit and binding of clathrin by the amino-terminal domain of its heavy chain. Overexpression in chinese hamster ovary (CHO) cells of full-length SJ170 or its unique carboxy-terminal region caused mislocalization of Eps15, AP-2 and clathrin, as well as inhibition of clathrin-dependent transferrin uptake. These findings suggest a close association of SJ170 with the clathrin coat and provide new evidence for its physiological role in the regulation of clathrin coat dynamics.  相似文献   

5.
《The Journal of cell biology》1995,129(5):1241-1250
In polarized epithelial MDCK cells, all known endogenous endocytic receptors are found on the basolateral domain. The influenza virus hemagglutinin (HA) which is normally sorted to the apical plasma membrane, can be converted to a basolateral protein by specific mutations in its short cytoplasmic domain that also create internalization signals. For some of these mutations, sorting to the basolateral surface is incomplete, allowing internalization of two proteins that differ by a single amino acid of the internalization signal to be compared at both the apical and basolateral surfaces of MDCK cells. The rates of internalization of HA-Y543 and HA-Y543,R546 from the basolateral surface of polarized MDCK cells resembled those in nonpolarized cells, whereas their rates of internalization from the apical cell surface were fivefold slower. However, HA-Y543,R546 was internalized approximately threefold faster than HA-Y543 at both membrane domains, indicating that apical endocytic pits in polarized MDCK cells retained the ability to discriminate between different internalization signals. Slower internalization from the apical surface could not be explained by a limiting number of coated pits: apical membrane contained 0.7 as many coated pits per cell cross-section as did basolateral membranes. 10-14% of HA-Y543 at the apical surface of polarized MDCK cells was found in coated pits, a percentage not significantly different from that observed in apical coated pits of nonpolarized MDCK cells, where internalization was fivefold faster. Thus, there was no lack of binding sites for HA-Y543 in apical coated pits of polarized cells. However, at the apical surface many more shallow pits, and fewer deep, mature pits, were observed than were seen at the basolateral. These results suggest that the slower internalization at the apical surface is due to slower maturation of coated pits, and not to a difference in recognition of internalization signals.  相似文献   

6.
Disabled-2 (Dab2) is a widely expressed relative of Disabled-1, a neuron-specific signal-transduction protein that binds to and receives signals from members of the low-density lipoprotein receptor (LDLR) family. Members of the LDLR family internalize through clathrin-coated pits and vesicles to endosomes, from where they return to the cell surface through the secretory pathway. In this study, we show that the Dab2 phosphotyrosine-binding domain binds peptides containing the sequence FXNPXY. This core sequence is found in the intracellular domains of LDLR family members and is important for receptor internalization. Dab2 transiently colocalizes with the LDLR in clathrin-coated pits, but is absent from endosomes and lysosomes. Dab2 is alternatively spliced and its localization depends on a region of the protein that contains two DPF motifs that are present in the p96 Dab2 protein and absent in the p67 splice variant. This region is sufficient to confer Dab2 binding to the α-adaptin subunit of the clathrin adaptor protein, AP-2. Overexpression of p96 but not of p67 Dab2 disrupts the localization of AP-2. These findings suggest that in addition to previously reported signal-transduction functions, Dab2 could also act as an adaptor protein that may regulate protein trafficking.  相似文献   

7.
Numerous biologically relevant substrates are selectively internalized via clathrin-mediated endocytosis. At the plasma membrane the AP-2 complex plays a major role in clathrin coat formation, interacting with both cargo and clathrin. Utilizing simultaneous dual-channel total internal reflection fluorescence microscopy we have analyzed components of the AP-2 complex (alpha- and beta 2-adaptin) during clathrin-mediated endocytosis. Although in static images enhanced green fluorescent protein-tagged AP-2 markers significantly co-localized with clathrin and other components of clathrin-coated pits, AP-2 did not seem to be present in clathrin spots that appeared to undergo internalization or motility parallel to the plane of the plasma membrane. Two populations of clathrin at the plasma membrane seem to exist, the dynamic and the static, and AP-2 appears to be only found within the latter. These results suggest that colocalized clathrin/AP-2 puncta may represent loci for coated pit production and that previous models that assumed AP-2 was retained within clathrin coats during endocytosis may need to be re-evaluated.  相似文献   

8.
The removal of the clathrin coat is essential for vesicle fusion with acceptor membranes. Disassembly of the coat involves hsc70, which is specifically recruited by members of the auxilin protein family to clathrin lattices. In vitro, this function of auxilin does not require the globular amino-terminal domain of the clathrin heavy chain, which is known to play a prominent role in the interaction of clathrin with adaptors and numerous endocytic accessory proteins. Here we report the unexpected finding that the neuron-specific form of auxilin (auxilin 1) can also associate with the clathrin amino-terminal domain. This interaction is mediated through tandemly arranged sites within the auxilin 1 carboxyl-terminal segment 547-910. The overlapping auxilin 1 fragments 547-714 and 619-738 bind the clathrin terminal domain with high affinity, whereas auxilin 1-(715-901) interacts only poorly with it. All three fragments also associate with the clathrin distal domain and the alpha-appendage domain of AP-2. Moreover, they support efficient assembly of clathrin triskelia into regular cages. A novel uncoating assay was developed to demonstrate that auxilin 1-(715-901) functions efficiently as a cofactor for hsc70 in the uncoating of clathrin-coated vesicles. The multiple protein-protein interactions of auxilin 1 suggest that its function in endocytic trafficking may be more complex than previously anticipated.  相似文献   

9.
K Prasad  J H Keen 《Biochemistry》1991,30(22):5590-5597
The clathrin assembly protein complex AP-2 is a multimeric subunit complex consisting of two 100-115-kDa subunits known as alpha and beta and 50- and 16-kDa subunits. The subunits have been dissociated and separated by ion-exchange chromatography in 7.5 M urea. Fractions highly enriched in either the alpha or beta subunit were obtained. The alpha fraction interacted with clathrin as evidenced by its ability to bind to preassembled clathrin cages. It also reacted with dissociated clathrin trimers under conditions that favor assembly of coat structures, but did not yield discrete clathrin polygonal lattices. The enriched beta fraction (containing small amounts of alpha) reacted with clathrin to yield intact coats with the incorporation of approximately equivalent amounts of alpha and beta subunits into the polymerized species; excess free beta subunit was unreactive. The AP-2 complex was also completely dissociated in a highly denaturing solvent, 6 M Gdn.HCl, and the constituent subunits of 100-115, 50, and 16 kDa were separated by gel filtration. In a coassembly assay with clathrin, the clathrin polymerizing activity was exclusively associated with the 100-kDa subunit fraction with stoichiometric incorporation of both alpha and beta subunits of 100 kDa into the polymerized coats, and with no requirement for 50- or 16-kDa subunits. These observations demonstrate that the assembly activity of the complex is associated with the alpha and beta subunits and suggest that both subunits, through independent interactions with clathrin, are required for expression of complete lattice assembly activity.  相似文献   

10.
Mutations in the phosphotyrosine binding domain protein ARH cause autosomal recessive hypercholesterolemia, a disorder caused by defective internalization of low density lipoprotein receptors (LDLR) in the liver. To examine the function of ARH, we used pull-down experiments to test for interactions between ARH, the LDLR, and proteins involved in clathrin-mediated endocytosis. The phosphotyrosine binding domain of ARH interacted with the internalization sequence (NPVY) in the cytoplasmic tail of LDLR in a sequence-specific manner. Mutations in the NPVY sequence that were previously shown to decrease LDLR internalization abolished in vitro binding to ARH. Recombinant ARH bound purified bovine clathrin with high affinity (K(D), approximately 44 nm). The interaction between ARH and clathrin was mapped to a canonical clathrin box sequence (LLDLE) in ARH and to the N-terminal domain of the clathrin heavy chain. A highly conserved 20-amino acid sequence in the C-terminal region of ARH bound the beta(2)-adaptin subunit of AP-2. Mutation of a glutamic acid residue in the appendage domain of beta(2)-adaptin that is required for interaction with the adapter protein beta-arrestin markedly reduced binding to ARH. These data are consistent with the hypothesis that ARH functions as an adaptor protein that couples LDLR to the endocytic machinery.  相似文献   

11.
Upon activation by Wnt, the Frizzled receptor is internalized in a process that requires the recruitment of Dishevelled. We describe a novel interaction between Dishevelled2 (Dvl2) and micro2-adaptin, a subunit of the clathrin adaptor AP-2; this interaction is required to engage activated Frizzled4 with the endocytic machinery and for its internalization. The interaction of Dvl2 with AP-2 requires simultaneous association of the DEP domain and a peptide YHEL motif within Dvl2 with the C terminus of micro2. Dvl2 mutants in the YHEL motif fail to associate with micro2 and AP-2, and prevent Frizzled4 internalization. Corresponding Xenopus Dishevelled mutants show compromised ability to interfere with gastrulation mediated by the planar cell polarity (PCP) pathway. Conversely, a Dvl2 mutant in its DEP domain impaired in PCP signaling exhibits defective AP-2 interaction and prevents the internalization of Frizzled4. We suggest that the direct interaction of Dvl2 with AP-2 is important for Frizzled internalization and Frizzled/PCP signaling.  相似文献   

12.
The AP-2 complex is a key factor in the formation of endocytic clathrin-coated vesicles (CCVs). AP-2 sorts and packages cargo membrane proteins into CCVs, binds the coat protein clathrin, and recruits numerous other factors to the site of vesicle formation. Structural information on the AP-2 complex and biochemical work have allowed understanding its function on the molecular level, and recent studies showed that cycles of phosphorylation are key steps in the regulation of AP-2 function. The complex is phosphorylated on both large subunits (alpha- and beta2-adaptins) as well as at a single threonine residue (Thr-156) of the medium subunit mu2. Phosphorylation of mu2 is necessary for efficient cargo recruitment, whereas the functional context of the large subunit phosphorylation is unknown. Here, we show that the subunit phosphorylation of AP-2 exhibits striking differences, with calculated half-lives of <1 min for mu2, approximately 25 min for beta2, and approximately 70 min for alpha. We were also able to purify a phosphatase that dephosphorylates the mu2 subunit. The enzyme is a member of the protein phosphatase 2A family and composed of a catalytic Cbeta subunit, a scaffolding Abeta subunit, and a regulatory Balpha subunit. RNA interference knock down of the latter subunit in HeLa cells resulted in increased levels of phosphorylated adaptors and altered endocytosis, showing that a specific PP2A holoenzyme is an important regulatory enzyme in CCV-mediated transport.  相似文献   

13.
Although interactions between the mu2 subunit of the clathrin adaptor protein complex AP-2 and tyrosine-based internalization motifs have been implicated in the selective recruitment of cargo molecules into coated pits, the functional significance of this interaction for endocytosis of many types of membrane proteins remains unclear. To analyze the function of mu2-receptor interactions, we constructed an epitope-tagged mu2 that incorporates into AP-2 and is targeted to coated pits. Mutational analysis revealed that Asp176 and Trp421 of mu2 are involved in the interaction with internalization motifs of TGN38 and epidermal growth factor (EGF) receptor. Inducible overexpression of mutant mu2, in which these two residues were changed to alanines, resulted in metabolic replacement of endogenous mu2 in AP-2 complexes and complete abrogation of AP-2 interaction with the tyrosine-based internalization motifs. As a consequence, endocytosis of the transferrin receptor was severely impaired. In contrast, internalization of the EGF receptor was not affected. These results demonstrate the potential usefulness of the dominant-interfering approach for functional analysis of the adaptor protein family, and indicate that clathrin-mediated endocytosis may proceed in both a mu2-dependent and -independent manner.  相似文献   

14.
In this study image correlation spectroscopy was used to demonstrate the presence of two populations of clathrin in situ, on intact cells. In the periphery of the cell approximately 35% of the clathrin triskelions are free within the cytosol while approximately 65% are in large aggregates, presumably coated pits. Although endocytosis is inhibited at low temperature, free clathrin triskelions are still present and small AP-2 aggregates (of approximately 20 proteins), or coated pit nucleation sites, are still observed. Following hypertonic treatment, or cytoplasmic acidification, free clathrin triskelions within the cytosol are depleted and all of the clathrin becomes associated with the membrane. Under these conditions coated pit associated AP-2 remains while the smaller AP-2 aggregates, or coated pit nucleation sites, dissociate. This indicates that the stabilization of AP-2 coated pit nucleation sites requires the presence of free clathrin triskelions within the cytosol. Furthermore, this indicates that free clathrin is required for the early stages of coated pit formation and presumably the continuation of the clathrin-mediated endocytic process. We also provide indirect evidence that AP-2 binding to the membrane in coated pit nucleation sites may be regulated in part by binding to internalization-competent membrane receptors.  相似文献   

15.
Major histocompatibility complex class I is down-regulated from the surface of human immunodeficiency virus (HIV)-1-infected cells by Nef, a virally encoded protein that is thought to reroute MHC-I to the trans-Golgi network (TGN) in a phosphofurin acidic cluster sorting protein (PACS) 1, adaptor protein (AP)-1, and clathrin-dependent manner. More recently, an alternative model has been proposed, in which Nef uses AP-1 to direct MHC-I to endosomes and lysosomes. Here, we show that knocking down either AP-1 or clathrin with small interfering RNA inhibits the down-regulation of HLA-A2 (an MHC-I isotype) by Nef in HeLa cells. However, knocking down PACS-1 has no effect, not only on Nef-induced down-regulation of HLA-A2 but also on the localization of other proteins containing acidic cluster motifs. Surprisingly, knocking down AP-2 actually enhances Nef activity. Immuno-electron microscopy labeling of Nef-expressing cells indicates that HLA-A2 is rerouted not to the TGN, but to endosomes. In AP-2-depleted cells, more of the HLA-A2 localizes to the inner vesicles of multivesicular bodies. We propose that depleting AP-2 potentiates Nef activity by altering the membrane composition and dynamics of endosomes and causing increased delivery of HLA-A2 to a prelysosomal compartment.  相似文献   

16.
Beta-arrestins are cytosolic proteins that regulate the signaling and the internalization of G protein-coupled receptors (GPCRs). Although termination of receptor coupling requires beta-arrestin binding to agonist-activated receptors, GPCR endocytosis involves the coordinate interactions between receptor-beta-arrestin complexes and other endocytic proteins such as adaptor protein 2 (AP-2) and clathrin. Clathrin interacts with a conserved motif in the beta-arrestin C-terminal tail; however, the specific molecular determinants in beta-arrestin that bind AP-2 have not been identified. Moreover, the respective contributions of the interactions of beta-arrestin with AP-2 and clathrin toward the targeting of GPCRs to clathrin-coated vesicles have not been established. Here, we identify specific arginine residues (Arg(394) and Arg(396)) in the beta-arrestin 2 C terminus that mediate beta-arrestin binding to AP-2 and show, in vitro, that these domains in beta-arrestin 1 and 2 interact equally well with AP-2 independently of clathrin binding. We demonstrate in HEK 293 cells by fluorescence microscopy that beta(2)-adrenergic receptor-beta-arrestin complexes lacking the beta-arrestin-clathrin binding motif are still targeted to clathrin-coated pits. In marked contrast, receptor-beta-arrestin complexes lacking the beta-arrestin/AP-2 interactions are not effectively compartmentalized in punctated areas of the plasma membrane. These results reveal that the binding of a receptor-beta-arrestin complex to AP-2, not to clathrin, is necessary for the initial targeting of beta(2)-adrenergic receptor to clathrin-coated pits.  相似文献   

17.
Several components of the phosphoinositide cycle have been found to interact specifically and at physiological concentrations with the plasma membrane-associated clathrin assembly (adaptor) protein AP-2. These include phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate, which are present at the plasma membrane, as well as other polyphosphoinositols. ATP and other polyphosphate molecules complete with the polyphosphoinositols, however, they are at least 80-fold less potent. Also, the effect of ATP, unlike the polyphosphoinositols, is blocked by physiological concentrations of Mg2+. Photoaffinity labeling of AP-2 by [alpha-32P]8-azidoadenosine 5'-triphosphate and its competition by polyphosphoinositols has been used to identify the alpha subunit of the AP-2 complex as the site of specific interaction with the polyphosphoinositols and to confirm direct ultrafiltration binding experiments. Proteolytic dissection of the labeled AP-2 demonstrated that binding occurred exclusively on the N-terminal portion of the alpha subunit. Interaction of purified AP-2 with sub-microM concentrations of polyphosphoinositols has inhibitory effects on a novel AP-2 self-association described in the accompanying paper (Beck, K. A., and Keen, J. H., J. Biol. Chem. 266, 4437-4441), and at higher concentrations on the binding of AP-2 to dissociated clathrin trimers as well as AP-2-mediated clathrin coat assembly. Review of the literature shows that several physiological stimuli that are known to result in increased coat pit formation in intact cells correlate with increased phosphoinositide turnover. These in vivo correlations and the in vitro observations reported here suggest that coated membrane and phosphoinositide cycles may be interdependent within cells.  相似文献   

18.
The cystic fibrosis transmembrane conductance regulator (CFTR) undergoes rapid and efficient endocytosis. Since functionally active CFTR is found in purified clathrin-coated vesicles isolated from both cultured epithelial cells and intact epithelial tissues, we investigated the molecular mechanisms whereby CFTR could enter such endocytic clathrin-coated vesicles. In vivo cross-linking and in vitro pull-down assays show that full-length CFTR binds to the endocytic adaptor complex AP-2. Fusion proteins containing the carboxyl terminus of CFTR (amino acids 1404-1480) were also able to bind AP-2 but did not bind the Golgi-specific adaptor complex AP-1. Substitution of an alanine residue for tyrosine at position 1424 significantly reduced the ability of AP-2 to bind the carboxyl terminus of CFTR; however, mutation to a phenylalanine residue (an amino acid found at position 1424 in dogfish CFTR) did not perturb AP-2 binding. Secondary structure predictions suggest that Tyr(1424) is present in a beta-turn conformation, a conformation disrupted by alanine but not phenylalanine. Together, these data suggest that the carboxyl terminus of CFTR contains a tyrosine-based internalization signal that interacts with the endocytic adaptor complex AP-2 to facilitate efficient entry of CFTR into clathrin-coated vesicles.  相似文献   

19.
In spite of the many key cellular functions of chloride channels, the mechanisms that mediate their subcellular localization are largely unknown. ClC-2 is a ubiquitous chloride channel usually localized to the basolateral domain of epithelia that regulates cell volume, ion transport, and acid–base balance; mice knocked out for ClC-2 are blind and sterile. Previous work suggested that CLC-2 is sorted basolaterally by TIFS812LL, a dileucine motif in CLC-2''s C-terminal domain. However, our in silico modeling of ClC-2 suggested that this motif was buried within the channel''s dimerization interface and identified two cytoplasmically exposed dileucine motifs, ESMI623LL and QVVA635LL, as candidate sorting signals. Alanine mutagenesis and trafficking assays support a scenario in which ESMI623LL acts as the authentic basolateral signal of ClC-2. Silencing experiments and yeast three-hybrid assays demonstrated that both ubiquitous (AP-1A) and epithelium-specific (AP-1B) forms of the tetrameric clathrin adaptor AP-1 are capable of carrying out basolateral sorting of ClC-2 through interactions of ESMI623LL with a highly conserved pocket in their γ1-σ1A hemicomplex.  相似文献   

20.
Coated pits contain a resident membrane molecule(s) that binds clathrin AP-2 with high affinity. AP-2 binding to this site is likely to be the first step in coated pit assembly because this subunit functions as a template for the polymerization of clathrin into flat polygonal lattices. Integral membrane proteins involved in receptor mediated endocytosis cluster in the newly assembled pits as they invaginate and bud from the membrane. The AP-2 subunit is a multi-domain, molecular complex that can be separated by proteolysis into a brick-shaped core and ear-like appendage domains. We have used this property to identify the domain involved in the various stages of coated pit assembly and budding. We found that the core of AP-2 is the domain that binds both to membranes and to triskelions during assembly. Triskelions are perfectly capable of forming lattices on the membrane bound cores. Clathrin lattices bound only to core domains were also able to invaginate normally. Limited proteolysis was also useful for further characterizing the AP-2 binding site. Elastase treatment of the inside membrane surface released a peptide fraction that is able to bind AP-2 in solution and prevent it from interacting with membranes. Affinity purification of binding activity yielded a collection of peptides that was dominated by a 45-kD species. This is the candidate peptide for containing the AP-2-binding site. Therefore, the appendage domain does not directly participate in any of the assembly or invagination events required for coated pit function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号