首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
We examined effects of ethanol and dimethyl sulfoxide on the regulation and apparent thermodynamic properties of moderate affinity Na+ and K+ binding that regulates the K+-dependent phosphatase activity of (Na+,K+)-ATPase. Ethanol and other alcohols reduced the apparent affinity for Na+ and K+ at their moderate affinity sites and increased the negative delta H and delta S of cation binding. Dimethyl sulfoxide had the opposite effects. Inhibition by ethanol was favored by high temperature or low K+. Ethanol potentiated inhibition of K+ binding by ATP or Mg2+. Ethanol also shifted the equilibrium between K+-sensitive and -insensitive forms of (Na+,K+)-ATPase toward the K+-sensitive form; in this case, it reduced the negative delta H and delta S for the transition to K+-sensitive enzyme. Again, dimethyl sulfoxide had the opposite effects. These data indicate that ethanol and other agents considered to affect membrane fluidity act by a combination of membrane (on cation binding) and solvent (on conformation) effects. The most important effect of ethanol and similar agents on the enzyme is to prevent the formation of K+-sensitive enzyme by cation binding and to destabilize K+-sensitive enzyme in the presence of ATP. These results also add further evidence that the sites by which Na+ and K+ produce K+-sensitive enzyme are similar or identical.  相似文献   

2.
The particular aim of the review on some basic facets of the mechanism of Na+/K(+)-transporting ATPase (Na/K-ATPase) has been to integrate the experimental findings concerning the Na(+)- and K(+)-elicited protein conformation changes and transphosphorylations into the perspective of an allosterically regulated, phosphoryl energy transferring enzyme. This has led the authors to the following summarizing evaluations. 1. The currently dominating hypothesis on a link between protein conformation changes ('E1 in equilibrium with E2') and Na+/K+ transport (the 'Albers-Post scheme') has been constructed from a variety of partial reactions and elementary steps, which, however, do not all unequivocally support the hypothesis. 2. The Na(+)- and K(+)-elicited protein conformation changes are inducible by a variety of other ligands and modulatory factors and therefore cannot be accepted as evidence for their direct participation in effecting cation translocation. 3. There is no evidence that the 'E1 in equilibrium with E2' protein conformation changes are moving Na+ and K+ across the plasma membrane. 4. The allosterically caused ER in equilibrium with ET ('E1 in equilibrium with E2') conformer transitions and the associated cation 'occlusion' in equilibrium with 'de-occlusion' processes regulate the actual catalytic power of an enzyme ensemble. 5. A host of experimental variables determines the proportion of functionally competent ER enzyme conformers and incompetent ET conformers so that any enzyme population, even at the start of a reaction, consists of an unknown mixture of these conformers. These circumstances account for the occurrence of contradictory observations and apparent failures in their comparability. 6. The modelling of the mechanism of the Na/K-ATPase and Na+/K+ pump from the results of reductionistically designed experiments requires the careful consideration of the physiological boundary conditions. 7. Na+ and K+ ligandation of Na/K-ATPase controls the geometry and chemical reactivity of the catalytic centre in the cycle of E1 in equilibrium with E2 state conversions. This is possibly effected by hinge-bending, concerted motions of three adjacent, intracellularly exposed peptide sequences, which shape open and closed forms of the catalytic centre in lock-and-key responses. 8. The Na(+)-dependent enzyme phosphorylation with ATP and the K(+)-dependent hydrolysis of the phosphoenzyme formed are integral steps in the transport mechanism of Na/K-ATPase, but the translocations of Na+ and K+ do not occur via a phosphate-cation symport mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We have studied some features of K+ accumulation by glycolysing Mycoplasma mycoides var. Capri cells. We report that when Na+ is absent from the external medium, K+ accumulates up to the level predicted by the amplitude of the transmembrane electrical potential, delta psi m, measured by Rb+ and methyltriphenylphosphonium cation (TPMP+) distribution. Therefore, under these experimental conditions, the coupling mechanism of K+ uptake consists of a delta psi m-driven uniport. More important, when Na+ is present in the external medium, the level of K+ accumulation by glycolysing Mycoplasma cells is far too steep to be equilibrium with delta psi m (-120 mV for delta muK+ compared with -90mV for delta muRb+ or delta muTPMP+). Our results clearly indicate the presence in Mycoplasma of an active K+-transport system specifically stimulated by Na+. Furthermore, by controlling the amplitude of the energy-dependent delta muH+, we obtain strong evidence that this specific Na+-stimulated K+ transport is modulated by the transmembrane electrical potential. Finally, we show that ATP is consumed when such a transport system is in activity.  相似文献   

4.
R B MacGregor  M Y Chen 《Biopolymers》1990,29(6-7):1069-1076
The equilibrium between the right- and left-handed conformations of poly[d(G-C)] in aqueous NaCl shifts towards the right-handed (B) form with increasing pressure. The optical density at 290 and 260 nm was determined at 50 and 180 MPa for solutions in which approximately equal amounts of the two conformations were present at 0.1 MPa (atmospheric pressure). Interpretation of the observed changes in terms of a two-state unimolecular reaction mechanism results in an average molar reaction volume (delta V0) equal to 26 cm3 mol-1 at 22 degrees C; that is, the partial molar volume of B form poly[d(G-C)] is smaller than that of the left-handed (Z) form. Based upon the thermodynamics of ion-pair formation in polar solvents, it is proposed that the positive delta V0 reflects a favorable entropy change for the reaction toward the Z conformation. The larger entropy change of the Z form may derive from the release of water molecules from the hydration spheres of the cation and the poly[d(G-C)] due to the formation of ionic interactions with the Z conformer. The delta V0 of the transition is similar in sign and magnitude to the calculated molar volume change of the interaction of Na+ with H2PO4- in water.  相似文献   

5.
In an attempt to understand the role of Ca2+ on the bioactive conformation of peptide hormones, we have examined the interaction between Ca2+ and the neuropeptide substance P. Using CD spectroscopy to monitor conformational changes caused by Ca2+ binding, we found no significant binding of the cation by substance P in water. However, a substantial conformational change occurred in the hormone on Ca2+ addition in trifluoroethanol or an 80:20 (v/v) mixture of acetonitrile and trifluoroethanol. A biphasic binding of Ca2+ was observed in these solvents with saturation at 2 cations per hormone molecule. Mg2+ caused a relatively smaller conformational change in the hormone. A peptide corresponding to residues 1-7 at the N-terminal fragment of substance P showed a weak nonsaturating binding of Ca2+ in the nonpolar solvents whereas the 7-11 C-terminal fragment peptide displayed a binding indicative of an 1:1 Ca2+/peptide complex. Ca2+ binding by the hormone and the 7-11 fragment was also monitored by changes in fluorescence of the phenylalanyl residues. The results support the conclusion drawn from the CD data about a distinct Ca2+ binding site in the C-terminal part of substance P. The Kd values obtained from fluorescence data were 160 microM for Ca2+ and 1 mM for Mg2+ binding by substance P. The hormone and the two peptide fragments were also tested for their effect on the stability of dimyristoyl lecithin vesicles. Substance P and the N-terminal fragment caused no significant leakage of either fluorescent dyes or K+ trapped in the vesicles. Nor did they cause membrane fusion as monitored by the fluorescence quenching method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Factors determining the plasma-membrane potential of lymphocytes.   总被引:10,自引:5,他引:5       下载免费PDF全文
1. Lymphocytes from pig mesenteric lymph node have low permeability to K+ (Rb+), Na+ and Cl-. None of these ions is in Nernst equilibrium with the plasma-membrane potential (delta psi p). 2. delta psi p can be calculated from the transmembrane distribution of the permeant cation methyltriphenylphosphonium (TPMP+) in the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) to abolish uptake into intracellular mitochondria. In normal culture medium delta psi p is 56 mV. 3. A similar potential is found in T-enriched pig cells and in mouse thymocytes. 4. The contribution of electrogenic (Na+ + K+)ATPase to delta psi p is about 7 mV. 5. The remainder of the lymphocyte delta psi p is a polyionic potential set up by K+ and Cl- with a permeability coefficient for Cl- of similar magnitude to that for K+.  相似文献   

7.
The kinetics of association and dissociation for the ouabain-Na+,K+- dependent ATPase complex have been studied in intact turkey erythrocytes as a function of external Na+ concentration, K+ concentration, and temperature. At free ligand concentrations substantially exceeding the concentration of available binding sites, the association reaction exhibits pseudo-first-order kinetics with an association rate constant (k1) that is conveniently determined over a wide range of temperatures (5-37 degrees C). The dissociation reaction exhibits strict first-order kinetics with a dissociation rate constant (k-1) that has the unusual property, in the turkey cell, of being sufficiently great to permit its direct determination even at temperatures as low as 5 degrees C. Values for the equilibrium binding constant for the ouabain-ATPase complex (KA) predicted from the ratio of the association and dissociation rate constants agree closely with independently measured values of KA determined directly under conditions of equilibrium binding. KA is a sensitive function of the composition of the external ionic environment, rising with increasing Na+ concentration and falling with increasing K+ concentration. These changes in KA are shown to be quantitatively attributable to changes in the rate constant k1, k-1 in contrast being unaffected at any given temperature by even very large changes in Na+ or K+ concentration. Arrhenius plots of k1 and k-1 both yield straight lines over the entire temperature range corresponding to activation energies for association and dissociation of 29.5 and 24.2 kcal/mol, respectively. These observations have made it possible to calculate the following standard values for the ouabain binding reaction in the presence of 150 mM Na+: delta G degree = -9.8 kcal/mol; delta H degree = +5.3 kcal/mol; delta S degree = +48.7 cal/degree/mol. The large positive value of delta S degree presumably reflects a highly ordered configuration of the ouabain-free ATPase molecule that is lost upon ouabain binding and that "drives" the reaction despite the positive value of delta H degree.  相似文献   

8.
In aqueous media, muscle pyruvate kinase is highly selective for K+ over Na+. We now studied the selectivity of pyruvate kinase in water/dimethylsulfoxide mixtures by measuring the activation and inhibition constants of K+ and Na+, i.e. their binding to the monovalent and divalent cation binding sites of pyruvate kinase, respectively [Melchoir J.B. (1965) Biochemistry 4, 1518-1525]. In 40% dimethylsulfoxide the K0.5 app for K+ and Na+ were 190 and 64-fold lower than in water. Ki app for K+ and Na+ decreased 116 and 135-fold between 20 and 40% dimethylsulfoxide. The ratios of Ki app/K0.5 app for K+ and Na+ were 34-3.5 and 3.3-0.2, respectively. Therefore, dimethylsulfoxide favored the partition of K+ and Na+ into the monovalent and divalent cation binding sites of the enzyme. The kinetics of the enzyme at subsaturating concentrations of activators show that K+ and Mg2+ exhibit high selectivity for their respective cation binding sites, whereas when Na+ substitutes K+, Na+ and Mg2+ bind with high affinity to their incorrect sites. This is evident by the ratio of the affinities of Mg2+ and K+ for the monovalent cation binding site, which is close to 200. For Na+ and Mg2+ this ratio is approximately 20. Therefore, the data suggest that K+ induces conformational changes that prevent the binding of Mg2+ to the monovalent cation binding site. Circular dichroism spectra of the enzyme and the magnitude of the transfer and apparent binding energies of K+ and Na+ indicate that structural arrangements of the enzyme induced by dimethylsulfoxide determine the affinities of pyruvate kinase for K+ and Na+.  相似文献   

9.
The beta-subunit associated with the catalytic (alpha) subunit of the mammalian Na+, K(+) -ATPase is a transmembrane glycoprotein with three extracellularly located N-glycosylation sites. Although beta appears to be essential for a functional enzyme, the role of beta and its sugars remains unknown. In these studies, steady-state and dynamic fluorescence measurements of the fluorophore lucifer yellow (LY) covalently linked to the carbohydrate chains of beta have demonstrated that the bound probes are highly solvent exposed but restricted in their diffusional motions. Furthermore, the probes' environments on beta were not altered by Na+ or K+ or ouabain-induced enzyme conformational changes, but both divalent cation and oligomycin addition evoked modest changes in LY fluorescence. Frequency domain measurements reflecting the Förster fluorescence energy transfer (FET) occurring between anthroylouabain (AO) bound to the cardiac glycoside receptor site on alpha and the carbohydrate-linked LY demonstrated their close proximity (18 A). Additional FET determinations made between LY as donor and erythrosin-5-isothiocyanate, covalently bound at the enzyme's putative ATP binding site domain, indicated that a distance of about 85 A separates these two regions and that this distance is reduced upon divalent cation binding and increased upon the Na+E1-->K+E2 conformational transition. These data suggest a model for the localization of the terminal moieties of the oligosaccharides that places them, on average, about 18 A from the AO binding site and this distance or less from the extracellular membrane surface.  相似文献   

10.
(1) Ethylenediamine is an inhibitor of Na+- and K+-activated processes of Na+/K+-ATPase, i.e. the overall Na+/K+-ATPase activity, Na+-activated ATPase and K+-activated phosphatase activity, the Na+-activated phosphorylation and the Na+-free (amino-buffer associated) phosphorylation. (2) The I50 values (I50 is the concentration of inhibitor that half-maximally inhibits) increase with the concentration of the activating cations and the half-maximally activating cation concentrations (Km values) increase with the inhibitor concentration. (3) Ethylenediamine is competitive with Na+ in Na+-activated phosphorylation and with the amino-buffer (triallylamine) in Na+-free phosphorylation. Significant, though probably indirect, effects can also be noted on the affinity for Mg2+ and ATP, but these cannot account for the inhibition. (4) Inhibition parallels the dual protonated or positively charged ethylenediamine concentration (charge distance 3.7 A). (5) Direct investigation of interaction with activating cations (Na+, K+, Mg+, triallylamine) has been made via binding studies. All these cations drive ethylenediamine from the enzyme, but K+ and Mg+ with the highest efficiency and specificity. Ethylenediamine binding is ouabain-insensitive, however. (6) Ethylenediamine neither inhibits the transition to the phosphorylation enzyme conformation, nor does it affect the rate of dephosphorylation. Hence, we provisionally conclude that ethylenediamine inhibits the phosphoryl transfer between the ATP binding and phosphorylation site through occupation of cation activation sites, which are 3-4 A apart.  相似文献   

11.
The effects of the solvents deuterated water (2H2O) and dimethyl sulfoxide (Me2SO) on [3H]ouabain binding to (Na+,K+)-ATPase under different ligand conditions were examined. These solvents inhibited the type I ouabain binding to the enzyme (i.e., in the presence of Mg2+ + ATP + Na+). In contrast, both solvents stimulated type II (i.e., Mg2+ + Pi-, Mg2+-, or Mn2+-dependent) binding of the drug. The solvent effects were not due to pH changes in the reaction. However, pH did influence ouabain binding in a differential manner, depending on the ligands present. For example, changes in pH from 7.05 to 7.86 caused a drop in the rate of binding by about 15% in the presence of Mg2+ + Na+ + ATP, 75% in the Mg2+ + Pi system, and in the presence of Mn2+ an increase by 24% under similar conditions. Inhibitory or stimulatory effects of solvents were modified as various ligands, and their order of addition, were altered. Thus 2H2O inhibition of type I ouabain binding was dependent on Na+ concentration in the reaction and was reduced as Na+ was elevated. Contact of the enzyme with the Me2SO, prior to ligands for type I binding, resulted in a greater inhibition of ouabain binding than that when enzyme was exposed to Na+ + ATP first and then to Me2SO. Likewise, the stimulation of type II binding was greater when appropriate ligands acted on enzyme prior to addition of the solvent. Since Me2SO and 2H2O inhibit type I ouabain binding, it is proposed that this reaction is favored under conditions which promote loss of H2O, and E1 enzyme conformation; the stimulation of type II ouabain binding in the presence of the solvents suggests that this type of binding is favored under conditions which promote the presence of H2O at the active enzyme center and E2 enzyme conformation. This postulation of a role of H2O in modulating enzyme conformations and ouabain interaction with them is in concordance with previous observations.  相似文献   

12.
D M Chipman  A Lev 《Biochemistry》1983,22(19):4450-4459
Glutaraldehyde treatment of electroplax membrane preparations of Na,K-ATPase leads to irreversible changes in the enzymic behavior of the protein, which are not due to modification of the active site. When the glutaraldehyde treatment is carried out in a medium containing K+ and without Na+, the "K+-modified enzyme" so produced shows the following changes in enzymic properties: The steady-state phosphorylation by ATP and the rate of ATP-ADP exchange are decreased to approximately 40% of control, while Na,K-ATPase activity decreases to approximately 15% of control. Phosphatase activity is decreased very little, but the potassium activation parameters of the reaction are changed, from K0.5 approximately equal to 5 mM and nH = 1.9 in control to K0.5 approximately equal to 0.5 mM and nH = 1 in K+-modified enzyme. KI(app) for nucleotide inhibition of phosphatase activity is increased significantly. Changes in the cation dependence of the ATPase reaction are also observed. All of these effects can be explained by assuming that the cross-linking of surface groups in protein subunits when they are in conformation E2 shifts the intrinsic conformational equilibrium of the enzyme toward E2. We considered the simplest mathematical model for the coupling between K+ binding and the conformational equilibrium, with equivalent potassium sites that must be simultaneously in the same state. If one assumes that the potassium activation of phosphatase activity in the K+-modified enzyme reflects the affinity for K+ of E2, the behavior of the phosphatase activity in the native enzyme can be fit if there are only two potassium sites, whose affinity is 80-fold higher in E2 than in E1, and the equilibrium constant for E2 in equilibrium E1 is about 250. The same sites can explain the activation of dephosphorylation during ATP hydrolysis. Independent of the model chosen, potassium ions must be required for the catalytic action of form E2 and cannot be merely "allosteric activators". The enzyme modified with glutaraldehyde in a medium containing Na+ also has interesting properties, but their rationalization is less straightforward. The Na,K-ATPase activity is inhibited more than the "partial reactions", as in the K+-modified enzyme. We suggest that this is a generally expected result of modifications of the enzyme.  相似文献   

13.
Effects of free fatty acids on parameters of (Na+,K+)-ATPase regulation related to enzyme conformation were examined. Sensitivity to inhibition by free fatty acid increased as the number of double bonds increased. Free fatty acids reduced affinity for K+ or Na+ at their regulatory sites without altering apparent K+ affinity at its high-affinity site, and increased apparent affinity for ATP. The apparent E2/E1 ratio and apparent delta H and delta S for the E1-E2 transition were reduced by fatty acid. High K+ or low temperature reduced the sensitivity of enzyme to inhibition by free fatty acid. In the presence of low K+, arachidonic acid potentiated inhibition of phosphatase activity by ethanol. Arachidonic acid alone had little effect on the rate of ouabain binding, but accelerated ouabain binding in the presence of K+. These data suggest that fatty acids alter (Na+,K+)-ATPase by preventing the univalent cation-mediated transition to E2, the K+-sensitive form of enzyme. (Na+,K+)-ATPase could potentially be influenced in vivo by free fatty acids released by phospholipases or during hypoxia, or by changes in membrane lipid saturation.  相似文献   

14.
The fluorescein 5'-isothiocyanate (FITC)-labeled lamb kidney Na+/K+-ATPase has been used to investigate enzyme function and ligand-induced conformational changes. In these studies, we have determined the effects of two monoclonal antibodies, which inhibit Na+/K+-ATPase activity, on the conformational changes undergone by the FITC-labeled enzyme. Monitoring fluorescence intensity changes of FITC-labeled enzyme shows that antibody M10-P5-C11, which inhibits E1 approximately P intermediate formation (Ball, W.J. (1986) Biochemistry 25, 7155-7162), has little effect on the E1 in equilibrium E2 transitions induced by Na+, K+, Mg2+ Pi or Mg2+. ouabain. The M10-P5-C11 epitope, which appears to reside near the ATP-binding site, does not significantly participate in these ligand interactions. In contrast, we find that antibody 9-A5 (Schenk, D.B., Hubert, J.J. and Leffert, H.L. (1984) J. Biol. Chem. 259, 14941-14951) inhibits both the Na+/K+-ATPase and p-nitrophenylphosphatase activity. Its binding produces a 'Na+-like' enhancement in FITC fluorescence, reduces the ability of K+ to induce the E1 in equilibrium E2 transition and converts E2.K+ to an E1 conformation. Mg2+ binding to the enzyme alters both the conformation of this epitope region and its coupling of ligand interactions. In the presence of Mg2+, 9-A5 binding stabilizes an E1.Mg2+ conformation such that K+-, Pi- and ouabain-induced E1----E2 or E1----E2-Pi transitions are inhibited. Oubain and Pi added together overcome this stabilization. These studies indicate that the 9-A5 epitope participates in the E1 in equilibrium E2 conformational transitions, links Na+-K+ interactions and ouabain extracellular binding site effects to both the phosphorylation site and the FITC-binding region. Antibody-binding studies and direct demonstration of 9-A5 inhibition of enzyme phosphorylation by [32P]Pi confirm the results obtained from the fluorescence studies. Antibody 9-A5 has also proven useful in demonstrating the independence of Mg2+ ATP and Mg2+Pi regulation of ouabain binding. In addition, [3H]ouabain and antibody-binding studies demonstrate that FITC-labeling alters the enzyme's responses to Mg2+ as well as ATP regulation.  相似文献   

15.
The bacterium Vitreoscilla generates an electrical potential gradient due to sodium ion (delta psi Na+) across its membrane via respiratory-driven primary Na+ pump(s). The role of the delta psi Na+ as a driving force for ATP synthesis was, therefore, investigated. In respiring starved cells pulsed with 100 mM external Na+ [( Na+]o) there was a 167% net increase in cellular ATP concentration over basal levels compared with 0, 56, 78, and 78% for no addition, choline, Li+, and K+ controls, respectively. Doubling the [Na+]o to 200 mM boosted the net increase to 244% but a similar doubling of the choline caused only an increase to 78%. When the initial condition was intracellular Na+ ([Na+]i) = [Na+]o = 100 mM, there was a 94% net increase in cellular ATP compared with only 18 and 11% for Li+ and K+ controls, respectively, indicating that Nai+ may be the only cation tested that the cells extruded to generate the electrochemical gradient required to drive ATP synthesis. The Na(+)-dependent ATP synthesis was inhibited completely by monensin (12 microM), but only transiently by the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (100 microM), further evidence that the Na+ gradient and not a H+ gradient was driving the ATP synthesis. ATP synthesis in response to an artificially imposed H+ gradient (delta pH approximately 3) in the absence of an added cation, or in the presence of Li+, K+, or choline, yielded similar delta ATP/delta pH ratios of 0.98-1.22. In the presence of Na+, however, this ratio dropped to 0.23, indicating that Na+ inhibited H(+)-coupling to ATP synthesis and possibly that H+ and Na+ coupling to ATP synthesis share a common catalyst. The above evidence adds to previous findings that under normal growth conditions Na+ is probably the main coupling cation for ATP synthesis in Vitreoscilla.  相似文献   

16.
The voltage dependence of amiloride-induced inhibition of current flow through apical membrane sodium channels in toad urinary bladder was studied at different ionic conditions. The "inert" salt N-methyl-D-glucamine HCl (NMDG HCl) affected neither the apparent inhibition constant (Kl) for the amiloride-induced current inhibition nor the apparent fraction of the transmembrane voltage that falls between the mucosal solution and the amiloride-binding site (delta). When NMDG+ was replaced with Na+, Kl increased, reflecting amiloride-Na+ competition, whereas delta was unchanged. Similar results were obtained with another permeant cation, Li+. When NMDG+ was replaced by K+, an impermeant but channel-blocking cation, Kl increased whereas delta decreased. Similar results were obtained using another impermeant, channel-blocking cation guanidinium. The results are interpreted on the premise that Na+ and K+ compete with amiloride by binding to cation binding sites within the channel lumen such that ion occupancy of these sites vary with voltage. Occupancy by K+, which cannot traverse the channel, will increase as the mucosal solution becomes positive, relative to the serosal solution. Occupancy by Na+, which can traverse the channel, is comparatively voltage independent. Ion movement through the channels was simulated using discrete-state kinetic models. Two types of models could describe the shape of the current-voltage relationship and the voltage dependence of the amiloride-induced channel block. One model had a single ion-binding site with a broad energy barrier at the inner (cytoplasmic) side of the site. The other model had two binding sites separated from each other and from the aqueous solutions by sharp energy barriers.  相似文献   

17.
The kinetics of cyanide binding to chloroperoxidase were studied using a high-pressure stopped-flow technique at 25 degrees C and pH 4.7 in a pressure range from 1 to 1000 bar. The activation volume change for the association reaction is delta V not equal to + = -2.5 +/- 0.5 ml/mol. The total reaction volume change, determined from the pressure dependence of the equilibrium constant, is delta V degrees = -17.8 +/- 1.3 ml/mol. The effect of temperature was studied at 1 bar yielding delta H not equal to + = 29 +/- 1 kJ/mol, delta S not equal to + = -58 +/- 4 J/mol per K. Equilibrium studies give delta H degrees = -41 +/- 3 kJ/mol and delta S degrees = -59 +/- 10 J/mol per K. Possible contributions to the binding process are discussed: changes in spin state, bond formation and conformation changes in the protein. An activation volume analog of the Hammond postulate is considered.  相似文献   

18.
D Mao  E Wachter  B A Wallace 《Biochemistry》1982,21(20):4960-4968
The mitochondrial H+-ATPase proteolipid from Neurospora crassa was incorporated into small unilamellar dimyristoylphosphatidylcholine vesicles and its conformation determined by circular dichroism spectroscopy (CD). While the largely alpha-helical conformation is relatively independent of the method of incorporation into vesicles, i.e., rehydration, detergent dialysis, or detergent dilution, the proteolipid conformation was significantly different in detergent micelles and in organic solvents. Only very slight changes in the CD spectrum were observed upon binding of the H+-ATPase inhibitor dicyclohexylcarbodiimide to the proteolipid in vesicles, thus suggesting that the inhibitor acts either by blocking the channel or by masking an essential charge group, rather by than causing an overall conformational change in the channel. Additionally, very similar CD spectra were obtained for vesicles with different lipid/protein mole ratios, indicating either that no substantial conformational differences exist between monomer and multimers or that monomers self-associate to form stable complexes during incorporation into vesicles. This study has provided a physical basis for model-building studies of the proteolipid channel structure.  相似文献   

19.
M G Grinfel'dt  E A Shapiro 《Tsitologiia》1987,29(12):1372-1378
The binding of Na+ and K+ by glycerinated muscle fibres was observed at reserve concentrations of NaCl in the medium. Under external concentrations of Na+ of K+ up to 0.4-0.5 mM, a constant fraction (0.15-0.25 mmoles/kg dry weight of the fibres) bound by glycerinated fibres was revealed. With the increase of NaCl or KCl concentration in the medium up to 10 mM the concentration of bound cations increased too. The parameters of Na+ and K+ sorption by glycerinated models were calculated. The values of Na+ and K+ binding limits were 4.4 and 1.8 mmole/kg dry weight of the fibres and those of affinity, 3.2 and 4.1 kcal/mol, respectively. The binding of one cation took place in conditions when its concentration was 10,000-20,000 fold less than that of the other cation. This points to the fact that Na+ and K+ binding is highly specific and is carried out by different centres. It is suggested that myosin ATPase is a substratum binding Na+ and K+ in glycerinated muscle fibres at reverse ratio concentrations of these cations in the medium.  相似文献   

20.
Kinetic parameters are reported for Mg2+, Na+ and K+ as activators of the p-nitrophenylphosphatase activity associated with (Na+ + K+)-ATPase (ATP-phosphohydrolase, EC 3.6.1.3) of beef brain. In each case the phosphatase reaction is activated at low concentrations of the cation and inhibited by higher concentrations. The concentrations of cation that produced half-maximal activation and half-maximal inhibition are increased as the concentration of either of the other two cations is increased. These second ligand effects are all saturable functions. The apparent binding constant that characterizes the effect on activation is closely similar to that acting upon the inhibitory phase in each case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号