首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we have demonstrated that cadmium acetate significantly induces hprt mutation frequency in Chinese hamster ovary (CHO)-K1 and that 3-amino-1,2,4-triazole (3AT), a catalase inhibitor, potentiates the mutagenicity of cadmium [Chem. Res. Toxicol. 9 (1996) 1360-1367]. In this study, we investigate the role of intracellular peroxide in the molecular nature of mutations induced by cadmium. Using 2',7'-dichlorofluorescin diacetate and fluorescence spectrophotometry, we have shown that cadmium dose-dependently increased the amounts of intracellular peroxide and the levels were significantly enhanced by 3AT. Furthermore, we have characterized and compared the hprt mutation spectra in 6-thioguanine-resistant mutants derived from CHO-K1 cells exposed to 4 microM of cadmium acetate for 4h in the absence and presence of 3AT. The mutation frequency induced by cadmium and cadmium plus 3AT was 11- and 16-fold higher than that observed in untreated populations (2.2 x 10(-6)), respectively. A total of 40 and 51 independent hprt mutants were isolated from cadmium and cadmium plus 3AT treatments for mRNA-polymerase chain reaction (PCR), genomic DNA-PCR and DNA sequencing analyses. 3AT co-administration significantly enhanced the frequency of deletions induced by cadmium. Cadmium induced more transversions than transitions. In contrast, 3AT co-administration increased the frequency of GC-->AT transitions and decreased the frequencies of TA-->AT and TA-->GC transversions. Together, the results suggest that intracellular catalase is important to prevent the formation of oxidative DNA damage as well as deletions and GC-->AT transitions upon cadmium exposure.  相似文献   

2.
Escherihica coliumC122::Tn5 cells were γ-radiated (137Cs, 750 Gy, under N2), and lac-constitutive mutants were produced at 36% of the wild-type level (the umC strain was not deficient in spontaneous mutagenesis, and the mutational spectrum determined by sequencing 263 spontaneous lacId mutations was very similar to that for the wild-type strain). The specific nature of the umC strain's partial radiation was determined by sequencing 325 radiation-induced lacId mutations. The yields of radiation-induced mutation classes in the umC strain (as a percentage of the wild-type yield) were: 80% for A · T → G · C transitions, 70% for multi-base additions, 60% for single-base deletions, 53% for A · T → C · G transversions, 36% for G · C → A · T transitions, 25% for multi-base deletions, 21% for A · T → T · A transversions, 11% for G · C → C · G transversions, 9% for G · C → T · A transversions and 0% for multiple mutations. Based on these deficiencies and other factors, it is concluded that the umC strain is near-normal for A · T → G · C transitions, single-base deletions and possibly A · T → C · G transversions; is generally deficient for mutagenesis at G · C sites fro transversions, and is grossly deficient in multiple mutations. Damage at G · C sites seems more difficult for translesion DNA synthesis to bypass than damage at A · T sites, and especially when trying to produced a transversion. The yield of G · C → A · T transitions in the umC strain *36% of the wild-type level) argues that a basic sites are involved in no more than 64% of γ-radiation-induced base substitutions in the wild-type strain. Altogether, these data suggest that the UmuC and UmuD′ proteins facilitate, rather than being absolutely required for, translesion DNA synthesis; with the degree of facilitation being dependent both on the nature of the noncoding DNA damage, i.e., at G · C vs A · T sites, and on the nature of the misincorporated base, i.e., whether it induces transversions or transitions.  相似文献   

3.
Summary The DNA base sequence changes induced by diethyl sulfate (DES) were analyzed in postmeiotic male germ cells of Drosophila melanogaster. 31 transmissible vermilion mutants were recovered in F1 and F2 generations, with a frequency of 2.6 × 10–4 for the F1, and of 1.8–13 × 10–4 for the F2. The results show that DES induces both base pair substitutions (93%) and deletions (7%). In accord with its relatively high ability to alkylate oxygens in DNA, the most frequent type of sequence alteration among the basepair changes are GC-AT transitions, accounting for 73% of mutations, followed by transversions AT-TA (10%). DES also induced AT-GC transitions and AT-CG transversions. Both induced deletions were intralocus deletions, not occurring between basepair repeats. No influence of neighboring bases on the mutation position was found.  相似文献   

4.
Peroxyacetyl nitrate (PAN) is a ubiquitous air pollutant formed from NO2 reacting with acetoxy radicals generated from ambient aldehydes in the presence of sunlight and ozone. It contributes to eye irritation associated with photochemical smog and is present in most urban air. PAN was generated in a chamber containing open petri dishes of Salmonella TA100 (gas-phase exposure). After subtraction of the background mutation spectrum, the spectrum of PAN-induced mutants selected at 3.1-fold above the background mutant yield was 59% GC→TA, 29% GC→AT, 2% GC→CG, and 10% multiple mutations — primarily GG→TT tandem-base substitutions. Using computational molecular modeling methods, a mechanism was developed for producing this unusual tandem-base substitution. The mechanism depends on the protonation of PAN near the polyanionic DNA to release NO2+ resulting in intrastrand dimer formation. Insertion of AA opposite the dimerized GG would account for the tandem GG→TT transversions. Nose-only exposure of Big Blue® mice to PAN at 78 ppm (near the MTD) was mutagenic at the lacI gene in the lung (mutant frequency ±S.E. of 6.16±0.58/105 for controls versus 8.24±0.30/105 for PAN, P=0.016). No tandem-base mutations were detected among the 40 lacI mutants sequenced. Dosimetry with 3H-PAN showed that 24 h after exposure, 3.9% of the radiolabel was in the nasal tissue, and only 0.3% was in the lung. However, based on the molecular modeling considerations, the labeled portion of the molecule would not have been expected to have been bound covalently to DNA. Our results indicate that PAN is weakly mutagenic in the lungs of mice and in Salmonella and that PAN produces a unique signature mutation (a tandem GG→TT transversion) in Salmonella that is likely due to a GG intrastrand cross-link. Thus, PAN may pose a mutagenic and possible carcinogenic risk to humans, especially at the high concentrations at which it is present in some urban environments.  相似文献   

5.
To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of γ-ray irradiation in the budding yeast Saccharomyces cerevisiae.

The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by γ-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C → T:A, and all the transitions were G:C → A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5′-AC(A/T)-3′ sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by γ-ray irradiation were located uniformly throughout the gene.  相似文献   


6.
Chromium picolinate (CrPic) is a popular dietary supplement, marketed to the public for weight loss, bodybuilding, and control of blood sugar. Recommendations for long-term use at high dosages have led to questions regarding its safety. Previous studies have reported that CrPic can cause chromosomal aberrations and mutations. The purpose of the current work was to compare the mutagenicity of CrPic as a suspension in acetone versus a solution in DMSO, and to characterize the hprt mutations induced by CrPic in CHO AA8 cells. Treatments of 2% acetone or 2% DMSO alone produced no significant increase in 6-thioguanine (6-TG)-resistant mutants after 48 h exposures. Mutants resistant to 6-TG were generated by exposing cells for 48 h to 80 μg/cm2 CrPic in acetone or to 1.0 mM CrPic in DMSO. CrPic in acetone produced an average induced mutation frequency (MF) of 56 per 106 surviving cells relative to acetone solvent. CrPic in acetone was 3.5-fold more mutagenic than CrPic in DMSO, which produced an MF of 16.2. Characterization of 61 total mutations in 48 mutants generated from exposure to CrPic in acetone showed that base substitutions comprised 33% of the mutations, with transversions being predominant; deletions made up 62% of the mutations, with one-exon deletions predominating; and 1–4 bp insertions made up 5% of the characterized mutations. CrPic induced a statistically greater number of deletions and a statistically smaller number of base substitutions than have been measured in spontaneously generated mutants. These data confirm previous studies showing that CrPic is mutagenic, and support the contention that further study is needed to verify the safety of CrPic for human consumption.  相似文献   

7.
Summary The vermilion gene was used as a target to determine the mutational specificity of ethyl methanesulfonate (EMS) in germ cells of Drosophila melanogaster. To study the impact of DNA repair on the type of mutations induced, both excision-repair-proficient (exr +) and excision-repair-deficient (exr ) strains were used for the isolation of mutant flies. In all, 28 mutants from the exr + strain and 24 from the exr strain, were characterized by sequence analysis. In two mutants obtained from the exr + strain, small deletions were observed. All other mutations were caused by single base-pair changes. In two mutants double base-pair substitutions had occurred. Of the mutations induced in the exr + strain, 22 (76%) were GCAT transitions, 3 (10%) ATTA transversions, 2 (6%) GCTA transversions and 2 (6%) were deletions. As in other systems, the mutation spectrum of EMS in Drosophila is dominated by GCAT transitions. Of the mutations in an exr background, 12 (48%) were GCAT transitions, 7 (28%) ATTA transversions, 5 (20%) GCTA transversions and 1 (4%) was a ATGC transition. The significant increase in the contribution of transversion mutations obtained in the absence of an active maternal excision-repair mechanism, clearly indicates efficient repair of N-alkyl adducts (7-ethyl guanine and 3-ethyl adenine) by the excision-repair system in Drosophila germ cells.  相似文献   

8.
LacI mutants obtained following 2 and 6 h of thymine deprivation were cloned and sequenced. The mutational spectra recovered were dissimilar. After 2 h of starvation the majority of mutations were base substitutions, largely G: C→C: G transversions. Frameshift mutations but not deletions were observed. In contrast, following 6 h of starvation, with the exception of the G: C→C: G transversion, all possible base substitutions were recovered. Moreover, several deletions but no frameshift events were observed. The differences in the mutational spectra recovered after two periods of thymine deprivation highlight the role of altered nucleotide pools and the potential influence of DNA replication mechanisms.  相似文献   

9.
Three phenolic glycosides 5-O-{[5′′-O-E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-β-apiofuranosyl-(1→2)-β-xylopyranosyl} gentisic acid, 5-O-[(5′′-O-vanilloyl)-β-apiofuranosyl-(1→2)-β-xylopyranosyl] gentisic acid and 1-O-[E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-3-O-β-galacturonopyranosyl glycerol were isolated and identified from the roots of Medicago truncatula together with four known 5-O-β-xylopyranosyl gentisic acid, vicenin-2, hovetrichoside C and pterosupin identified for the first time in this species. Structural elucidation was carried out on the basis of UV, mass, 1H and 13C NMR spectral data.  相似文献   

10.
11.
To evaluate the availability of an hprtmutant assay for monitoring a specific environmental mutagen, the mutation effects of -irradiation and pentachlorophenol (PCP) on the hypoxanthine guanine phosphoriboxyl transferase (hprt) locus in a human T-cell culture system were analyzed in vitro. The assay of somatic mutation at the hprtlocus did not differentiate the characteristic effect of -irradiation from that produced by PCP, because both damaging agents induced the somatic mutations in a similar dose-dependent manner. Direct DNA sequencing showed that both damaging agents induced different mutation spectra in the hprtlocus of T-cells. The large deletions, which account for 75% of the analyzed mutants, were induced by -irradiation. By contrast, point mutations such as base substitutions rose up to 97% in the case of PCP-treated cells. It may be that 190 base pair and 444 base pair positions are hot spots induced by PCP. These results suggest that the hprtmutation spectrum can be used as a potential biomarker for assessing a specific environmental risk.  相似文献   

12.
Two missense mutations, trpA58 and trpA78, and one nonsense mutation-trp-ochre, were used to determine the types of base-pair substitution caused by ultra, violet irradiation and methyl methanesulfonate (MMS) in Escherichia coli. UV irradiation of the wild-type bacteria led to the formation of revertants mainly arising as a result of GC yields AT transitions (suppressor revertants of the trpA58 mutant). True revertants of the trp- mutant (arising via transitions of AT pairs) and 5-methyl tryptophan-sensitive (MT-s) Trp+ of the trpA78 mutant (arising via unidentified transversions) occurred at a lower frequency. The polAI mutation did not change the frequency of the UV-induced transitions GC yields AT or that of the substitutions of the AT pairs. The uvrE502 mutation significantly increased the frequency of the UV-induced revertants arising via the transition GC yields AT. Treatment of the wild-type bacteria with MMS resulted in the formation of revertants mainly due to the GC yields AT substitution, and with a lower frequency to the AT yields GC transitions. MMS also induced, with a low frequency, some transversions. The frequency of the MMS-induced GC yields AT transitions was enhanced in the uvrE502 mutant. On the other hand, the uvrE502 mutation eliminated or significantly lowered MMS-induced revertants arising as a result of AT yields GC transitions or transversions.  相似文献   

13.
14.
Summary Escherichia coli K12 strain KS40 and plasmid pKY241 were designed for easy screening of supF mutations in plasmid pZ189. KS40 is a nalidixic acid-resistant (gyrA) derivative of MBM7070 (lacZ(am)CA7020). Using in vitro mutagenesis, an amber mutation was introduced into the cloned gyrA structural gene, of E. coli, to give pKY241, a derivative of pACYC184. When KS40 containing pKY241 (designated KS40/pKY241) is transformed with pZ189, nalidixic acid-resistant GyrA protein is produced from the chromosomal gyrA gene and wild-type GyrA protein from pKY241 because of the suppression of the gyrA amber mutation by supF. It is known that the wild-type, otherwise nalidixic acid-sensitive, phenotype is dominant over the nalidixic acid-resistant phenotype. Thus, KS40/pKY241 gives rise to nalidixic acid-sensitive colonies when it carries a pZ189 plasmid with an active supF suppressor tRNA. If the supF gene on the plasmid carries an inactivating mutation then KS40/pKY241 will form nalidixic acid-resistant colonies. By using this system, the spontaneous mutational frequency of the supF gene on pZ189 was calculated to be 3.06 × 10–7 per replication. Among 51 independent supF mutations analyzed by DNA sequencing, 63% were base substitutions, 25% IS element insertions, 9.6% deletions and 1.9% single-base frameshifts. The base substitutions included both transversions (84.8%) and transitions (15.2%), the largest single group being G:C to T:A transversions (45.4% of the base substitutions). These results demonstrate that the KS40/pKY241 system we have developed can be used to characterize the DNA sequence changes induced by mutagens that give very low mutational frequencies.  相似文献   

15.
We have characterized a series of 69 independent mutants at the endogenoushprt locus of human TK6 lymphoblasts and over 200 independent S 1-deficient mutants of the humanxhamster hybrid cell line AL arising spontaneously or following low-fluence exposures to densely ionizing Fe ions (600 MeV/amu, linear energy transfer = 190 keV/µm). We find that large deletions are common. The entirehprt gene (>44 kb) was missing in 19/39 Fe-induced mutants, while only 2/30 spontaneous mutants lost the entirehprt coding sequence. When the gene of interest (S1 locus = M1C1 gene) is located on a nonessential human chromosome 11, multilocus deletions of several million base pairs are observed frequently. The S1 mutation frequency is more than 50-fold greater than the frequency ofhprt mutants in the same cells. Taken together, these results suggest that low-fluence exposures to Fe ions are often cytotoxic due to their ability to create multilocus deletions that may often include the loss of essential genes. In addition, the tumorigenic potential of these HZE heavy ions may be due to the high potential for loss of tumor suppressor genes. The relative insensitivity of thehprt locus to mutation is likely due to tight linkage to a gene that is required for viability.Invited paper presented at the International Symposium on Heavy Ion Research: Space, Radiation Protection and Therapy, Sophia-Antipolis, France, 21–24 March 1994  相似文献   

16.
In order to prepare 3-aminopropyl glycosides of Neu5Ac-α-(2→6′)-lactosamine trisaccharide 1, and its N-glycolyl containing analogue Neu5Gc-α-(2→6′)-lactosamine 2, a series of lactosamine acceptors with two, three, and four free OH groups in the galactose residue was studied in glycosylations with a conventional sialyl donor phenyl [methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (3) and a new donor phenyl [methyl 4,7,8,9-tetra-O-acetyl-5-(N-tert-butoxycarbonylacetamido)-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (4), respectively. The lactosamine 4′,6′-diol acceptor was found to be the most efficient in glycosylation with both 3 and 4, while imide-type donor 4 gave slightly higher yields with all acceptors, and isolation of the reaction products was more convenient. In the trisaccharides, obtained by glycosylation with donor 4, the 5-(N-tert-butoxycarbonylacetamido) moiety in the neuraminic acid could be efficiently transformed into the desired N-glycolyl fragment, indicating that such protected oligosaccharide derivatives are valuable precursors of sialo-oligosaccharides containing N-modified analogues of Neu5Ac.  相似文献   

17.
An infectious extracistronic mutant of phage Qβ has been prepared by site-directed mutagenesis. Qβ RNA minus strands containing the mutagenic base analog N4-hydroxy-CMP instead of UMP at position 39 from the 5′ end were synthesized in vitro and used as template for Qβ replicase to synthesize one generation of plus strands. E. coli spheroplasts were infected with the newly synthesized plus strands and phage recovered from single plaques. RNA sequence analysis revealed that four out of the eighteen phage clones analyzed contained RNA with an A → G transition at position 40 from the 3′-end (which corresponds to position 39 of the minus strand). Thus, the viability of phage Qβ does not depend on a unique nucleotide sequence in the 3′-extracistronic RNA segment.Upon in vivo propagation of mutant 40, spontaneous true revertants arose with high frequency and overgrew the parental clone within about 10 passages, indicating a selective disadvantage of the extracistronic mutant. Replication of mixtures of wild type and mutant RNA in vitro resulted in a decrease of the proportion of mutated RNA in the progeny plus strands. The fact that Qβ RNA containing an A → G transition in nucleotide −40 of Qβ RNA is less efficiently replicated in vitro may explain the selective disadvantage of the mutant phage in vivo.The preparation of an infectious mutated RNA by site-directed mutagenesis shows that the method is suitable to produce specific nucleotide exchanges without impairing the biological competence of the RNA.  相似文献   

18.
We have analysed five mutation hotspots within the p53 gene (codons 175, 213, 248, 249, and 282) for mutations induced by hydrogen peroxide (H2O2), employing the restriction site mutation (RSM) assay. In addition, four other restriction sites covering non-hotspot codons of exons 5–9 of the p53 gene (codons 126, 153/54, 189 and the 3′ splice site of exon 9) were analysed by the RSM assay for H2O2-induced mutations. Two cell types were concurrently analysed in this study, i.e. primary fibroblast cells and a gastric cancer cell line. Using the RSM assay, H2O2-induced mutations were only detected in exon 7 of the p53 gene. This was true for both cell types. These mutations were mainly induced in the Msp I restriction site (codon 247/248) and were predominantly GC to AT transitions (71%). Hence these GC to AT mutations were presumably due to H2O2 exposure, possibly implicating the 5OHdC adduct, which is known to induce C to T mutations upon misreplication. Importantly, this study demonstrates that the RSM methodology is capable of detecting rare oxidative mutations within the hotspot codons of the p53 tumour suppressor gene. Hence, this methodology may allow the detection of early p53 mutations in pre-malignant tissues.  相似文献   

19.

Background  

Organisms that are sensitive to nitrofurantoin express a nitroreductase. Since bacterial resistance to this compound results primarily from mutations in the gene encoding nitroreductase, the resulting loss of function of nitroreductase results in a selectable phenotype; resistance to nitrofurantoin. We exploited this direct selection for mutation to study the frequency at which spontaneous mutations arise (transitions and transversions, insertions and deletions).  相似文献   

20.
Two apiose-containing kaempferol triosides, together with nine known flavonoids were isolated from the leaves of Silphium perfoliatum L. Their structures were elucidated by acid hydrolysis and spectroscopic methods including UV, LSI MS, FAB MS, CI MS, 1H, 13C and 2D-NMR, DEPT, HMQC and HMBC experiments. The two new compounds were identified as kaempferol 3-O-β- -apiofuranoside 7-O-α- -rhamnosyl-(1′→6)-O-β- -galactopyranoside and kaempferol 3-O-β- -apiofuranoside 7-O-α- -rhamnosyl-(1→ 6)-O-β- (2-O-E-caffeoylgalactopyranoside).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号