首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knee joints are subject to large compression forces in daily activities. Due to artefact moments and instability under large compression loads, biomechanical studies impose additional constraints to circumvent the compression position–dependency in response. To quantify the effect of compression on passive knee moment resistance and stiffness, two validated finite element models of the tibiofemoral (TF) joint, one refined with depth-dependent fibril-reinforced cartilage and the other less refined with homogeneous isotropic cartilage, are used. The unconstrained TF joint response in sagittal and frontal planes is investigated at different flexion angles (0°, 15°, 30° and 45°) up to 1800 N compression preloads. The compression is applied at a novel joint mechanical balance point (MBP) identified as a point at which the compression does not cause any coupled rotations in sagittal and frontal planes. The MBP of the unconstrained joint is located at the lateral plateau in small compressions and shifts medially towards the inter-compartmental area at larger compression forces. The compression force substantially increases the joint moment-bearing capacities and instantaneous angular rigidities in both frontal and sagittal planes. The varus–valgus laxities diminish with compression preloads despite concomitant substantial reductions in collateral ligament forces. While the angular rigidity would enhance the joint stability, the augmented passive moment resistance under compression preloads plays a role in supporting external moments and should as such be considered in the knee joint musculoskeletal models.  相似文献   

2.
To study the effect of denucleation on the mechanical behavior of the human lumbar intervertebral disc through a 2mm incision, two groups of six human cadaver lumbar spinal units were tested in axial compression, axial rotation, lateral bending and flexion/extension after incremental steps of "partial" denucleation. Neutral zone, range of motion, stiffness, intradiscal pressure and energy dissipation were measured; the results showed that the contribution of the nucleus pulposus to the mechanical behavior of the intervertebral disc was more dominant through the neutral zone than at the farther limits of applied loads and moments.  相似文献   

3.
Previous in-vivo studies suggest that the ratio of total lumbar rotation over pelvic rotation (lumbo-pelvic rhythm) during trunk sagittal movement is essential to evaluate spinal loads and discriminate between low back pain and asymptomatic population. Similarly, there is also evidence that the lumbo-pelvic rhythm is key for evaluation of realistic muscle and joint reaction forces and moments predicted by various computational musculoskeletal models. This study investigated the effects of three lumbo-pelvic rhythms defined based on in-vivo measurements on the spinal response during moderate forward flexion (60°) using a combined approach of musculoskeletal modeling of the upper body and finite element model of the lumbosacral spine. The muscle forces and joint loads predicted by the musculoskeletal model, together with the gravitational forces, were applied to the finite element model to compute the disc force and moment, intradiscal pressure, annular fibers strain, and load-sharing. The results revealed that a rhythm with high pelvic rotation and low lumbar flexion involves more global muscles and increases the role of the disc in resisting spinal loads, while its counterpart, with low pelvic rotation, recruits more local muscles and engages the ligaments to lower the disc loads. On the other hand, a normal rhythm that has balanced pelvic and lumbar rotations yields almost equal disc and ligament load-sharing and results in more balanced synergy between global and local muscles. The lumbo-pelvic rhythm has less effect on the intradiscal pressure and annular fibers strain. This work demonstrated that the spinal response during forward flexion is highly dependent on the lumbo-pelvic rhythm. It is therefore, essential to adapt this parameter instead of using the default values in musculoskeletal models for accurate prediction of muscle forces and joint reaction forces and moments. The findings provided by this work are expected to improve knowledge of spinal response during forward flexion, and are clinically relevant towards low back pain treatment and disc injury prevention.  相似文献   

4.
The biomechanical properties of the ligamentous cadaver spine have been previously examined using a variety of experimental testing protocols. Ongoing technical challenges in the biomechanical testing of the spine include the application of physiologic compressive loads and the application of dynamic bending moments while allowing unconstrained three-dimensional motion. The purpose of this study was to report the development of a novel pendulum apparatus that addressed these challenges and to determine the effects of various axial compressive loads on the dynamic biomechanical properties of the lumbar functional spinal unit (FSU). Lumbar FSUs were tested in flexion and extension under five axial compressive loads chosen to represent physiologic loading conditions. After an initial rotation, the FSUs behaved as a dynamic, underdamped vibrating elastic system. Bending stiffness and coefficient of damping increased significantly as the compressive pendulum load increased. The apparatus described herein is a relatively simple approach to determining the dynamic bending properties of the FSU, and potentially disc arthroplasty devices. It is capable of applying physiologic compressive loads at dynamic rates without constraining the kinematics of the joints, crucial requirements for testing FSUs in vitro.  相似文献   

5.
The objectives of this study were to obtain linearized stiffness matrices, and assess the linearity and hysteresis of the motion segments of the human lumbar spine under physiological conditions of axial preload and fluid environment. Also, the stiffness matrices were expressed in the form of an 'equivalent' structure that would give insights into the structural behavior of the spine. Mechanical properties of human cadaveric lumbar L2-3 and L4-5 spinal motion segments were measured in six degrees of freedom by recording forces when each of six principal displacements was applied. Each specimen was tested with axial compressive preloads of 0, 250 and 500 N. The displacements were four slow cycles of +/-0.5mm in anterior-posterior and lateral displacements, +/-0.35 mm axial displacement, +/-1.5 degrees lateral rotation and +/-1 degrees flexion-extension and torsional rotations. There were significant increases with magnitude of preload in the stiffness, hysteresis area (but not loss coefficient) and the linearity of the load-displacement relationship. The mean values of the diagonal and primary off-diagonal stiffness terms for intact motion segments increased significantly relative to values with no preload by an average factor of 1.71 and 2.11 with 250 and 500 N preload, respectively (all eight tests p<0.01). Half of the stiffness terms were greater at L4-5 than L2-3 at higher preloads. The linearized stiffness matrices at each preload magnitude were expressed as an equivalent structure consisting of a truss and a beam with a rigid posterior offset, whose geometrical properties varied with preload. These stiffness properties can be used in structural analyses of the lumbar spine.  相似文献   

6.
The follower load (FL) combined with moments is commonly used to approximate flexed/extended posture of the lumbar spine in absence of muscles in biomechanical studies. There is a lack of consensus as to what magnitudes simulate better the physiological conditions. Considering the in-vivo measured values of the intradiscal pressure (IDP), intervertebral rotations (IVRs) and the disc loads, sensitivity of these spinal responses to different FL and flexion moment magnitudes was investigated using a 3D nonlinear finite element (FE) model of ligamentous lumbosacral spine. Optimal magnitudes of FL and moment that minimize deviation of the model predictions from in-vivo data were determined. Results revealed that the spinal parameters i.e. the IVRs, disc moment, and the increase in disc force and moment from neutral to flexed posture were more sensitive to moment magnitude than FL magnitude in case of flexion. The disc force and IDP were more sensitive to the FL magnitude than moment magnitude. The optimal ranges of FL and flexion moment magnitudes were 900–1100 N and 9.9–11.2 Nm, respectively. The FL magnitude had reverse effect on the IDP and disc force. Thus, magnitude for FL or flexion that minimizes the deviation of all the spinal parameters together from the in-vivo data can vary. To obtain reasonable compromise between the IDP and disc force, our findings recommend that FL of low magnitude must be combined with flexion moment of high intensity and vice versa.  相似文献   

7.
Prior studies have found that primary rotations in the lumbar spine are accompanied by coupled out-of-plane rotations. However, it is not clear whether these accompanying rotations are primarily due to passive (discs, ligaments and facet joints) or active (muscles) spinal anatomy. The aim of this study was to use a finite element (FE) model of the lumbar spine to predict three-dimensional coupled rotations between the lumbar vertebrae, due to passive spinal structures alone. The FE model was subjected to physiologically observed whole lumbar spine rotations about in vivo centres of rotation. Model predictions were validated by comparison of intra-discal pressures and primary rotations with in vivo measurements and these showed close agreement. Predicted coupled rotations matched in vivo measurements for all primary motions except lateral bending. We suggest that coupled rotations accompanying primary motions in the sagittal (flexion/extension) and transverse (axial rotation) planes are primarily due to passive spinal structures. For lateral bending the muscles most likely play a key role in the coupled rotation of the spine.  相似文献   

8.
A 3-D nonlinear mathematical model is used to analyze the mechanical response of a lumbar L2-3 motion segment including the posterior elements when subjected to combined sagittal plane loads. The loadings consist of axial compression force, anterior and posterior shear forces, and flexion and extension moments. The facet articulation is modelled as a general moving contact problem and the ligaments as a collection of uniaxial elements. The disk nucleus is considered as an inviscid fluid and the annulus as a composite of collagenous fibers embedded in a matrix of ground substance. The presence of axial compression force reduces the segmental stiffness in flexion whereas a reverse trend is predicted in extension. In the presence of axial compression with and without sagittal shear force, flexion considerably increases the intradiscal pressure while extension reduces it. In other words, under an identical compression force, disk pressure is predicted to be noticeably larger in flexion than in extension. The segmental mechanical response in extension loadings is markedly influenced by the changes in the relative geometry of the articular surfaces at the lower regions. Finally, the deformation of the bony structures plays a significant role in the segmental mechanics under relatively large loads.  相似文献   

9.
Determination of the trunk maximum voluntary exertion moment capacity and associated internal spinal forces could serve in proper selection of workers for specific occupational task requirements, injury prevention and treatment outcome evaluations. Maximum isometric trunk exertion moments in flexion and extension along with surface EMG of select trunk muscles are measured in 12 asymptomatic subjects. Subsequently and under individualized measured harness-subject forces, kinematics and upper trunk gravity, an iterative kinematics-driven finite element model is used to compute muscle forces and spinal loads in 4 of these subjects. Different co-activity and intra-abdominal pressure levels are simulated. Results indicate significantly larger maximal resistant moments and spinal compression/shear forces in extension exertions than flexion exertions. The agonist trunk muscles reach their maximum force generation (saturation) to greater extent in extension exertions compared to flexion exertions. Local lumbar extensor muscles are highly active in extension exertions and generate most of the internal spinal forces. The maximum exertion attempts produce large spinal compression and shear loads that increase with the antagonist co-activity level but decrease with the intra-abdominal pressure. Intra-abdominal pressure decreases agonist muscle forces in extension exertions but generally increase them in flexion exertions.  相似文献   

10.
Finite element models are frequently used to study lumbar spinal biomechanics. Deterministic models are used to reflect a certain configuration, including the means of geometrical and material properties, while probabilistic models account for the inherent variability in the population. Because model parameters are generally uncertain, their predictive power is frequently questioned. In the present study, we determined the sensitivities of spinal forces and motions to material parameters of intervertebral discs, vertebrae, and ligaments and to lumbar morphology. We performed 1200 model simulations using a generic model of the human lumbar spine loaded under pure moments. Coefficients of determination and of variation were determined for all parameter and response combinations. Material properties of the vertebrae displayed the least impact on results, whereas those of the discs and morphology impacted most. The most affected results were the axial compression forces in the vertebral body and in several ligaments during flexion and the facet-joint forces during extension. Intervertebral rotations were considerably affected only when several parameters were varied simultaneously. Results can be used to decide which model parameters require careful consideration in deterministic models and which parameters might be omitted in probabilistic studies. Findings allow quantitative estimation of a model׳s precision.  相似文献   

11.
The effects of the rib cage on thoracic spine loading are not well studied, but the rib cage may provide stability or share loads with the spine. Intervertebral disc pressure provides insight into spinal loading, but such measurements are lacking in the thoracic spine. Thus, our objective was to examine thoracic intradiscal pressures under applied pure moments, and to determine the effect of the rib cage on these pressures. Human cadaveric thoracic spine specimens were positioned upright in a testing machine, and Dynamic pure moments (0 to ±5 N·m) with a compressive follower load of 400 N were applied in axial rotation, flexion - extension, and lateral bending. Disc pressures were measured at T4-T5 and T8-T9 using needle-mounted pressure transducers, first with the rib cage intact, and again after the rib cage was removed. Changes in pressure vs. moment slopes with rib cage removal were examined. Pressure generally increased with applied moments, and pressure-moment slope increased with rib cage removal at T4-T5 for axial rotation, extension, and lateral bending, and at T8-T9 for axial rotation. The results suggest the intact rib cage carried about 62% and 56% of axial rotation moments about T4-T5 and T8-T9, respectively, as well as 42% of extension moment and 36–43% of lateral bending moment about T4-T5 only. The rib cage likely plays a larger role in supporting moments than compressive loads, and may also play a larger role in the upper thorax than the lower thorax.  相似文献   

12.
Response surface methodology is used to establish robust and user-friendly predictive equations that relate responses of a complex detailed trunk finite element biomechanical model to its input variables during sagittal symmetric static lifting activities. Four input variables (thorax flexion angle, lumbar/pelvis ratio, load magnitude, and load position) and four model responses (L4–L5 and L5–S1 disc compression and anterior–posterior shear forces) are considered. Full factorial design of experiments accounting for all combinations of input levels is employed. Quadratic predictive equations for the spinal loads at the L4–S1 disc mid-heights are obtained by regression analysis with adequate goodness-of-fit (R2>98%, p<0.05, and low root-mean-squared-error values compared with the range of predicted spine loads). Results indicate that intradiscal pressure values at the L4–L5 disc estimated based on the predictive equations are in close agreement with available in vivo data measured under similar loadings and postures. Combinations of input (posture and loading) variable levels that yield spine loads beyond the tolerance compression limit of 3400 N are identified using contour plots. Ergonomists and bioengineers, faced with the dilemma of using either complex but more accurate models on one hand or less accurate but simple models on the other hand, have thereby easy-to-use predictive equations that quantifies spinal loads and risk of injury under different occupational tasks of interest.  相似文献   

13.
Muscle forces stabilize the spine and have a great influence on spinal loads. But little is known about their magnitude. In a former in vitro experiment, a good agreement with intradiscal pressure and fixator loads measured in vivo could be achieved for standing and extension of the lumbar spine. However, for flexion the agreement between in vitro and in vivo measurements was insufficient. In order to improve the determination of trunk muscle forces, a three-dimensional nonlinear finite element model of the lumbar spine with an internal fixation device was created and the same loads were applied as in a previous in vitro experiment. An extensive adaptation process of the model was performed for flexion and extension angles up to 20 degrees and -15 degrees, respectively. With this validated computer model intra-abdominal pressure, preload in the fixators, and a combination of hip- and lumbar flexion angle were varied until a good agreement between analytical and in vivo results was reached for both, intradiscal pressure and bending moments in the fixators. Finally, the fixators were removed and the muscle forces for the intact lumbar spine calculated. A good agreement with the in vivo results could only be achieved at a combination of hip- and lumbar flexion. For the intact spine, forces of 170, 100 and 600 N are predicted in the m. erector spinae for standing, 5 degrees extension and 30 degrees flexion, respectively. The force in the m. rectus abdominus for these body positions is less than 25 N. For more than 10 degrees extension the m. erector spinae is unloaded. The finite element method together with in vivo data allows the estimation of trunk muscle forces for different upper body positions in the sagittal plane. In our patients, flexion of the upper body was most likely a combination of hip- and lumbar spine bending.  相似文献   

14.
Load-displacement properties of lower cervical spine motion segments   总被引:12,自引:0,他引:12  
The load-displacement behavior of 35 fresh adult cervical spine motion segments was measured in compression, shear, flexion, extension, lateral bending and axial torsion tests. Motion segments were tested both intact and with posterior elements removed. Applied forces ranged to 73.6 N in compression and to 39 N in shear, while applied moments ranged to 2.16 Nm. For each mode of loading, principal and coupled motions were measured and stiffnesses were calculated. The effect of disc degeneration on motion segment stiffnesses and the moments required for motion segment failure were also measured. In compression, the stiffnesses of the cervical motion segments were similar to those of thoracic and lumbar motion segments. In other modes of loading, cervical stiffnesses were considerably smaller than thoracic or lumbar stiffnesses. Removal of the posterior elements decreased cervical motion segment stiffnesses by as much as 50%. Degenerated cervical discs were less stiff in compression and stiffer in shear than less degenerated discs, but in bending or axial torsion, no statistically significant differences were evident. Bending moments causing failure were an order of magnitude lower than those for lumbar segments.  相似文献   

15.
Finite element (FE) modeling is an important tool for studying the cervical spine in normal, injured and diseased conditions. To understand the role of mechanical changes on the spine as it goes from a normal to a diseased or injured state, experimental studies are needed to establish the external response of young, normal cervical spinal segments compared to injured or degenerated cervical spinal segments under physiologic loading. It is important to differentiate injured or degenerated specimens from young, normal specimens to provide accurate experimental results necessary for the validation of FE models. This study used seven young, normal fresh adult cadaver cervical spine segments C2-T1 ranging in age from 20 to 51 years. Prior to testing, the spines were graded in three ways: specimen quality, facet degeneration and disc degeneration. Spine segments were tested in flexion/extension, and the range of loads applied to the specimens was 0.33, 0.5, 1.0, 1.5 and 2.0 Nm. These loads resulted in rotations in the direction of loading as the primary response to loading. In general, results for young, normal specimens showed greater flexibility in flexion and less flexibility in extension than results previously reported in the literature. The flexion/extension curves are asymmetric with a greater magnitude in flexion than in extension. These experimental results will be used to validate FE models of young, normal cervical spines.  相似文献   

16.
Intervertebral disc degeneration involves changes in the spinal anatomical structures. The mechanical relevance of the following changes was investigated: disc height, endplate sclerosis, disc water content, permeability and depressurisation. A poroelastic nonlinear finite element model of the L4–L5 human spine segments was employed. Loads represented a daily cycle (500 N compression combined with flexion–extension motion for 16 h followed by 200 N compression for 8 h). In non-degenerative conditions, the model predicted a diurnal axial displacement of 1.32 mm and a peak intradiscal pressure of 0.47 MPa. Axial displacement, facet force and range of motion in flexion–extension are decreased by decreasing disc height. By decreasing the initial water content, axial displacement, facet force and fluid loss were all reduced. Endplate sclerosis did not have a significant influence on the calculated results. Depressurisation determined an increase of the disc effective stress, possibly inducing failure. Degenerative instability was not calculated in any simulations.  相似文献   

17.

Background

Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system.

Methods

Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode.

Results

The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18).

Conclusions

Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions.  相似文献   

18.
The spinal stability and passive-active load partitioning under dynamic squat and stoop lifts were investigated as the ligamentous stiffness in flexion was altered. Measured in vivo kinematics of subjects lifting 180 N at either squat or stoop technique was prescribed in a nonlinear transient finite element model of the spine. The Kinematics-driven approach was utilized for temporal estimation of muscle forces, internal spinal loads and system stability. The finite element model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles and trunk dynamic characteristics while subject to measured kinematics and gravity/external loads. Alterations in passive properties of spine substantially influenced muscle forces, spinal loads and system stability in both lifting techniques, though more so in stoop than in squat. The squat technique is advocated for resulting in smaller spinal loads. Stability of spine in the sagittal plane substantially improved with greater passive properties, trunk flexion and load. Simulation of global extensor muscles with curved rather than straight courses considerably diminished loads on spine and increased stability throughout the task.  相似文献   

19.
Compression on the lumbar spine is 1000 N for standing and walking and is higher during lifting. Ex vivo experiments show it buckles under a vertical load of 80-100 N. Conversely, the whole lumbar spine can support physiologic compressive loads without large displacements when the load is applied along a follower path that approximates the tangent to the curve of the lumbar spine. This study utilized a two-dimensional beam-column model of the lumbar spine in the frontal plane under gravitational and active muscle loads to address the following question: Can trunk muscle activation cause the path of the internal force resultant to approximate the tangent to the spinal curve and allow the lumbar spine to support compressive loads of physiologic magnitudes? The study identified muscle activation patterns that maintained the lumbar spine model under compressive follower load, resulting in the minimization of internal shear forces and bending moments simultaneously at all lumbar levels. The internal force resultant was compressive, and the lumbar spine model, loaded in compression along the follower load path, supported compressive loads of physiologic magnitudes with minimal change in curvature in the frontal plane. Trunk muscles may coactivate to generate a follower load path and allow the ligamentous lumbar spine to support physiologic compressive loads.  相似文献   

20.
The influence of the different lumbar spinal ligaments on intersegmental rotation is not fully understood. In order to explore this effect, a finite element model of the functional spinal unit L3/L4 was loaded with pure moments in the three main anatomic planes. The two extremes--minimum and maximum--ligament stiffness values reported in the literature were applied. After virtual transection of each of the spinal ligaments in turn, the intersegmental rotation and forces in the remaining ligaments were calculated. On flexion, the highest force was found for the posterior longitudinal ligament; on extension and lateral bending for the anterior longitudinal ligament; and on axial rotation for the facet capsular ligament. The strongest influence on intersegmental rotation is exerted by the interspinous ligament on flexion, by the anterior longitudinal ligament on extension and lateral bending, and by the facet capsular ligaments on axial rotation. Ligament stiffness has a strong influence on intersegmental rotation and forces in the ligaments, so that finite element models of spinal segments must be validated by experimental data. This study should help to elucidate the role of the various ligaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号