首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary Synaptic ribbons, functionally enigmatic structures of mammalian pinealocytes, were studied during the postnatal development of the pineal gland in the golden hamster (Mesocricetus auratus). On day 4 post partum, synaptic ribbons appear in cells that have already started to differentiate into pinealocytes. Between days 4 and 9, an increase in the number of synaptic ribbons occurs, concomitant with the continuing differentiation of the pineal tissue. Between days 9 and 16, when differentiation of this tissue is almost completed, the number of synaptic ribbons decreases and approaches that characteristic of the adult pineal gland. During development, the synaptic ribbons increase in length, and dense core vesicles are frequently found in the vicinity of these structures. It is assumed that a functional relationship exists between dense core vesicles and the synaptic ribbons, which are considered to be engaged in a certain form of secretory activity of the mammalian pineal gland.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

2.
Summary Circadian morphological variations of pinealocytes in the superficial pineal of the Chinese hamster (Cricetulus griseus) were studied using quantitative electron-microscopic techniques. The volume of the nucleus and cytoplasm of pinealocytes exhibited similar circadian variations, with the maximum around the middle of the light period and the minimum during the first half of the dark period. Synaptic ribbons in pinealocytes were classified into three groups, type-1, –2 and –3 synaptic ribbons, which appeared as rods, round or irregular bodies and ring-shaped structures, respectively; a synaptic ribbon index was determined for the respective types. The synaptic ribbon index was expressed as the number of synaptic ribbons in the pinealocyte profile representing the cell size. The type-1 synaptic ribbon index, which was smallest during the second half of the light period, was increased during the dark period. The length of straight or slightly curved rods showed a 24-h change similar to that of the type-1 synaptic ribbon index; the length of the rods was maximal during the first half of the dark period and minimal at the end of the light period. There was no apparent circadian variation in the type-2 synaptic ribbon index. The type-3 synaptic ribbon index was higher during the light period than during the dark period; the index attained zero 3h after the onset of darkness and, thereafter, increased gradually.  相似文献   

3.
The Rho subfamily of the Rho small G protein family (Rho) regulates formation of stress fibers and focal adhesions in many types of cultured cells. In moving cells, dynamic and coordinate disassembly and reassembly of stress fibers and focal adhesions are observed, but the precise mechanisms in the regulation of these processes are poorly understood. We previously showed that 12-O-tetradecanoylphorbol-13-acetate (TPA) first induced disassembly of stress fibers and focal adhesions followed by their reassembly in MDCK cells. The reassembled stress fibers showed radial-like morphology that was apparently different from the original. We analyzed here the mechanisms of these TPA-induced processes. Rho inactivation and activation were necessary for the TPA-induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. Both inactivation and activation of the Rac subfamily of the Rho family (Rac) inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly. Moreover, microinjection or transient expression of Rab GDI, a regulator of all the Rab small G protein family members, inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly, indicating that, furthermore, activation of some Rab family members is necessary for their TPA-induced reassembly. Of the Rab family members, at least Rab5 activation was necessary for the TPA-induced reassembly of stress fibers and focal adhesions. The TPA-induced, small G protein-mediated reorganization of stress fibers and focal adhesions was closely related to the TPA-induced cell motility. These results indicate that the Rho and Rab family members coordinately regulate the TPA-induced reorganization of stress fibers and focal adhesions that may cause cell motility.  相似文献   

4.
One of the great mysteries of the nucleolus surrounds its disappearance during mitosis and subsequent reassembly at late mitosis. Here, the relative dynamics of nucleolar disassembly and reformation were dissected using quantitative 4D microscopy with fluorescent protein-tagged proteins in human stable cell lines. The data provide a novel insight into the fates of the three distinct nucleolar subcompartments and their associated protein machineries in a single dividing cell. Before the onset of nuclear envelope (NE) breakdown, nucleolar disassembly started with the loss of RNA polymerase I subunits from the fibrillar centers. Dissociation of proteins from the other subcompartments occurred with faster kinetics but commenced later, coincident with the process of NE breakdown. The reformation pathway also follows a reproducible and defined temporal sequence but the order of reassembly is shown not to be dictated by the order in which individual nucleolar components reaccumulate within the nucleus after mitosis.  相似文献   

5.
Previous studies have shown that the functionally enigmatic pineal "synaptic" ribbons are structurally a heterogeneous group of organelles consisting of rodlike ribbons sensu stricto, spherules, and intermediate forms. As ribbons and spherules react differently under various experimental conditions, these organelles were studied qualitatively and quantitatively during the postnatal period in guinea pigs. It was found that the pinealocytes were highly differentiated at birth and contained all three forms of "synaptic" structures. Ribbons and intermediate forms were more abundant than spherules and exhibited a striking increase in number on postnatal days 1 and 2; this increase was followed by a distinct trough and by a second peak at days 12 and 13, after which their numbers declined to reach adult levels by day 20. The spherules were small in number at birth and did not show the large immediate postnatal increase observed for the ribbons and intermediate forms. Instead there was a steady numerical increase up to day 12 (absolute number) or day 15 (relative numbers), followed by a decrease to adult level by day 20. Whereas during the early postnatal period (days 1 to 3) the majority of pinealocytes were characterized by ribbons and intermediate forms, with increasing age spherule-bearing pinealocytes increased in number. As ribbons and spherules were usually not found in the same pinealocyte, the present findings are interpreted to mean that ribbons and spherules characterize different types of pinealocytes showing an inverse numerical development postnatally. Developmentally intermediate forms behave like ribbons.  相似文献   

6.
Herein, we report the stepwise transport of multiple plant Golgi membrane markers during disassembly of the Golgi apparatus in tobacco leaf epidermal cells in response to the induced expression of the GTP‐locked Sar1p or Brefeldin A (BFA), and reassembly on BFA washout. The distribution of fluorescent Golgi‐resident N‐glycan processing enzymes and matrix proteins (golgins) with specific cistrans‐Golgi sub‐locations was followed by confocal microscopy during disassembly and reassembly. The first event during Golgi disassembly was the loss of trans‐Golgi enzymes and golgins from Golgi membranes, followed by a sequential redistribution of medial and cis‐Golgi enzymes into the endoplasmic reticulum (ER), whilst golgins were relocated to the ER or cytoplasm. This event was confirmed by fractionation and immuno‐blotting. The sequential redistribution of Golgi components in a trans–cis sequence may highlight a novel retrograde trafficking pathway between the trans‐Golgi and the ER in plants. Release of Golgi markers from the ER upon BFA washout occurred in the opposite sequence, with cis‐matrix proteins labelling Golgi‐like structures before cis/medial enzymes. Trans‐enzyme location was preceded by trans‐matrix proteins being recruited back to Golgi membranes. Our results show that Golgi disassembly and reassembly occur in a highly ordered fashion in plants.  相似文献   

7.
Summary In the cichlid teleost Tilapia leucosticta, the origin and linear development of synaptic ribbons in retinal receptor cells have been studied. First ribbons are invariably found close to their future synaptic sites between two dendritic invaginations. They are then clearly shorter than at later stages and appear bifurcate, or of bulb or drop shape. From these precursors typical ribbons rapidly develop, and these vary considerably in length. From a shift in length distribution, a main growth phase can be detected which takes place at the time when the retina first becomes functional. Similar observations were made in Xenopus. Placing Tilapia larvae in conditions of 24 h continuous light had no effect on ribbon growth, while 24 h of continuous darkness resulted in a prevalence of shorter ribbons. Thus the growth of synaptic ribbons in the course of retinal development appears to be subject to modification by environmental light conditions.  相似文献   

8.
Many cellular proteins exist as homo-oligomers. The mechanism of the assembly process of such proteins is still poorly understood. We have previously observed that Hsp16.3, a protein exhibiting chaperone-like activity, undergoes stepwise disassembly and nonstepwise reassembly. Here, the disassembly and reassembly of a nonchaperone protein RbsD, from Escherichia coli, was studied in vitro. The protein was found to mainly exist as decamers with a small portion of apparently larger oligomeric forms, both of which are able to refold/reassemble effectively in a spontaneous way after being completely unfolded. Disassembly RbsD intermediates including pentamers, tetramers, trimers, dimers, and monomers were detected by using urea-containing pore gradient polyacrylamide gel electrophoresis, while only pentamers were detected for its reassembly. The observation of stepwise disassembly and apparent nonstepwise reassembly for both a chaperone protein (Hsp16.3) and a nonchaperone protein (RbsD) strongly suggests that such a feature is most likely general for homo-oligomeric proteins.  相似文献   

9.
Incubation of guinea pig pancreatic lobules in Ca++-free Krebs-Ringer bicarbonate solution (KRB) containing 0.5 mM ethylene glycol-bis(beta- aminoethyl ether)N,N,N',N'-tetraacetate (EGTA) results in the progressive fragmentation of the occluding zonulae (ZO) with formation of multiple discrete junctions (fasciae occludentes) localized in the lateral and lumenal plasmalemma. After 1--2 h of such incubation, most ZO appear completely disassembled. This results in the disappearance of the heterogeneity in density of intramembrane particles on the P- fracture faces of the basolateral and lumenal plasmalemma. If Ca++ ions are reintroduced into the incubation fluid at this point, continous zonulae reform around the apices of the cells; in contrast, the density of intramembrane particles (imp) at the lumenal plasmalemma remains the same as in the basolateral region, at least for 3 h after Ca++ reintroduction. When added to the incubation fluid, cycloheximide (at a dose known to inhibit protein synthesis greater than 95%) and cytochalasin B (at doses which disrupt microfilaments and modify the cell shape) had no effect on the organization of ZO, on their disassembly in Ca++-free, EGTA medium, or on their Ca++-dependent reformation. Likewise, the organization and disassembly of ZO were unaffected by colchicine; however, after treatment with the latter drug the reassembly was defective, with formation of strand networks on the lateral surface and incomplete segregation of the lumenal region. Antimycin A, on the other hand, when added to the Ca++-EGTA medium, induced a large proliferation of long, infrequently anastomosed junctional strands, usually arranged to form ribbons, festoons, and other bizarre arrays. The possible relationship of these in vitro findings to the in vivo biogenesis and turnover of occluding junctions is discussed. It is suggested that the impairment of reassembly of zonulae by colchicine might be correlated with the disorder induced by the drug on the general organization of pancreatic exocrine cells. Moreover, antimycin A could act by promoting the aggregation of a pool of free junctional strand components (or precursors) that might exist normally in pancreatic exocrine cells.  相似文献   

10.
Noise exposure at low levels or low doses can damage hair cell afferent ribbon synapses without causing permanent threshold shifts. In contrast to reports in the mouse cochleae, initial damage to ribbon synapses in the cochleae of guinea pigs is largely repairable. In the present study, we further investigated the repair process in ribbon synapses in guinea pigs after similar noise exposure. In the control samples, a small portion of afferent synapses lacked synaptic ribbons, suggesting the co-existence of conventional no-ribbon and ribbon synapses. The loss and recovery of hair cell ribbons and post-synaptic densities (PSDs) occurred in parallel, but the recovery was not complete, resulting in a permanent loss of less than 10% synapses. During the repair process, ribbons were temporally separated from the PSDs. A plastic interaction between ribbons and postsynaptic terminals may be involved in the reestablishment of synaptic contact between ribbons and PSDs, as shown by location changes in both structures. Synapse repair was associated with a breakdown in temporal processing, as reflected by poorer responses in the compound action potential (CAP) of auditory nerves to time-stress signals. Thus, deterioration in temporal processing originated from the cochlea. This deterioration developed with the recovery in hearing threshold and ribbon synapse counts, suggesting that the repaired synapses had deficits in temporal processing.  相似文献   

11.
Type IV pili (T4P) are surface structures that undergo extension/retraction oscillations to generate cell motility. In Myxococcus xanthus , T4P are unipolarly localized and undergo pole-to-pole oscillations synchronously with cellular reversals. We investigated the mechanisms underlying these oscillations. We show that several T4P proteins localize symmetrically in clusters at both cell poles between reversals, and these clusters remain stationary during reversals. Conversely, the PilB and PilT motor ATPases that energize extension and retraction, respectively, localize to opposite poles with PilB predominantly at the piliated and PilT predominantly at the non-piliated pole, and these proteins oscillate between the poles during reversals. Therefore, T4P pole-to-pole oscillations involve the disassembly of T4P machinery at one pole and reassembly of this machinery at the opposite pole. Fluorescence recovery after photobleaching experiments showed rapid turnover of YFP–PilT in the polar clusters between reversals. Moreover, PilT displays bursts of accumulation at the piliated pole between reversals. These observations suggest that the spatial separation of PilB and PilT in combination with the noisy PilT accumulation at the piliated pole allow the temporal separation of extension and retraction. This is the first demonstration that the function of a molecular machine depends on disassembly and reassembly of its individual parts.  相似文献   

12.
Summary In the present investigation experiments were carried out to determine whether the functionally obscure synaptic ribbons of mammalian pinealocytes can be affected by acute changes in environmental lighting and which chemical processes may be involved in their regulation. Experiments carried out in male guinea-pigs have shown that the amounts of synaptic ribbons are immediately affected by changes in the lighting pattern. Extension of the light period reduced the normally occurring increase, whereas extension of the dark period inhibited the normally occurring decrease in the amount of synaptic ribbons. Results following injections of a number of drugs known to influence pineal function (noradrenaline, L-DOPA, propranolol, reserpine and p-chlorophenylalanine, respectively) suggest that synaptic ribbons may be directly or indirectly regulated by -adrenergic mechanisms.Dedicated to Professor Wolfgang Bargmann on the occasion of his 70th birthday.  相似文献   

13.
We have found that the normal developmental pathway of Nicotiana tabacum microspores is blocked or switched when microspores are exposed to lithium, and these effects are reversible with Ca2+ and myo-inositol. Normal development was defined by the following characteristics: changes in microspore shape from spherical to oval and then ellipsoid; two nuclear displacements, first from a central location to the cell periphery, and then from the periphery to the generative pole; a localization of membrane-associated Ca2+ at the generative pole preceding nuclear division; and, finally, an asymmetrical mitosis that results in a two-celled pollen grain with well-differentiated generative and vegetative nuclei. Lithium treatment blocked the localization of membrane-associated Ca2+ at the generative pole, and instead it was evenly distributed at both poles. Lithium treatment also blocked the asymmetrical positioning of the microspore nucleus at the generative pole and resulted in an approximately four-fold increase in the frequency of symmetrical mitosis. When Ca2+ and myo-inositol were added along with lithium, the effects were substantially decreased, and there was only a small increase in the frequency of symmetrical mitosis compared with controls. The timing of treatment was important; microspores isolated before the first nuclear displacement had a low frequency of further development, while microspores isolated immediately preceding the onset of mitosis were much less sensitive to lithium, and the result was only a small increase in the frequency of symmetrical mitosis. In microspores isolated after the first nuclear displacement, a 1-day exposure to lithium was sufficient to switch the developmental pathway from an asymmetrical to a symmetrical mitosis while still allowing limited further development. However, we have not optimized culturing conditions for embryogenesis and the furthest development observed after a 1-week culture was to four- or five-celled proembryo-like structures.  相似文献   

14.
15.
The carrier moiety of heat-labile enterotoxin of Escherichia coli (EtxB) is formed by the noncovalent association of identical monomeric subunits, which assemble, in vivo and in vitro, into exceptionally stable pentameric complexes. In vitro, acid disassembly followed by neutralization results in reassembly yields of between 20% and 60% depending on the identity of the salts present during the acid denaturation process. Loss of reassembly competence has been attributed to isomerization of the native cis-proline residue at position 93. To characterize this phenomenon further, two mutants of EtxB at proline 93 (P93G and P93A) were generated and purified. The proline variants reveal only minor differences in their biophysical and biochemical properties relative to wild-type protein, but major changes were observed in the kinetics of pentamer disassembly and reassembly. Additionally, a loss of assembly competence was observed following longer term acid treatment, which was even more marked than that of the wild-type protein. We present evidence that the loss of assembly competence of these mutants is best explained by a cis/trans peptidyl isomerization of the unfolded mutant subunits in acid conditions; this limited reassembly competence and the biophysical properties of the native P93 mutant pentamers imply the retention of the native cis conformation in the nonproline peptide bond between residues 92 and 93 in the mutated proteins.  相似文献   

16.
Summary The effects of melatonin on synaptic ribbons (SR) in pinealocytes of the Chinese hamster (Cricetulus griseus) were examined. SR were classified into types 1, 2 and 3, which appear as rods, round or irregular bodies and ring-shaped structures, respectively; a synaptic ribbon index (SR index) was determined for the three types. Administration of two doses of 1.5 mg/kg melatonin at noon and 3 p.m. causes an increase in the type-1 and type-2 SR indices 3 h after the second injection in hamsters kept under alternating light and dark conditions (lights on from 7 a.m. to 7 p.m.). Likewise, in animals that are exposed to extended light for 6 h and receive two doses of melatonin at 7 p.m. and 10 p.m., an increase in the type-1 and type-2 SR indices occurs 3 h after the second injection. The increase in the type-2 SR index induced by melatonin administration to hamsters exposed to extended light is greater than the increase in the type-1 SR index under the same experimental conditions. Type-2 SR index, but not type-1 SR index, increases following bilateral superior cervical ganglionectomy. An increase in type-1 and type-2 SR indices occurs at 6 p.m. in ganglionectomized animals administered two doses of melatonin 6 h (noon) and 3 h (3 p.m.) before the time of sacrifice. No significant change is observed in type-3 SR index in animals subjected to any of the above treatments. The results indicate that exogenous melatonin may act directly on pinealocytes of the Chinese hamster to cause an increase in size and/or number of the type-1 and type-2 SR. Type 3-SR may have a role different from that of type-1 and type-2 SR; type-1 and type-2 SR may be functionally related.  相似文献   

17.
The organization, morphological characteristics, and synaptic structure of photoreceptors in the adult zebrafish retina were studied using light and electron microscopy. Adult photoreceptors show a typical ordered tier arrangement with rods easily distinguished from cones based on outer segment (OS) morphology. Both rods and cones contain mitochondria within the inner segments (IS), including the large, electron-dense megamitochondria previously described (Kim et al.) Four major ultrastructural differences were observed between zebrafish rods and cones: (1) the membranes of cone lamellar disks showed a wider variety of relationships to the plasma membrane than those of rods, (2) cone pedicles typically had multiple synaptic ribbons, while rod spherules had 1-2 ribbons, (3) synaptic ribbons in rod spherules were ∼2 times longer than ribbons in cone pedicles, and (4) rod spherules had a more electron-dense cytoplasm than cone pedicles. Examination of photoreceptor terminals identified four synaptic relationships at cone pedicles: (1) invaginating contacts postsynaptic to cone ribbons forming dyad, triad, and quadrad synapses, (2) presumed gap junctions connecting adjacent postsynaptic processes invaginating into cone terminals, (3) basal junctions away from synaptic ribbons, and (4) gap junctions between adjacent photoreceptor terminals. More vitread and slightly farther removed from photoreceptor terminals, extracellular microtubule-like structures were identified in association with presumed horizontal cell processes in the OPL. These findings, the first to document the ultrastructure of the distal retina in adult zebrafish, indicate that zebrafish photoreceptors have many characteristics similar to other species, further supporting the use of zebrafish as a model for the vertebrate visual system.  相似文献   

18.
Summary The cytoskeletal function of cortical microtubular structures is explored by high-pressure treatment of the ciliated protozoonColpoda cucullus. This ciliate has two regions of form asymmetry which are apparently maintained by microtubules, namely the somatic groove and the right oral lip. Pressure induced changes in cellular morphology and motility were found to be a function of the magnitude of pressure and duration of compression. Cells exposed to 5,000 psi for 25 minutes, 7,500 psi for 12 minutes, and 10,000 psi for 3 minutes are quiescent and acquire a rounded shape. Observation by electron microscopy of cells exposed to 5,000 psi for 25 minutes indicates that the disappearance of the somatic groove and eversion of the oral apparatus are coincident with the disassembly of the microtubular rootlets in the groove and the supraepiplasmic microtubules in the right oral lip. Other changes accompanying the pressure-induced disassemblies include the reduction in numbers of overlapping microtubular ribbons in the cortical ridges and the appearance of cortical granular accumulations. The essential role in form-maintenance played by microtubular components is discussed.Financial support provided by Natural Science and Engineering Research Council Grant A6544 awarded to DHL and Natural Science and Engineering Research Council Grant A2404 awarded to AMZ.  相似文献   

19.
20.
Summary Synaptic connections were studied by means of electron microscopy in the sensory pineal organ of the ayu, Plecoglossus altivelis, a highly photosensitive teleost species. Three types of specific contacts were observed in the pineal end-vesicle: 1) symmetrically organized gap junctions between the basal processes of adjacent photoreceptor cells; 2) sensory synapses endowed with synaptic ribbons, formed by basal processes of photoreceptor cells and dendrites of pineal neurons; 3) conventional synapses between pineal neurons, containing both clear and dense-core vesicles at the presynaptic site. Based on these findings, the following interpretations are given: (i) The gap junctions may be involved in an enhancement of electric communication and signal encoding between pineal photoreceptor cells. (ii) The sensory synapses transmit photic signals from the photoreceptor cells to pineal nerve cells. (iii) The conventional synapses are assumed to be involved in a lateral interaction and/or summation of information in the sensory pineal organ. A concept of synaptic relationships among the sensory and neuronal elements in the pineal organ of the ayu is presented.Fellow of the Alexander von Humboldt Foundation, Federal Republic of Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号