首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
Cyclic adenosine monophosphate (cAMP)-mediated signal transduction was evaluated in synaptosomes prepared from rat brain cortex. Adenylate cyclase was responsive to known adenylate cyclase stimulators including peptides (CRH and VIP), catecholamines (norepinephrine and isoproterenol) and ligands that directly stimulate adenylate cyclase (forskolin). Cyclic AMP accumulation also increased approximately 2 to 3-fold, but none of the agonists was able significantly to activate cyclic AMP-dependent protein kinase (A-kinase) in cortical synaptosomes. However, in parallel studies with slices prepared from rat brain cortex, adenylate cyclase activity, cAMP accumulation and A-kinase activity were all stimulated by CRH, VIP, norepinephrine, isoproterenol and forskolin. These data suggest that, in intact synaptosomes, either the cellular machinery which facilitates binding of cAMP to the regulatory subunit of A-kinase is missing or the cAMP produced by adenylate cyclase is not accessible to A-kinase.  相似文献   

2.
A variety of neurohumoral agents activate adenylate cyclase in homogenates of rat frontal cortex (norepinephrine, isoproterenol, dopamine, apomorphine, histamine, 4-Me-histamine and prostaglandins E1, E2 and A2). The enzyme in homogenates of isolated cortical neurons is likewise sensitive to norepinephrine, isoproterenol, dopamine, apomorphine, histamine, 2-Me- and 4-Me-histamine, and prostaglandin F. Capillary-enriched fractions from the cortex possess an enzyme that is activated by norepinephrine, isoproterenol and dopamine. Addition of 5′-guanylyl-imidodiphosphate (Gpp(NH)p) to the cortical homogenates and neuronal fractions resulted in enhanced enzyme responses to norepinephrine, isoproterenol, dopamine, 2-Me- and 4-Me-histamine and the prostaglandins E1 and E2. The actions of histamine and apomorphine were not increased by the GTP analog. The sensitivity of the catecholamine-induced adenylate cyclase activation in cortical capillaries was augmented by Gpp(NH)p. Thus various cellular types within the cerebral cortex may possess different receptor characteristics with respect to stimulation of adenylate cyclase by neurohormones.  相似文献   

3.
Abstract— Norepinephrine, epinephrine, isoproterenol, and adenosine elicit enhanced accumulations of cyclic AMP in incubated slices of rat cerebral cortex. Combinations of norepinephrine, epinephrine, isoproterenol, or histamine with adenosine have a greater than additive effect on cyclic AMP levels. The effects of isoproterenol appear to be mediated via a classical β-adrenergic receptor whereas the effects of norepinephrine appear due to interactions with both α- and β-adrenergic receptors. The presence of the phosphodiesterase inhibitor, isobutylmethylxanthine, potentiates the effects of the catecholamines and reveals a histamine-mediated increase in cyclic AMP levels. After an initial stimulation of cyclic AMP formation with norepinephrine, followed by washing of the slices, the cyclic AMP-generating system is unresponsive to norepinephrine but does respond to an adenosine-norepinephrine combination. In mouse cerebral cortical slices, catecholamines appear to elicit an accumulation of cyclic AMP primarily via interaction with a β-adrenergic receptor.  相似文献   

4.
The ability of different receptors to mediate inhibition of cyclic AMP accumulation due to a variety of agonists was examined in rat striatal slices. In the presence of 1 mM 3-isobutyl-1-methylxanthine, dopamine D-2, muscarinic cholinergic, and opiate receptor stimulation by RU 24926, carbachol, and morphine (all at 10(-8)-10(-5) M), respectively, inhibited the increase in cyclic AMP accumulation in slices of rat striatum due to dopamine D-1 receptor stimulation by 1 microM SKF 38393. In contrast, these inhibitory agents were unable to reduce the ability of a number of other agonists, including isoprenaline, prostaglandin E1, 2-chloroadenosine, vasoactive intestinal polypeptide, and cholera toxin, to increase cyclic AMP levels in striatal slices. These results suggest that in rat striatum either dopamine D-2, muscarinic cholinergic, and opiate receptors are only functionally linked to dopamine D-1 receptors or that the D-1 and D-2 receptors linked to adenylate cyclase lie on the cells, distinct from other receptors capable of elevating striatal cyclic AMP levels.  相似文献   

5.
Norepinephrine and histamine markedly augment accumulations of cyclic AMP elicited by 2-chloroadenosine in a guinea pig cerebral cortical vesicular preparation. In addition, these biogenic amines stimulate phosphatidylinositol turnover. Phosphatidylinositol turnover is associated with mobilization of internal calcium and with stimulation of protein kinase C. Phorbol-12-myristate-13-acetate (PMA), a known activator of protein kinase C, has no effect on cyclic AMP levels alone, but in a concentration-dependent manner enhances accumulations of cyclic AMP elicited by 2-chloroadenosine. PMA, like norepinephrine, also enhances accumulations of cyclic AMP elicited by histamine. PMA has no effect on the synergistic accumulations of cyclic AMP elicited by combinations of amines and 2-chloroadenosine. PMA also augments accumulations of cyclic AMP elicited by forskolin. The results suggest that activation of phosphatidylinositol turnover by biogenic amines may lead via stimulation of protein kinase C to enhanced responsiveness of cyclic AMP-generating systems.  相似文献   

6.
C W Davis 《Life sciences》1985,37(1):85-94
Alterations in the cyclic AMP-dependent protein kinase activity ratio in response to putative neurotransmitters and other cyclic AMP-elevating agents in intact cerebral cortical slices and Krebs-Ringer particulate preparations from cerebral cortex were examined. Both norepinephrine (30 microM) and forskolin (20 microM) produced a time-dependent increase in intracellular levels of cyclic AMP in cerebral cortical slices which was paralleled by an increase in both cyclic AMP and the protein kinase activity ratio. The increases were maximal at 5 min. and remained elevated for at least 15 min. Forskolin, norepinephrine, adenosine and isoproterenol produced a concentration-dependent increase in both cyclic AMP and the protein kinase activity ratio, however, the degree of increase observed was dissimilar. Thus, a 5-fold change in intracellular cyclic AMP resulted in only a 2-fold increase in the activity ratio. Of the agents examined, forskolin produced the most marked change in the activity ratio (from 0.23 to 0.78 at 100 microM) while isoproterenol at 100 microM produced only a 50% increase in the activity ratio. The half-time for the decline in forskolin elicited elevations of either the activity ratio or cyclic AMP was about 4-6 min. In the presence of the phosphodiesterase inhibitor, Ro 20-1724, both were significantly prolonged being 60-70% of the maximum observed immediately after forskolin stimulation, at 15 min. Potentiation of forskolin elicited increases in the activity ratio by Ro 20-1724 were also observed but the increase in the activity ratio was maximal at 7.5 min. while cyclic AMP accumulations continued to rise during the entire 15 min. incubation. Particulate preparations from cerebral cortex were found to contain a cyclic AMP-dependent protein kinase which could be activated 2 to 3-fold with either forskolin, norepinephrine, or adenosine. Unlike the intact brain slice the changes in protein kinase activity ratio and intracellular levels of cyclic AMP in cell-free particulate preparations were similar in both time and degree.  相似文献   

7.
Norepinephrine, histamine, adenosine, glutamate, and depolarizing agents elicit accumulations of radioactive cyclic AMP from adenine-labeled nucleotides in particulate fractions from Krebs-Ringer homogenates of guinea pig cerebral cortex. The particulate fractions contain sac-like entities, which apparently are associated with a significant portion of the membranal adenylate cyclase. Particulate fractions from sucrose homogenates are a less effective source of such responsive entities. Activation of the adenine-labeled cyclic AMP-generating systems by norepinephrine is by means of alpha-adrenergic receptors, while activation by histamine is through H1- and H2-histaminergic receptors. Adenosine responses are potentiated by the amines and are antagonized by alkylxanthines. Glutamate and depolarizing agents appear to elicit accumulations of cyclic AMP via "release" of endogenous adenosine. It is proposed, based on the virtual absence of an alpha-adrenergic or H1-histaminergic response in the presence of a combination of potent adenosine and H2-histaminergic antagonists, that alpha-adrenergic and H1-histaminergic receptor mechanisms do not activate adenylate cyclase directly in brain slices or Krebs-Ringer particulate fractions, but merely facilitate activation by beta-adrenergic, H2-histaminergic, or adenosine receptors.  相似文献   

8.
Adenosine, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phosphodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell surface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides had no effect on the accumulation of cyclic AMP. Among other adenine nucleotides we tested, adenosine 5'-monophosphoramidate, but not adenosine 5'-monosulfate significantly increased cyclic AMP especially with the addition of papaverine. Neither 2'- nor 3'-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

9.
K.B. Seamon  J.W. Daly 《Life sciences》1982,30(17):1457-1464
Calcium stimulates adenylate cyclase activity in rat cerebral cortical membranes with either ATP or AppNHp as substrate. In contrast, isoproterenol stimulates the cerebral cortical enzyme with ATP as substrate but not with AppNHp as substrate unless exogenous GTP is added. In rat striatal membranes, calcium or dopamine stimulate adenylate cyclase activity with ATP as substrate, but not with AppNHp as substrate. GTP restores the dopamine but not the calcium response. The inhibitory guanine nucleotide GDP-βS antagonizes dopamine and GppNHp stimulation of the brain adenylate cyclases, but not stimulation by calcium of either rat cerebral cortical or striatal enzymes. Results indicate that GTP is not requisite to calcium-calmodulin activation of adenylate cyclases in brain membranes. In addition, calcium-calmodulin cannot activate striatal adenylate cyclases with a nonphosphorylating nucleotide, AppNHp, as substrate.  相似文献   

10.
1. The calcium-dependent K+-evoked release of [3H]norepinephrine from guinea pig cerebral cortical vesicular preparations is inhibited by norepinephrine, clonidine, and epinephrine. Isoproterenol has no effect and phentolamine prevents the inhibition by norepinephrine. The results indicate that an alpha-adrenergic receptor mediates an inhibitory input to the calcium-dependent release process. The inhibition by norepinephrine is prevented by high concentrations (3.0 mM) of calcium ions. 2. A cyclic AMP phosphodiesterase inhibitor, ZK 62771, slightly elevates [3H]cyclic AMP levels in the guinea pig cerebral cortical preparation and potentiates the marked elevation of [3H]cyclic AMP elicited by the adenylate cyclase activator, forskolin. 3. Neither ZK 62771 nor forskolin alone has significant effects on K+-evoked release of [3H]norepinephrine from the cerebral cortical vesicular preparation; however, a combination of ZK 62771 and forskolin inhibits K+-evoked release by as much as 60%. The inhibition is reversed by high concentrations (2.0 mM) of calcium ions. The results suggest that a marked accumulation of cyclic AMP elicited via both activation of adenylate cyclase and inhibition of phosphodiesterase can be inhibitory to neurotransmitter release from central synaptic terminals.  相似文献   

11.
Abstract— In guinea-pig cerebral cortical slices levels of cyclic AMP increase in response to adenosine to about 200pmol/mg protein within 10 min and stay at that level up to 30 min. In the absence of calcium ions and the presence of 1mm -EGTA in the Krebs-Ringer-bicarbonate medium the effect of adenosine is enhanced, cyclic AMP levels rise to about 600 pmol/mg protein within 30 min. In normal and calcium deficient media restimulation of cyclic AMP formation with adenosine is possible after a prior stimulation with adenosine. When slices are preincubated for various periods of time with histamine or adenosine before addition of the complementary agent i.e. adenosine or histamine cyclic AMP levels obtained are unaltered compared to levels seen when adenosine and histamine are added together. Slices which are rendered unresponsive to stimulation with histamine + noradrenaline by a prior incubation with these agents do not regain any response during a 100 min period of incubation in medium. The PDE inhibitors diazepam, SQ 66007 and isobutylmethylxanthine are capable of restoring the sensitivity of the slices to histamine + noradrenaline. This suggests an involvement of PDE in the unresponsive phase of the slices. Addition of adenosine to slices not affected by histamine + noradrenaline does reestablish the response of these slices to the neurohormones. A dose-response curve of adenosine for the interaction with histamine + noradrenaline yields an ED50 of 16 μM using sensitive or desensitized slices. An adenosine concentration of only 7 μM is necessary to restore the original increase of cyclic AMP in response to histamine + noradrenaline to slices insensitive to the biogenic amines. The data are discussed in terms of a possible activation of PDE within cerebral cortical slices from guinea-pig. Adenosine may reverse this activation. The possibility of inactivation of adenylate cyclase during stimulation of cyclic AMP formation and the role of adenosine and PDE inhibitors in this process is being considered.  相似文献   

12.
Adenosie, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phophodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell suface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides has no effect on the accumulation of cyclic AMP. Among other adenine nucleotides was tested, adenosine 5′-monophosphoramidate, but not adenosine 5′-monosulfate, significantly increased cyclic AMP especially with the addition of papaverine. Neither 2′- nor 3′-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

13.
Eight weeks following streptozotocin-induced diabetes mellitus in rats, the sensitivity of adenylate cyclase to dopamine (DA) and norepinephrine (NE) was reduced in homogenates of retina. Furthermore, the activation of adenylate cyclase in cerebral microvessels (capillaries) by NE, 5'-guanylyl imidodiphosphate (alone or with NE) and forskolin was reduced in diabetic rats versus appropriate controls. In diabetic rats enzyme sensitivity to only NE was attenuated in homogenates of cerebral cortex and cortical piaarachnoid. No differences between controls and diabetics were noted with respect to guanylate cyclase or cyclic AMP phosphodiesterases. The damage observed in retina and microvessels may play an important pathogenic role in diabetes-induced blindness and stroke.  相似文献   

14.
Several compounds have been tested for their activity as inhibitors of 3′,5′-nucleotide phosphodiesterase in brain cortical slices from guinea pig. SQ 20,009 (1-ethyl-4-isopropylidenehydrazino)-1H-pyrazolo (3,4-b)pyridine-5-carboxylate, ethylester, hydrochloride), a very potent inhibitor of 3′,5′-nucleotide phosphodiesterase from rat and rabbit brain shows only moderate activity as 3′,5′-nucleotide phosphodiesterase inhibitor when tested in brain slices. It enhances cyclic AMP accumulation only when slices are stimulated by histamine. It does not affect cyclic AMP levels when histamine/norepinephrine are used as stimuli of cyclic AMP formation and decreases the activity of adenosine as stimulant slightly. Ro 20–1724 (4-(3-butoxy-4-methoxy)-2-imidazolidinone) a potent inhibitor of canine cerebral cortex PDE activity effectively augments the increase in cyclic AMP under all stimulating conditions mentioned, as does to a somewhat smaller extent the more water soluble Ro 20–2926 (4-(3-ethoxy-ethoxy-4-methoxy)-2-imidazolidinone). Dose-response curves for Ro 20–1724 under three stimulating conditions of increased cyclic AMP formation (0.1 mm histamine, 0.1 mm histamine/0.1 mm norepinephrine, 0.1 mm adenosine) yield an ED50 of about 20 μm in all instances. A significant increase over respective controls is seen even at 1 μm Ro 20–1724 (histamine/norepinephrine). The drugs may be useful as tools for studying the regulation of cyclic AMP levels in the central nervous system.  相似文献   

15.
The endogenous levels of adenosine functionally linked to cyclic AMP systems in rat cerebral cortical slices are regulated by both adenosine deaminase and adenosine uptake systems. 2'-Deoxycoformycin (2'-DCF), an adenosine deaminase inhibitor, slightly increased basal, adenosine, and norepinephrine-elicited accumulations of cyclic AMP, whereas dipyridamole, an uptake inhibitor, had an even greater effect on cyclic AMP accumulations under the same conditions. Combinations of 2'-DCF and dipyridamole elicited a greater effect than either compound alone. Neither 2'-DCF nor dipyridamole significantly augmented accumulations of cyclic AP elicited by a depolarizing agent, veratridine, suggesting that the adenosine "released" during neuronal depolarization of brain slices is not as subject to inactivation by uptake or deamination as endogenous adenosine in control brain slices. The accumulation of cyclic AMP elicited by a combination of norepinephrine and veratridine was greater than additive. The response to a pure beta-adrenergic agonist, isoproterenol, was not potentiated by 2'-DCF, dipyridamole, or veratridine, consonant with minimal interaction of endogenous adenosine with beta-adrenergic systems.  相似文献   

16.
The effects of forskolin alone or in combination with vasoactive intestinal peptide (VIP) and the beta-adrenergic agonist isoproterenol on cyclic AMP accumulation in epithelial cells of rat ventral prostate were examined. Forskolin stimulated cyclic AMP in a time- and temperature-dependent manner. At 15 degrees C, forskolin behaved as a highly potent and relatively efficient stimulatory agent. The combination of forskolin with maximal doses of VIP or isoproterenol were purely additive. These results suggest that forskolin might act directly upon the catalytic subunit of adenylate cyclase in this particular class of cells.  相似文献   

17.
Incubation of rat extraorbital lacrimal gland slices with the beta-agonist isoproterenol caused peroxidase secretion but no K+ release. The peroxidase secretion was inhibited by propranolol. Addition of dibutyryl cyclic AMP or adenosine 3'5'-cyclic phosphorothioate to lacrimal slices produced peroxidase secretion at a higher rate than that obtained with optimal concentration of isoproterenol. Methyl isobutylxanthine is also a strong stimulator of peroxidase secretion. Peroxidase activity was determined by a modified sensitive guaiacol method. Membrane fraction of lacrimal cells was shown to contain an isoproterenol-stimulated adenylate cyclase activity. It is therefore suggested that there is a beta-adrenergic receptor in the rat lacrimal gland and that its stimulation causes activation of an adenylate cyclase which leads to peroxidase secretion.  相似文献   

18.
The effect of Ca2+ and putative neurotransmitters on formation of cyclic AMP and cyclic GMP has been studied in incubated slices of brain tissue. Cyclic AMP levels in cerebellar slices after about 90 min of incubation ranged from 10 pmol/mg protein in rabbit, to 25 in guinea pig, to 50 in mouse and 200 in rat. Cyclic GMP levels in the same four species showed no correlation with cyclic AMP levels and were, respectively, 1.3, 20, 5 and 30 pmol/mg protein. The absence of calcium during the prolonged incubation of cerebellar slices had little effect on final levels of cyclic AMP, while markedly decreasing final levels of cyclic GMP. Reintroduction of Ca2+ resulted in a rapid increase in cerebellar levels of cyclic GMP which was most pronounced for guinea pig where levels increased nearly 7-fold within 5 min. Prolonged incubation of guinea pig cerebral cortical slices in calcium-free medium greatly elevated cyclic AMP levels apparently through enhanced formation of adenosine, while having little effect on final levels of cyclic GMP. Norepinephrine and adenosine elicited accumulations of cyclic AMP and cyclic GMP in both guinea pig cerebral cortical and cerebellar slices. Glutamate, γ-aminobutyrate, glycine, carbachol, and phenylephrine at concentrations of 1 mM or less had little or noe effect on cyclic nucleotide levels in guinea pig cerebellar slices. Prostaglandin E1 and histamine slightly increased cerebellar levels of cyclic AMP. Isoproterenol increased both cyclic AMP and cyclic GMP. The accumulation of cyclic AMP and cyclic GMP elicited by norepinephrine in cerebellar slices appeared, baed on dose vs. response curves, agonist-antaganonist relationships and calcium dependency, to involve in both cases activation of a similar set of ß-adrenergic receptors. In cerebellar slices accumulations of cyclic AMP and cyclic GMP elicted by norepinephrine and by a depolarizing agent, veratridine, were strongly dependent on the presence of calcium. The stimulatory effects of adenosine on cyclic AMP and cyclic GMP formation were antagonized by theophylline. The lack of correlations between levels of cyclic AMP and cyclic GMP under the various conditions suggested independent activation of cyclic AMP- and cyclic GMP-generating systems in guinea pig cerebellar slices by interactions with Ca2+, norephinephrine and adenosine.  相似文献   

19.
ucb 11056 [2-(4-morpholino-6-propyl-1, 3, 5-triazin-2-yl)aminoethanol] induced a significant (~25%) increase in cyclic AMP levels in different brain areas following its intraperitoneal injection. This effect started as early as 2 min postinjection and lasted for 30 min, after which cyclic AMP levels returned to normal. In hippocampal slice preparations in vitro, ucb 11056 exerted a strong potentiation of cyclic AMP levels when it was combined with agents such as norepinephrine, forskolin, and isoproterenol. Only a slight effect on cyclic AMP levels was measured when ucb 11056 was incubated alone with hippocampal slices. The potentiating effect of ucb 11056 on norepinephrine-stimulated cyclic AMP formation was partially reduced when slices were pretreated with yohimbine and totally abolished when slices were treated with propranolol. These combined data indicate that (a) ucb 11056 rapidly increases cyclic AMP levels in the rat brain in vivo and (b) ucb 11056 potentiates stimulated cyclic AMP formation in vitro. The data also suggest that the central effect of ucb 11056 might be via the modulation of cyclic AMP generation, most probably mediated through adenylate cyclase activation mechanisms combined with a weak inhibitory activity on the cyclic nucleotide phosphodiesterase activity.  相似文献   

20.
K Sugio  J W Daly 《Life sciences》1984,34(2):123-132
The effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E1 in rat skin were investigated using [125I]bovine serum albumin (125I-BSA). Forskolin, forskolin 7-ethyl carbonate and 7-desacetylforskolin, which are potent activators of adenylate cyclase, greatly potentiated the bradykinin-induced plasma exudation and inhibited the prostaglandin E1-induced response. On the other hand, 14,15-dihydroforskolin and 1,9-dideoxyforskolin, which are weak or inactive as activators of adenylate cyclase, did not have any significant effect on bradykinin and prostaglandin E1-induced plasma exudations. The phosphodiesterase inhibitors, ZK 62711, dipyridamole, HL 725, and 3-isobutyl-1-methylxanthine potentiated the bradykinin-induced plasma exudation and inhibited the prostaglandin E1-induced response. Papaverine had biphasic effects on the bradykinin-response and slight inhibitory effects on the prostaglandin E1-response. 8-Bromo cyclic AMP in the doses of 0.01 to 1 microgram potentiated the bradykinin-induced plasma exudation, but had no effect at doses of 10 and 100 micrograms. 8-Bromo cyclic AMP at all doses significantly inhibited the prostaglandin E1-induced response. The results suggest that the effects of forskolin and its analogs on plasma exudations induced with bradykinin and prostaglandin E1 in rat skin derive from activation of cyclic AMP-generating systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号