首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro evidence suggests that resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation are mediated by changes in vascular smooth muscle concentrations of guanosine 3',5'-cyclic monophosphate (cGMP). We investigated this hypothesis in vivo in 19 mechanically ventilated intact lambs by determining the hemodynamic effects of methylene blue (a guanylate cyclase inhibitor) and then by comparing the hemodynamic response to five vasodilators during pulmonary hypertension induced by the infusion of U-46619 (a thromboxane A2 mimic) or methylene blue. Methylene blue caused a significant time-dependent increase in pulmonary arterial pressure. During U-46619 infusions, acetylcholine, ATP-MgCl2, sodium nitroprusside, isoproterenol, and 8-bromo-cGMP decreased pulmonary arterial pressure. During methylene blue infusions, the decreases in pulmonary arterial pressure caused by acetylcholine and ATP-MgCl2 (endothelium-dependent vasodilators) and sodium nitroprusside (an endothelium-independent guanylate cyclase-dependent vasodilator) were attenuated by greater than 50%. The decreases in pulmonary arterial pressure caused by isoproterenol and 8-bromo-cGMP (endothelium-independent vasodilators) were unchanged. This study in intact lambs supports the in vitro evidence that changes in vascular smooth muscle cell concentrations of cGMP in part mediate resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation.  相似文献   

2.
The small GTP-binding protein Rho and its downstream effector, Rho-kinase, are important regulators of vasoconstrictor tone. Rho-kinase is upregulated in experimental models of pulmonary hypertension, and Rho-kinase inhibitors decrease pulmonary arterial pressure in rodents with monocrotaline and chronic hypoxia-induced pulmonary hypertension. However, less is known about responses to fasudil when pulmonary vascular resistance is elevated on an acute basis by vasoconstrictor agents and ventilatory hypoxia. In the present study, intravenous injections of fasudil reversed pulmonary hypertensive responses to intravenous infusion of the thromboxane receptor agonist, U-46619 and ventilation with a 10% O(2) gas mixture and inhibited pulmonary vasoconstrictor responses to intravenous injections of angiotensin II, BAY K 8644, and U-46619 without prior exposure to agonists, which can upregulate Rho-kinase activity. The calcium channel blocker isradipine and fasudil had similar effects and in small doses had additive effects in blunting vasoconstrictor responses, suggesting parallel and series mechanisms in the lung. When pulmonary vascular resistance was increased with U-46619, fasudil produced similar decreases in pulmonary and systemic arterial pressure, whereas isradipine produced greater decreases in systemic arterial pressure. The hypoxic pressor response was enhanced by 5-10 mg/kg iv nitro-L-arginine methyl ester (L-NAME), and fasudil or isradipine reversed the pulmonary hypertensive response to hypoxia in control and in L-NAME-treated animals, suggesting that the response is mediated by Rho-kinase and L-type Ca(2+) channels. These results suggest that Rho-kinase is constitutively active in regulating baseline tone and vasoconstrictor responses in the lung under physiological conditions and that Rho-kinase inhibition attenuates pulmonary vasoconstrictor responses to agents that act by different mechanisms without prior exposure to the agonist.  相似文献   

3.
Phosphodiesterase 1 (PDE1) modulates vascular tone and the development of tolerance to nitric oxide (NO)-releasing drugs in the systemic circulation. Any role of PDE1 in the pulmonary circulation remains largely uncertain. We measured the expression of genes encoding PDE1 isozymes in the pulmonary vasculature and examined whether or not selective inhibition of PDE1 by vinpocetine attenuates pulmonary hypertension and augments the pulmonary vasodilator response to inhaled NO in lambs. Using RT-PCR, we detected PDE1A, PDE1B, and PDE1C mRNAs in pulmonary arteries and veins isolated from healthy lambs. In 13 lambs, the thromboxane A(2) analog U-46619 was infused intravenously to increase mean pulmonary arterial pressure to 35 mmHg. Four animals received an intravenous infusion of vinpocetine at incremental doses of 0.3, 1, and 3 mg.kg(-1).h(-1). In nine lambs, inhaled NO was administered in a random order at 2, 5, 10, and 20 ppm before and after an intravenous infusion of 1 mg.kg(-1).h(-1) vinpocetine. Administration of vinpocetine did not alter pulmonary and systemic hemodynamics or transpulmonary cGMP or cAMP release. Inhaled NO selectively reduced mean pulmonary arterial pressure, pulmonary capillary pressure, and pulmonary vascular resistance index, while increasing transpulmonary cGMP release. The addition of vinpocetine enhanced pulmonary vasodilation and transpulmonary cGMP release induced by NO breathing without causing systemic vasodilation but did not prolong the duration of pulmonary vasodilation after NO inhalation was discontinued. Our findings demonstrate that selective inhibition of PDE1 augments the therapeutic efficacy of inhaled NO in an ovine model of acute chemically induced pulmonary hypertension.  相似文献   

4.
Responses to the P2X-purinoceptor agonist alpha,beta-methylene-ATP (alpha,beta-MeATP) were investigated in the pulmonary, hindquarter, and mesenteric vascular beds in the cat. Under constant-flow conditions, injections of alpha,beta-MeATP caused dose-related increases in perfusion pressure in the pulmonary and hindquarter beds and a biphasic response in the mesenteric circulation. In the pulmonary vascular bed, the order of potency was alpha,beta-MeATP > U-46619 > angiotensin II, whereas, in the hindquarters, the order of potency was angiotensin II > U-46619 > alpha,beta-MeATP. The order of potency was similar in the hindquarter and mesenteric beds when the pressor component of the response to alpha,beta-MeATP was compared with responses to angiotensin II and U-46619. The P2X-receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid attenuated the pressor response to alpha,beta-MeATP in the hindquarter circulation and the pressor component in the mesenteric vascular bed. Pressor responses to alpha,beta-MeATP were not altered by cyclooxygenase, alpha-adrenergic, or angiotensin AT(1) antagonists. These data show that alpha,beta-MeATP has potent pressor activity in the pulmonary circulation, where it was 100-fold more potent than angiotensin II. In contrast, alpha,beta-MeATP had modest pressor activity in the systemic bed, where it was 1,000-fold less potent than angiotensin II. These data suggest that responses to alpha,beta-MeATP are dependent on the vascular bed studied and may be dependent on the density of P2X receptors in the vascular bed.  相似文献   

5.
Mechanisms that maintain high pulmonary vascular resistance (PVR) in the fetal lung are poorly understood. Activation of the Rho kinase signal transduction pathway, which promotes actin-myosin interaction in vascular smooth muscle cells, is increased in the pulmonary circulation of adult animals with experimental pulmonary hypertension. However, the role of Rho kinase has not been studied in the fetal lung. We hypothesized that activation of Rho kinase contributes to elevated PVR in the fetus. To address this hypothesis, we studied the pulmonary hemodynamic effects of brief (10 min) intrapulmonary infusions of two specific Rho kinase inhibitors, Y-27632 (15-500 microg) and HA-1077 (500 microg), in chronically prepared late-gestation fetal lambs (n = 9). Y-27632 caused potent, dose-dependent pulmonary vasodilation, lowering PVR from 0.67 +/- 0.18 to 0.16 +/- 0.02 mmHg x ml(-1) x min(-1) (P < 0.01) at the highest dose tested without lowering systemic arterial pressure. Despite brief infusions, Y-27632-induced pulmonary vasodilation was sustained for 50 min. HA-1077 caused a similar fall in PVR, from 0.39 +/- 0.03 to 0.19 +/- 0.03 (P < 0.05). To study nitric oxide (NO)-Rho kinase interactions in the fetal lung, we tested the effect of Rho kinase inhibition on pulmonary vasoconstriction caused by inhibition of endogenous NO production with nitro-L-arginine (L-NA; 15-30 mg), a selective NO synthase antagonist. L-NA increased PVR by 127 +/- 73% above baseline under control conditions, but this vasoconstrictor response was completely prevented by treatment with Y-27632 (P < 0.05). We conclude that the Rho kinase signal transduction pathway maintains high PVR in the normal fetal lung and that activation of the Rho kinase pathway mediates pulmonary vasoconstriction after NO synthase inhibition. We speculate that Rho kinase plays an essential role in the normal fetal pulmonary circulation and that Rho kinase inhibitors may provide novel therapy for neonatal pulmonary hypertension.  相似文献   

6.
We investigated the effects of chronic intrauterine hypoxaemia produced by prolonged partial umbilical cord compression on the circulation shortly after birth in lambs. Vascular catheters were inserted in 10 fetal sheep at 120 to 130 days gestation to measure descending aortic blood gases, arterial pH, and arterial O2 saturation. An inflatable silicone rubber balloon cuff was also placed around the umbilical cord. After recovery and the return of descending aortic blood gases to the normal range, the balloon was gradually inflated, decreasing the PaO2 from 21.2 +/- 3.6 to 17.5 +/- 1.3 mm Hg and the arterial O2 saturation from 57.1 +/- 9.2% to 37.2% +/- 5.2. After 14.3 +/- 3.7 days of partial umbilical cord compression, the lambs were delivered by Caesarean section, instrumented to measure systemic and pulmonary arterial, right atrial and pulmonary arterial wedge pressures, pulmonary and systemic blood flows, and mechanically ventilated. Five normal lambs were also studied. From 60 to 120 min after delivery, when compared to normal lambs, the umbilical compression lambs had an increased pulmonary arterial pressure (P less than 0.05) pulmonary vascular resistance (P less than 0.05), and right atrial pressure (P less than 0.05) with similar arterial blood gases. In both groups, hypoxic ventilation produced an increase in pulmonary arterial pressure (P less than 0.05) which on return to room air ventilation decreased to baseline in the normal lambs but not in the umbilical cord compression lambs (P less than 0.05). Prolonged partial umbilical cord compression produces chronic fetal hypoxaemia and pulmonary arterial hypertension after birth. This may represent a model to study the pathophysiology of persistent pulmonary hypertension syndrome.  相似文献   

7.
The induction of cyclooxygenase is an important event in the pathophysiology of acute lung injury. The purpose of this study was to examine the synergistic effects of various cyclooxygenase products (PGE(2), PGI(2), PGF(2alpha)) on thromboxane A(2) (TxA(2))-mediated pulmonary microvascular dysfunction. The lungs of Sprague-Dawley rats were perfused ex vivo with Krebs-Henseleit buffer containing indomethacin and PGE(2) (5 x 10(-8) to 1 x 10(-7) M), PGF(2alpha) (7 x 10(-9) to 5 x 10(-6) M), or PGI(2) (5 x 10(-8) to 2 x 10(-5) M). The TxA(2)-receptor agonist U-46619 (7 x 10(-8) M) was then added to the perfusate, and then the capillary filtration coefficient (K(f)), pulmonary arterial pressure (Ppa), and total pulmonary vascular resistance (RT) were determined. The K(f) of lungs perfused with U-46619 was twice that of lungs perfused with buffer alone (P = 0.05). The presence of PGE(2), PGF(2alpha), and PGI(2) within the perfusate of lungs exposed to U-46619 caused 118, 65, and 68% increases in K(f), respectively, over that of lungs perfused with U-46619 alone (P < 0.03). The RT of lungs perfused with PGE(2) + U-46619 was approximately 30% greater than that of lungs exposed to either U-46619 (P < 0.02) or PGE(2) (P < 0.01) alone. When paired measurements of RT taken before and then 15 min after the addition of U-46619 were compared, PGI(2) was found to attenuate U-46619-induced increases in RT (P < 0.01). These data suggest that PGE(2), PGI(2), and PGF(2alpha) potentiate the effects of TxA(2)-receptor activation on pulmonary microvascular permeability.  相似文献   

8.
Brain compression with subdural air causes pulmonary hypertension and noncardiogenic pulmonary edema (A. B. Malik, J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 335-343, 1977). To see whether air emboli to the lungs rather than brain compression caused these findings, anesthetized dogs received intravenous air infusions, subdural air infusions, or brain compression from balloons inflated in the subdural space. Subdural air and intravenous air resulted in similar vascular responses. Pulmonary artery pressure (Ppa) increased 160% (P less than 0.01) and pulmonary venous pressure transiently rose 13 +/- 5 Torr (P less than 0.05) without an increase in left atrial pressure or cardiac output (Q). The end-tidal PCO2 fell 55% (P less than 0.01) and the postmortem weight of the lungs increased 55% (P less than 0.05). Brain compression with a subdural balloon instead of air only caused a 20% rise in Ppa and Q without pulmonary edema. Thus, pulmonary air emboli rather than brain compression accounts for the edema and pulmonary hypertension caused by subdural air. Catheters in pulmonary veins and the left atrium showed that air emboli cause transient pulmonary venous hypertension as well as a reproducible form of noncardiogenic pulmonary endema.  相似文献   

9.
Partial ligation of the ductus arteriosus (DA) in the fetal lamb causes sustained elevation of pulmonary vascular resistance (PVR) and hypertensive structural changes in small pulmonary arteries, providing an animal model for persistent pulmonary hypertension of the newborn. Based on its vasodilator and antimitogenic properties in other experimental studies, we hypothesized that estradiol (E(2)) would attenuate the pulmonary vascular structural and hemodynamic changes caused by pulmonary hypertension in utero. To test our hypothesis, we treated chronically instrumented fetal lambs (128 days, term = 147 days) with daily infusions of E(2) (10 microg; E(2) group, n = 6) or saline (control group, n = 5) after partial ligation of the DA. We measured intrauterine pulmonary and systemic artery pressures in both groups throughout the study period. After 8 days, we delivered the study animals by cesarean section to measure their hemodynamic responses to birth-related stimuli. Although pulmonary and systemic arterial pressures were not different in utero, fetal PVR immediately before ventilation was reduced in the E(2)-treated group (2.43 +/- 0.79 vs. 1.48 +/- 0.26 mmHg. ml(-1). min, control vs. E(2), P < 0.05). During the subsequent delivery study, PVR was lower in the E(2)-treated group in response to ventilation with hypoxic gas but was not different between groups with ventilation with 100% O(2). During mechanical ventilation after delivery, arterial partial O(2) pressure was higher in E(2) animals than controls (41 +/- 11 vs. 80 +/- 35 Torr, control vs. E(2), P < 0. 05). Morphometric studies of hypertensive vascular changes revealed that E(2) treatment decreased wall thickness of small pulmonary arteries (59 +/- 1 vs. 48 +/- 1%, control vs. E(2), P < 0.01). We conclude that chronic E(2) treatment in utero attenuates the pulmonary hemodynamic and histological changes caused by DA ligation in fetal lambs.  相似文献   

10.
4-({(4-Carboxybutyl)[2-(5-fluoro-2-{[4'-(trifluoromethyl)biphenyl-4-yl]methoxy}phenyl)ethyl]amino}methyl)benzoic acid (BAY 60-2770) is a nitric oxide (NO)-independent activator of soluble guanylyl cyclase (sGC) that increases the catalytic activity of the heme-oxidized or heme-free form of the enzyme. In this study, responses to intravenous injections of the sGC activator BAY 60-2770 were investigated under baseline and elevated tone conditions induced by the thromboxane mimic U-46619 when NO synthesis was inhibited by N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME), when sGC activity was inhibited by 1H-[1,2,4]-oxadizaolo[4,3]quinoxaline-1-one (ODQ), an agent that oxidizes sGC, and in animals with monocrotaline-induced pulmonary hypertension. The intravenous injections of BAY 60-2770 under baseline conditions caused small decreases in pulmonary arterial pressure, larger decreases in systemic arterial pressure, and no change or small increases in cardiac output. Under elevated tone conditions during infusion of U-46619, intravenous injections of BAY 60-2770 caused larger decreases in pulmonary arterial pressure, smaller decreases in systemic arterial pressure, and increases in cardiac output. Pulmonary vasodilator responses to BAY 60-2770 were enhanced by L-NAME or by ODQ in a dose that attenuated responses to the NO donor sodium nitroprusside. ODQ had no significant effect on baseline pressures and attenuated pulmonary and systemic vasodilator responses to the sGC stimulator BAY 41-8543 2-{1-[2-(fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl}-5(4-morpholinyl)-4,6-pyrimidinediamine. BAY 60-2770 and sodium nitroprusside decreased pulmonary and systemic arterial pressures in monocrotaline-treated rats in a nonselective manner. The present data show that BAY 60-2770 has vasodilator activity in the pulmonary and systemic vascular beds that is enhanced by ODQ and NOS inhibition, suggesting that the heme-oxidized form of sGC can be activated in vivo in an NO-independent manner to promote vasodilation. These results show that BAY 60-2770 and sodium nitroprusside decreased pulmonary and systemic arterial pressures in monocrotaline-treated rats, suggesting that BAY 60-2770 does not have selective pulmonary vasodilator activity in animals with monocrotaline-induced pulmonary hypertension.  相似文献   

11.
Responses to a selective azaindole-based Rho kinase (ROCK) inhibitor (azaindole-1) were investigated in the rat. Intravenous injections of azaindole-1 (10-300 μg/kg), produced small decreases in pulmonary arterial pressure and larger decreases in systemic arterial pressure without changing cardiac output. Responses to azaindole-1 were slow in onset and long in duration. When baseline pulmonary vascular tone was increased with U46619 or L-NAME, the decreases in pulmonary arterial pressure in response to the ROCK inhibitor were increased. The ROCK inhibitor attenuated the increase in pulmonary arterial pressure in response to ventilatory hypoxia. Azaindole-1 decreased pulmonary and systemic arterial pressures in rats with monocrotaline-induced pulmonary hypertension. These results show that azaindole-1 has significant vasodilator activity in the pulmonary and systemic vascular beds and that responses are larger, slower in onset, and longer in duration when compared with the prototypical agent fasudil. Azaindole-1 reversed hypoxic pulmonary vasoconstriction and decreased pulmonary and systemic arterial pressures in a similar manner in rats with monocrotaline-induced pulmonary hypertension. These data suggest that ROCK is involved in regulating baseline tone in the pulmonary and systemic vascular beds, and that ROCK inhibition will promote vasodilation when tone is increased by diverse stimuli including treatment with monocrotaline.  相似文献   

12.
PPHN, caused by perinatal hypoxia or inflammation, is characterized by an increased thromboxane-prostacyclin ratio and pulmonary vasoconstriction. We examined effects of hypoxia on myocyte thromboxane responsiveness. Myocytes from 3rd-6th generation pulmonary arteries of newborn piglets were grown to confluence and synchronized in contractile phenotype by serum deprivation. On the final 3 days of culture, myocytes were exposed to 10% O2 for 3 days; control myocytes from normoxic piglets were cultured in 21% O2. PPHN was induced in newborn piglets by 3-day hypoxic exposure (Fi(O2) 0.10); pulmonary arterial myocytes from these animals were maintained in normoxia. Ca2+ mobilization to thromboxane mimetic U-46619 and ATP was quantified using fura-2 AM. Three-day hypoxic exposure in vitro results in increased basal [Ca2+]i, faster and heightened peak Ca2+ response, and decreased U-46619 EC50. These functional changes persist in myocytes exposed to hypoxia in vivo but cultured in 21% O2. Blockade of Ca2+ entry and store refilling do not alter peak U-46619 Ca2+ responses in hypoxic or normoxic myocytes. Blockade of ryanodine-sensitive or IP3-gated intracellular Ca2+ channels inhibits hypoxic augmentation of peak U-46619 response. Ca2+ response to ryanodine alone is undetectable; ATP-induced Ca2+ mobilization is unaltered by hypoxia, suggesting no independent increase in ryanodine-sensitive or IP3-linked intracellular Ca2+ pool mobilization. We conclude hypoxia has a priming effect on neonatal pulmonary arterial myocytes, resulting in increased resting Ca2+, thromboxane hypersensitivity, and hyperreactivity. We postulate that hypoxia increases agonist-induced TP-R-linked IP3 pathway activation. Myocyte thromboxane hyperresponsiveness persists in culture after removal from the initiating hypoxic stimulus, suggesting altered gene expression.  相似文献   

13.
Acute hemodynamic effects of beraprost sodium were tested in a canine vasoconstrictive pulmonary hypertension model induced by the continuous infusion of U-46619, a thromboxane A(2)mimetic. The effects of beraprost were compared with those of prostaglandin E(1), nitroglycerin and nifedipine. Beraprost and nitroglycerin decreased pulmonary arterial pressure. On the other hand, prostaglandin E(1)and nifedipine increased pulmonary arterial pressure. All drugs except nitroglycerin increased cardiac output and decreased pulmonary vascular resistance. Beraprost was selective to pulmonary circulation, while nitroglycerin, prostaglandin E(1), and nifedipine showed poor selectivity for the pulmonary vasculature. These results suggest that the vasodilative effect of beraprost is the most selective for the pulmonary circulation among these four vasodilators.  相似文献   

14.
Inhaled vasodilator therapy for pulmonary hypertension may decrease the systemic side effects commonly observed with systemic administration. Inhaled medications only reach ventilated areas of the lung, so local vasodilation may improve ventilation-perfusion matching and oxygenation. We compared the effects of intravenous vs. aerosolized treprostinil on pulmonary and systemic hemodynamics in an unanesthetized sheep model of sustained acute pulmonary hypertension. Acute, stable pulmonary hypertension was induced in instrumented unanesthetized sheep by infusing a PGH(2) analog, U-44069. The sheep were then administered identical doses of treprostinil either intravenously or by aerosol. Systemic and pulmonary hemodynamics were recorded during each administration. Both intravenous and aerosol delivery of treprostinil reduced pulmonary vascular resistance and pulmonary arterial pressure, but the effect was significantly greater with aerosol delivery (P < 0.05). Aerosol delivery of treprostinil had minimal effects on systemic hemodynamics, whereas intravenous delivery increased heart rate and cardiac output and decreased left atrial pressure and systemic blood pressure. Aerosol delivery of the prostacyclin analog treprostinil has a greater vasodilatory effect in the lung with minimal alterations in systemic hemodynamics compared with intravenous delivery of the drug. We speculate that this may result from treprostinil stimulated production of vasodilatory mediators from pulmonary epithelium.  相似文献   

15.
Our objectives were to investigate the pulmonary vascular effects of exogenously administered bradykinin at normal and reduced levels of cardiac index in intact conscious dogs and to assess the extent to which the pulmonary vascular response to bradykinin is the result of either cyclooxygenase pathway activation or reflex activation of sympathetic beta-adrenergic and -cholinergic receptors. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by step-wise constriction of the thoracic inferior vena cava to reduce Q. In intact dogs, bradykinin (2 micrograms X kg-1 X min-1 iv) caused systemic vasodilation, i.e., systemic arterial pressure was slightly decreased (P less than 0.05), Q was markedly increased (P less than 0.01), and mixed venous PO2 and oxygen saturation (SO2) were increased (P less than 0.01). Bradykinin decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) over the entire range of Q studied (140-60 ml X min-1 X kg-1) in intact dogs. During cyclooxygenase pathway inhibition with indomethacin, bradykinin again decreased (P less than 0.05) pulmonary arterial pressure-pulmonary capillary wedge pressure at every level of Q, although the magnitude of the vasodilator response was diminished at lower levels of Q (60 ml X min-1 X kg-1). Following combined administration of sympathetic beta-adrenergic and -cholinergic receptor antagonists, bradykinin still decreased (P less than 0.01) pulmonary arterial pressure-pulmonary capillary wedge pressure over the range of Q from 160 to 60 ml X min-1 X kg-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The role of cyclooxygenase (COX)-1 and -2 in prostanoid formation and modulation of pressor responses to ANG II was investigated in the pulmonary and systemic vascular beds in the rat. In the present study, selective COX-1 and -2 inhibitors attenuated increases in pulmonary arterial pressure and decreases in systemic arterial pressure in response to arachidonic acid but did not alter responses to PGE1 or U-46619. The selective COX-1 and -2 inhibitors did not modify systemic pressor responses to injections or infusions of ANG II or pulmonary pressor responses to injections of the peptide. COX-2 inhibitors did not alter, whereas a COX-1 inhibitor depressed, arachidonic acid-induced platelet aggregation. These data provide evidence in support of the hypothesis that prostanoid synthesis occurs by way of the COX-1 and -2 pathways in the pulmonary and systemic vascular beds but that pressor responses to ANG II are not mediated or modulated by these pathways in the rat.  相似文献   

17.
Isolated ferret and canine lungs were used to validate a method for assessing determinants of vascular volume in the pulmonary circulation. With left atrial pressure (Pla) constant at 5 mmHg, flow (Q) was raised in steps over a physiological range. Changes in vascular volume (delta V) with each increment in Q were determined as the opposite of changes in perfusion system reservoir weight or from the increase in lung weight. At each level of Q, the pulmonary arterial and left atrial cannulas were simultaneously occluded, allowing all vascular pressures to equilibrate at the same static pressure (Ps), which was equal to the compliance-weighted average pressure in the circulation before occlusion. Hypoxia (inspired PO2 25 Torr) in ferret lungs, which causes intense constriction in arterial extra-alveolar vessels, had no effect on the slope of the Ps-Q relationship, interpreted to represent the resistance downstream from compliance (control 0.025 +/- 0.006 mmHg.ml-1.min, hypoxia 0.030 +/- 0.013). The Ps-axis intercept increased from 8.94 +/- 0.50 to 13.43 +/- 1.52 mmHg, indicating a modest increase in the effective back-pressure to flow downstream from compliant regions. The compliance of the circulation, obtained from the slope of the relationship between delta V and Ps, was unaffected by hypoxia (control 0.52 +/- 0.08 ml/mmHg, hypoxia 0.56 +/- 0.08). In contrast, histamine in canine lungs, which causes constriction in veins, caused the slope of the Ps-Q relationship to increase from 0.013 +/- 0.007 to 0.032 +/- 0.006 mmHg.ml-1.min (P less than 0.05) and the compliance to decrease from 3.51 +/- 0.56 to 1.68 +/- 0.37 ml/mmHg (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Vasoconstricting prostaglandins were injected, in bolus doses, into the lower abdominal aorta on the left circumflex coronary artery (LCCA) of conscious sheep. Local blood flow, mean arterial pressure (MAP), heart rate (HR) and ECG were continuously monitored. Thromboxane B2 had no effect on either vascular bed in doses up to 100 micrograms. PGF2 alpha produced mild vasoconstriction in both vascular beds with no systemic response. The endoperoxide analogues, U-44069 and U-46619, produced complex responses in both vascular beds. Initial vasodilation was followed rapidly by prolonged vasoconstriction. In the coronary circulation, vasoconstriction was temporarily masked by a hyperaemic phase. The U-compounds also affected MAP, possibly as a result of pulmonary and systemic vasoconstriction.  相似文献   

19.
The bovine pulmonary vascular response to alpha- and beta-agonists was studied using an awake intact calf model. Pulmonary arterial pressure, pulmonary arterial wedge pressure, left atrial pressure, systemic arterial pressure, and cardiac output were measured in response to 3 min infusions of isoproterenol (beta-agonist; 0.12, 0.24, 0.48, 0.9, and 1.8 micrograms X kg-1 X min-1) and phenylephrine (alpha-agonist, 0.15, 0.30, 0.60, 1.15, and 2.30 micrograms X kg-1 X min-1). Phenylephrine caused an increase in vascular resistance in the pulmonary arterial and venous compartments. The slope of the resistance in response to phenylephrine was greater in the pulmonary arterial than pulmonary venous circulation. Isoproterenol resulted in a dose-dependent decrease in vascular resistance in the pulmonary arteries and veins. The vascular resistance was decreased to the same level in the pulmonary arteries and veins although the arteries showed a greater percent change. In addition, isoproterenol infusion resulted in a transient decrease in arterial pH and increase in values for packed cell volume and haemoglobin.  相似文献   

20.
Pulmonary vascular responses to endothelin-2 and sarafotoxin 6b were investigated in the feline pulmonary vascular bed under natural flow and constant flow conditions. Injections of endothelin-2 and sarafotoxin 6b in a dose of 0.3 nmol/kg iv increased pulmonary arterial and left atrial pressures and cardiac output, and caused a biphasic change in calculated pulmonary vascular resistance. Endothelin-2 caused a biphasic change in systemic arterial pressure, while sarafotoxin 6b only decreased arterial pressure. Under constant flow conditions in the intact-chest cat, injections of endothelin-2 and sarafotoxin 6b in doses of 0.1-1 nmol into the perfused lobar artery increased lobar arterial pressure in a dose-related manner but were less potent than the thromboxane A2 mimic, U46619. An ET analog with only the Cys1-Cys15 disulfide bond and an amidated carboxy terminus had no significant activity in the pulmonary vascular bed. The present data show that endothelin-2 and sarafotoxin 6b have significant vasoconstrictor activity in the pulmonary vascular bed of the cat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号