首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to study comparatively the oxidative metabolism in gills and liver of a silverside, Odontesthes nigricans, in their natural environment, the Beagle Channel. Oxidative damage to lipids was evaluated by assessing TBARS and lipid radical content, in gills and liver. Gills showed a significantly higher degree of damage than liver. The content of α-tocopherol, β-carotene and catalase activity showed significantly higher values in the liver than in the gills. The ascorbyl radical (A) content showed no significant differences between gills and liver. The ascorbate (AH) content was 12 ± 2 and 159 ± 28 nmol/mg FW in gills and liver, respectively. Oxidative metabolism at the hydrophilic level was assessed as the ratio A/AH. The ratio A/AH was significantly different between organs, (6 ± 2)10− 5 and (5 ± 2)10− 6, for the gills and the liver, respectively. Both, lipid radical content/α-tocopherol content and lipid radical content/β-carotene content ratios were significantly higher in gills as compared to the values recorded for the liver, suggesting an increased situation of oxidative stress condition in the lipid phase of the gills. Taken as a whole, the O. nigricans liver exhibited a better control of oxidative damage than the gills, allowing minimization of intracellular damage when exposed to environmental stressing conditions.  相似文献   

2.
We measured Na+/K+ ATPase activity in homogenates of gill tissue prepared from field caught, winter and summer acclimatized yellow perch, Perca flavescens. Water temperatures were 2–4°C in winter and 19–22°C in summer. Na+/K+ ATPase activity was measured at 8, 17, 25, and 37°C. Vmax values for winter fish increased from 0.48±0.07 μmol P mg−1 protein h−1 at 8°C to 7.21±0.79 μmol P mg−1 protein h−1 at 37°C. In summer fish it ranged from 0.46±0.08 (8°C) to 3.86±0.50 (37°C) μmol P mg−1 protein h−1. The Km for ATP and for Na+ at 8°C was ≈1.6 and 10 mM, respectively and did not vary significantly with assay temperature in homogenates from summer fish. The activation energy for Na+/K+ ATPase from summer fish was 10 309 (μmol P mg−1 h−1) K−1. In winter fish, the Km for ATP and Na+ increased from 0.59±0.08 mM and 9.56±1.18 mM at 8°C to 1.49±0.11 and 17.88±2.64 mM at 17°C. The Km values for ATP and Na did not vary from 17 to 37°C. A single activation energy could not be calculated for Na/K ATPase from winter fish. The observed differences in enzyme activities and affinities could be due to seasonal changes in membrane lipids, differences in the amount of enzyme, or changes in isozyme expression.  相似文献   

3.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the freshwater shrimp, Macrobrachium olfersii, acclimated to 21‰ salinity for 10 days were investigated using the substrate p-nitrophenylphosphate. The enzyme hydrolyzed this substrate obeying cooperative kinetics at a rate of 123.6 ± 4.9 U mg− 1 and K0.5 = 1.31 ± 0.05 mmol L− 1. Stimulation of K+-phosphatase activity by magnesium (Vmax = 125.3 ± 7.5 U mg− 1; K0.5 = 2.09 ± 0.06 mmol L− 1), potassium (Vmax = 134.2 ± 6.7 U mg− 1; K0.5 = 1.33 ± 0.06 mmol L− 1) and ammonium ions (Vmax = 130.1 ± 5.9 U mg− 1; K0.5 = 11.4 ± 0.5 mmol L− 1) was also cooperative. While orthovanadate abolished p-nitrophenylphosphatase activity, ouabain inhibition reached 80% (KI = 304.9 ± 18.3 μmol L− 1). The kinetic parameters estimated differ significantly from those for freshwater-acclimated shrimps, suggesting expression of different isoenzymes during salinity adaptation. Despite the ≈2-fold reduction in K+-phosphatase specific activity, Western blotting analysis revealed similar α-subunit expression in gill tissue from shrimps acclimated to 21‰ salinity or fresh water, although expression of phosphate-hydrolyzing enzymes other than (Na+,K+)-ATPase was stimulated by high salinity acclimation.  相似文献   

4.
The phospholipase c (plc) gene from Bacillus cereus was cloned into the pPICZC vector and integrated into the genome of Pichia pastoris. The phospholipase C (PLC) when expressed in P. pastoris was fused to the -factor secretion signal peptide of Saccharomyces cerevisiae and secreted into a culture medium. Recombinant P. pastoris X-33 had a clear PLC band at 28.5 kDa and produced an extracellular PLC with an activity of 678 U mg–1 protein which was more than a recombinant P. pastoris GS115 (552 U mg–1 protein) or KM71H (539 U mg–1 protein). The PLCs were purified using a HiTrap affinity column with a specific activity of 1335 U mg–1 protein by P. pastoris GS115, 1176 U mg–1 protein by P. pastoris KM71H and 1522 U mg–1 protein by P. pastoris X-33. The three recombinant PLCs had high PLC activity in the low pH range of 4-5 and higher thermal stability (e.g. stable at 75 °C) than the wild-type PLC from B. cereus. Some organic solvents, surfactants and metal ions, e.g. methanol, acetone, Co2+ and Mn2+ etc., also influenced the activity of the recombinant PLCs.  相似文献   

5.
Recent novel mixed blooms of several species of toxic raphidophytes have caused fish kills and raised health concerns in the highly eutrophic Inland Bays of Delaware, USA. The factors that control their growth and dominance are not clear, including how these multi-species HAB events can persist without competitive exclusion occurring. We compared and contrasted the relative environmental niches of sympatric Chattonella subsalsa and Heterosigma akashiwo isolates from the bays using classic Monod-type experiments. C. subsalsa grew over a temperature range from 10 to 30 °C and a salinity range of 5–30 psu, with optimal growth occurring from 20 to 30 °C and 15 to 25 psu. H. akashiwo had similar upper temperature and salinity tolerances but also lower limits, with growth occurring from 4 to 30 °C and 5 to 30 psu and optimal growth between 16 and 30 °C and 10 and 30 psu. These culture results were confirmed by field observations of bloom occurrences in the Inland Bays. Maximum nutrient-saturated growth rates (μmax) for C. subsalsa were 0.6 d−1 and half-saturation concentrations for growth (Ks) were 9 μM for nitrate, 1.5 μM for ammonium, and 0.8 μM for phosphate. μmax of H. akashiwo (0.7 d−1) was slightly higher than C. subsalsa, but Ks values were nearly an order of magnitude lower at 0.3 μM for nitrate, 0.3 μM for ammonium, and 0.2 μM for phosphate. H. akashiwo is able to grow on urea but C. subsalsa cannot, while both can use glutamic acid. Cell yield experiments at environmentally relevant levels suggested an apparent preference by C. subsalsa for ammonium as a nitrogen source, while H. akashiwo produced more biomass on nitrate. Light intensity affected both species similarly, with the same growth responses for each over a range from 100 to 600 μmol photons m−2 s−1. Factors not examined here may allow C. subsalsa to persist during multi-species blooms in the bays, despite being competitively inferior to H. akashiwo under most conditions of nutrient availability, temperature, and salinity.  相似文献   

6.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

7.
The soybean (Glycine max) urease was immobilized on alginate and chitosan beads and various parameters were optimized and compared. The best immobilization obtained were 77% and 54% for chitosan and alginate, respectively. A 2% chitosan solution (w/v) was used to form beads in 1N KOH. The beads were activated with 1% glutaraldehyde and 0.5 mg protein was immobilized per ml of chitosan gel for optimum results. The activation and coupling time were 6 h and 12 h, respectively. Further, alginate and soluble urease were mixed to form beads and final concentrations of alginate and protein in beads were 3.5% (w/v) and 0.5 mg/5 ml gel. From steady-state kinetics, the optimum temperature for urease was 65 °C (soluble), 75 °C (chitosan) and 80 °C (alginate). The activation energies were found to be 3.68 kcal mol−1, 5.02 kcal mol−1, 6.45 kcal mol−1 for the soluble, chitosan- and alginate-immobilized ureases, respectively. With time-dependent thermal inactivation studies, the immobilized urease showed improved stability at 75 °C and the t1/2 of decay in urease activity was 12 min, 43 min and 58 min for soluble, alginate and chitosan, respectively. The optimum pH of urease was 7, 6.2 and 7.9 for soluble, alginate and chitosan, respectively. A significant change in Km value was noticed for alginate-immobilized urease (5.88 mM), almost twice that of soluble urease (2.70 mM), while chitosan showed little change (3.92 mM). The values of Vmax for alginate-, chitosan-immobilized ureases and soluble urease were 2.82 × 102 μmol NH3 min−1 mg−1 protein, 2.65 × 102 μmol NH3 min−1 mg−1 protein and 2.85 × 102 μmol NH3 min−1 mg−1 protein, respectively. By contrast, reusability studies showed that chitosan–urease beads can be used almost 14 times with only 20% loss in original activity while alginate–urease beads lost 45% of activity after same number of uses. Immobilized urease showed improved stability when stored at 4 °C and t1/2 of urease was found to be 19 days, 80 days and 121 days, respectively for soluble, alginate and chitosan ureases. The immobilized urease was used to estimate the blood urea in clinical samples. The results obtained with the immobilized urease were quite similar to those obtained with the autoanalyzer®. The immobilization studies have a potential role in haemodialysis machines.  相似文献   

8.
Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360   总被引:1,自引:0,他引:1  
Galactomyces geotrichum MTCC 1360 can decolorize triphenylmethane, azo and reactive high exhaust textile dyes. At shaking condition this strain showed 100% decolorization of a toxic azo dye Methyl red (100 m gl−1) within 1 h in deionized water at 30 °C. The degradation of Methyl red was possible through a broad pH (3–12) and temperature (5–50 °C) range. Glucose and mycelium concentration had increased the decolorization rate, but the addition of 1 gl−1 molasses in deionized water made decolorization possible in only 10 min. Induction in the NADH–dichloro phenol indophenol (NADH–DCIP) reductase, Malachite green reductase, laccase and lignin peroxidase (Lip) activities were observed in the cells obtained after complete decolorization, showing that there is direct involvement in the degradation of Methyl red. The absence of N-N′-dimethyl-p-phenylenediamine (DMPD) in 5 °C, 2-aminobenzoic acid (ABA) in 50 °C and both the compounds in 30 °C sample have shown the differences in the metabolic fate of Methyl red at different temperatures. The untreated dye at 300 mg l−1 concentration showed 88% germination inhibition in Sorghum bicolor, whereas it was 72% in Triticum aestivum. There was no germination inhibition for both the plants by Methyl red metabolites at 300 mg l−1 concentration.

The scientific relevance of the paper

The azo dye Methyl red (100 mg l−1) was decolorized by G. geotrichum MTCC 1360 within 1 h at shaking condition in deionized water. This organism could decolorize Methyl red at wide pH and temperature ranges. Decolorization time was reduced to 10 min by the addition of molasses to deionized water. There was induction in laccase and Lip, NADH–DCIP reductase and Malachite green reductase activities. The metabolic fate of Methyl red changes with temperature which can be evidenced by the formation of 2-ABA at 5 °C, N-N′-DMPD at 50 °C and both the compounds were absent at 30 °C. Phytotoxicity showed that metabolites of dye had induced shoot and root length of both the tested plants.  相似文献   

9.
Canna indica L. is an upright perennial rhizomatous herb, and Schoenoplectus validus (Vahl) A. Löve and D. Löve is a tall, perennial, herbaceous sedge. The nutrient uptake kinetics of C. indica and S. validus were investigated using the modified depletion method after plants were grown for 4 weeks in simulated secondary-treated wastewater. The maximum uptake rate (Imax) and Michaelis–Menten constant (Km) were estimated by iterative curve fitting. The Imax for NH4N (623 μmol g−1 dry root weight h−1) was significantly higher than that for NO3N (338 μmol g−1 dry root weight h−1) in S. validus. In contrast, no difference was observed in C. indica. The Imax values for NO3N and NH4N were higher in S. validus than in C. indica. A significantly lower Km was detected for NO3N uptake in C. indica (385 μmol L−1) compared to that in S. validus (1908 μmol L−1). The Imax for PO4P did not differ between the plant species. The Km for PO4P was significantly higher in C. indica (157 μmol L−1) than in S. validus (60 μmol L−1). In conclusion, we found that S. validus preferred NH4N over NO3N, had greater capacity for N uptake and higher affinity for PO4P, but C. indica had greater affinity for NO3N. Nutrient uptake capacity is likely related to habitat preference, and is influenced by the structure of roots and rhizomes.  相似文献   

10.
Marine invasions are a worldwide problem that involves changes in communities and the acclimation of organisms to them. The invasive Chlorophyte Caulerpa racemosa var. cylindracea is widespread in the Mediterranean and colonises large areas from 0 to 70 m in depth. The omnivorous fish Spondyliosoma cantharus presents a high frequency of occurrence of C. racemosa in the stomach contents at invaded areas (76.3%) while no presence of C. racemosa was detected in control areas. The isotopic composition of muscle differed significantly between invaded and non-invaded sites for δ13C (− 16.67‰ ± 0.09 and − 17.67‰ ± 0.08, respectively), δ15N (10.22‰ ± 0.22 and 9.32‰ ± 0.18, respectively) and the C:N ratio (2.01 ± 0.0002 and 1.96 ± 0.009, respectively). Despite the high frequency of occurrence of C. racemosa in the stomach contents of S. cantharus and its important contribution to the δ13C source (20.7% ± 16.2), the contribution of C. racemosa to the δ15N in S. cantharus food sources was very low (6.6% ± 5.8). Other invertebrate prey such as decapods and polychaetes were more important contributors to the δ15N source at both invaded and non-invaded sites. Activation of enzymatic pathways (catalase, superoxide dismutase, glutathione-s-tranferase, 7-ethoxy resorufin O-de-ethylase) but not a significant increase in lipid peroxidation MDA (0.49 ± 0.01 nmol/mg prot at non-invaded and 0.53 ± 0.01 nmol/mg prot at invaded sites) was observed in S. cantharus individuals living in C. racemosa-invaded sites compared with control specimens. The low δ15N contribution values of C. racemosa by S. cantharus together with the toxicity demonstrated by the activation of the antioxidant defences and the important contribution of invertebrate prey to the δ15N could mean that the ingestion of C. racemosa by S. cantharus might be unintentional during the predation of invertebrate preys living underneath the entanglement of the C. racemosa fronds and stolons mats.  相似文献   

11.
The effect of reduced application rate, soil temperature at shallow depth (2.5 cm), and soil type on the efficacy of Steinernema carpocapsae against the navel orangeworm, Amyelois transitella, was evaluated in six field trials employing 1 m2 plots conducted from November 2003 through December 2004 in Madera and Kern Counties, California. Nematodes were applied at a concentration of 100,000 infective juveniles (IJs)/m2 (109/ha) in a volume of 187 ml water/m2 (1870 L/ha) with a post-application irrigation in all trials. Mortality ranged from 7.9 to 64.9% in successful trials and percent reduction in live larvae per plot was as high as 74.6%. Percent reduction and mortality were highly correlated (r2 = 0.78) and larval reduction typically was 10–11% greater than mortality for any treatment. In one trial, although nematode treatment significantly increased mortality compared to the controls, the treatment was deemed unsatisfactory because mortality was <15%. Soil temperature in this trial rose to 39 °C within 5 h after application. Nematodes failed in two other trials when soil temperature fell below freezing (minimum temperatures −3.0, −5.5 °C, respectively) several times in a 5-day period. We conclude that a commercially feasible application volume of 1870 L water/ha followed by post-application irrigation at this same rate was effective, and that soil maximum temperature at or below 32 °C during the first 24 h after application is necessary for treatment success.  相似文献   

12.
An intracellular β-xylosidase from the thermophilic fungus Sporotricum thermophile strain ATCC 34628 was purified to homogeneity by Q-Sepharose and Mono-Q column chromatographies. The protein properties correspond to molecular mass and pI values of 45 kDa and 4.2, respectively. The enzyme is optimally active at pH 7.0 and 50 °C. The purified β-xylosidase is fully stable at pH 6.0–8.0 and temperatures up to 50 °C and retained over 58% of its activity after 1 h at 60 °C. The enzyme hydrolyzes β-1,4-linked xylo-oligosaccharides with chain lengths from 2 to 6, releasing xylose from the non-reducing end, but is inactive against xylan substrates. The apparent Km and Vmax values from p-nitrophenyl β-d-xylopyranoside are 1.1 mM and 114 μmol p-nitrophenol min−1 mg−1, respectively. Alcohols inactivate the enzyme, ethanol at 10% (v/v) yields a 30% decrease of its activity. The enzyme is irreversibly inhibited by 2,3-epoxypropyl β-d-xylobioside while alkyl epoxides derived from d-xylose were not inhibitors of the enzyme. The enzyme catalyses the condensation reaction using high donor concentration, up to 60% (w/v) xylose.  相似文献   

13.
Eight formulations of Penicillium oxalicum (FOR1 to FOR8) were obtained by the addition of various ingredients, in two separate steps of the production and drying of P. oxalicum conidia. These formulations were then evaluated against tomato wilt in three glasshouse (G1 to G3) and two field (F1 and F2) experiments. All formulations were applied to seedlings in seedbeds 7 days before transplanting at a rate of 107 spores g−1 seedbed substrate. The conidial viability of each formulation was estimated by measuring germination just after fluid bed-drying, before seedbed application and after 1 and 2 years of storage at 4 °C under vacuum. The densities of P. oxalicum were estimated in the seedbed substrate and in the rhizosphere of three plants per treatment just before transplanting. Initial conidial viability of formulations just after fluid bed-drying was approx. 80%, except for FOR1, FOR4, and FOR7 which were 60%. The initial viability was maintained up to 40–50% for 2 years of storage at 4 °C under vacuum, except for FOR1. All formulations had 50% viability at application time. Populations of P. oxalicum in the seedbed substrate just before transplanting were >106 cfu g−1 soil in G3 and F2; populations in rhizosphere were also >106 cfu g−1 fresh root, except for FOR3, FOR5, and FOR6 in G2. A range of 22–64% of disease reduction was observed with all formulations, although these reductions were not significant (p = 0.05) for FOR1, FOR4, and FOR5 in any experiment. Contrast analysis showed significant differences between biological treatments and untreated control (p = 0.05) in all experiments, but no significant differences between biological and chemical treatments. Initial conidial viability of P. oxalicum in formulations and populations of P. oxalicum in the seedbed substrate explained 78.26% of the variability in P. oxalicum populations in tomato rhizosphere before transplanting. Disease incidence in untreated plants was negatively correlated (r = −0.54) with the percentage of disease control. The relationship between the viability of formulations, the populations of P. oxalicum in seedbed and rhizosphere, and the control of tomato wilt is discussed.  相似文献   

14.
In this study we investigated the ability of Chara intermedia to acclimate to different irradiances (i.e. “low-light” (LL): 20–30 μmol photons m−2 s−1 and “high-light” (HL): 180–200 μmol photons m−2 s−1) and light qualities (white, yellow and green), using morphological, photosynthesis, chlorophyll fluorescence and pigment analysis.Relative growth rates increased with increasing irradiance from 0.016 ± 0.003 (LL) to 0.024 ± 0.005 (HL) g g−1 d−1 fresh weight and were independent of light quality. A growth-based branch orientation towards high-light functioning as a mechanism to protect the plant from excessive light was confirmed. It was shown that the receptor responsible for the morphological reaction is sensitive to blue-light.C. intermedia showed higher oxygen evolution (up to 10.5 (HL) vs. 4.5 (LL) nmol O2 mg Chl−1 s−1), photochemical and energy-dependent Chl fluorescence quenching and a lower Fv/Fm after acclimation to HL. With respect to qP, the acclimation of the photosynthetic apparatus depended on light quality and needed the blue part of the spectrum for full development. In addition, pigment composition was influenced by light and the Chl a/Car and Antheraxanthin (A) + Zeaxanthin (Z)/Violaxanthin (V) + A + Z (DES) ratios revealed the expected acclimation behaviour in favour of carotenoid protection under HL (i.e. decrease of Chl a/Car from 3.41 ± 0.48 to 2.30 ± 0.35 and increase of DES from 0.39 ± 0.05 to 0.87 ± 0.03), while the Chl a/Chl b ratios were not significantly affected. Furthermore it was shown that morphological light acclimation mechanisms influence the extent of the physiological modifications.  相似文献   

15.
A multi-functional enzyme ICChI with chitinase/lysozyme/exochitinase activity from the latex of Ipomoea carnea subsp. fistulosa was purified to homogeneity using ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography. The enzyme is glycosylated (14–15%), has a molecular mass of 34.94 kDa (MALDI–TOF) and an isoelectric point of pH 5.3. The enzyme is stable in pH range 5.0–9.0, 80 °C and the optimal activity is observed at pH 6.0 and 60 °C. Using p-nitrophenyl-N-acetyl-β-d-glucosaminide, the kinetic parameters Km, Vmax, Kcat and specificity constant of the enzyme were calculated as 0.5 mM, 2.5 × 10−8 mol min−1 μg enzyme−1, 29.0 s−1 and 58.0 mM−1 s−1 respectively. The extinction coefficient was estimated as 20.56 M−1 cm−1. The protein contains eight tryptophan, 20 tyrosine and six cysteine residues forming three disulfide bridges. The polyclonal antibodies raised and immunodiffusion suggests that the antigenic determinants of ICChI are unique. The first fifteen N-terminal residues G–E–I–A–I–Y–W–G–Q–N–G–G–E–G–S exhibited considerable similarity to other known chitinases. Owing to these unique properties the reported enzyme would find applications in agricultural, pharmaceutical, biomedical and biotechnological fields.  相似文献   

16.
Karlodinium veneficum is a common member of temperate, coastal phytoplankton assemblages that occasionally forms blooms associated with fish kills. Here, we tested the hypothesis that the cytotoxic and ichthyotoxic compounds produced by K. veneficum, karlotoxins, can have anti-grazing properties against the heterotrophic dinoflagellate, Oxyrrhis marina. The sterol composition of O. marina (>80% cholesterol) renders it sensitive to karlotoxin, and does not vary substantially when fed different algal diets even for prey that are resistant to karlotoxin. At in situ bloom concentrations (104–105 K. veneficum ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 55% that observed on the non-toxic K. veneficum strain MD5. At lower prey concentrations typical of in situ non-bloom levels (<103 cells ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 70–80% of rates on non-toxic strain MD5. Growth of O. marina was significantly suppressed when fed the toxic strain of K. veneficum. Experiments with mixed prey cultures, where non-toxic strain MD5 was fluorescently stained, showed that the presence of toxic strain CCMP 2064 inhibited grazing of O. marina on the co-occurring non-toxic strain MD5. Exogenous addition of a sub-lethal dose (100 ng ml−1) of purified karlotoxin inhibited grazing of O. marina by approximately 50% on the non-toxic K. veneficum strain MD5 or the cryptophyte S. major. These results identify karlotoxin as an anti-grazing compound for those grazers with appropriate sterol composition (i.e., desmethyl sterols). This strategy is likely to be an important mechanism whereby growth of K. veneficum is uncoupled from losses due to grazing, allowing it to form ichthyotoxic blooms in situ.  相似文献   

17.
Red tide blooms of Cochlodinium polykrikoides in a coastal cove   总被引:1,自引:0,他引:1  
Successive blooms of the dinoflagellate Cochlodinium polykrikoides occurred in Pettaquamscutt Cove, RI, persisting from September through December 1980 and again from April through October 1981. Cell densities varied from <100 cells L−1 at the onset of the bloom and reached a maximum density exceeding 3.4 × 106 cells L−1 during the summer of 1981. The bloom was mainly restricted to the mid to inner region of this shallow cove with greatest concentrations localized in surface waters of the southwestern region during summer/fall periods of both years. Highly motile cells consisting of single, double and multiple cell zooids were found as chains of 4 and 8 cells restricted to the late August/September periods. The highest cell densities occurred during periods when annual temperatures were between 19 and 28 °C and salinities between 25 and 30. A major nutrient source for the cove was Crying Brook, located at the innermost region at the head of the cove. Inorganic nitrogen (NH3 and NO2 + NO3) from the brook was continually detectable throughout the study with maximum values of 57.5 and 82.5 μmol L−1, respectively. Phosphate (PO4-P) was always present in the source waters and rarely <0.5 μmol L−1; silicate always exceeded 30 μmol L−1 with maximum concentrations reaching 226 μmol L−1. Chlorophyll a and ATP concentrations during the blooms varied directly with cell densities. Maximum Chl a levels were 218 mg m−3 and ATP-carbon was >20 g C m−3. Primary production by the dinoflagellate-dominated community during the bloom varied between 4.3 and 0.07 g C m−3 d−1. Percent carbon turnover calculated from primary production values and ATP-carbon varied from 6 to 129% d−1. The dinoflagellates dominated the entire summer period; other flagellates and diatoms were present in lesser amounts. A combination of low washout rate due to the cove dynamics, active growth, and life cycles involving cysts allowed C. polykrikoides to maintain recurrent bloom populations in this area.  相似文献   

18.
Succinate fermentation was investigated in Escherichia coli strains overexpressing cyanobacterium Anabaena sp. 7120 ecaA gene encoding carbonic anhydrase (CA). In strain BL21 (DE3) bearing ecaA, the activity of CA was 21.8 U mg−1 protein, whereas non-detectable CA activity was observed in the control strain. Meanwhile, the activity of phosphoenolpyruvate carboxylase (PEPC) increased from 0.2 U mg−1 protein to 1.13 U mg−1 protein. The recombinant bearing ecaA reached a succinate yield of 0.39 mol mol−1 glucose at the end of the fermentation. It was 2.1-fold higher than that of control strain which was just 0.19 mol mol−1 glucose. EcaA gene was also introduced into E. coli DC1515, which was deficient in glucose phosphotransferase, lactate dehydrogenase and pyruvate:formate lyase. Succinate yield can be further increased to 1.26 mol mol−1 glucose. It could be concluded that the enhancement of the supply of HCO3 in vivo by ecaA overexpression is an effective strategy for the improvement of succinate production in E. coli.  相似文献   

19.
The Rhodococcus erythropolis strain (N′4) possesses the ability to convert 4-chloro-3-hydroxybutyronitrile into the corresponding acid. This conversion was determined to be performed by its nitrile hydratase and amidase. Ammonium sulfate fractionation, DEAE ion exchange chromatography, and phenyl chromatography were used to partially purify nitrile hydratase from cell-free extract. A SDS-PAGE showed that the partially purified enzyme had two subunits and gel filtration chromatography showed that it consisted of four subunits of α2β2. The purified enzyme had a high specific activity of 860 U mg−1 toward methacrylonitrile. The enzyme was found to have high activity at low temperature range, with a maximum activity occurring at 25 °C and be stable in the presence of organic acids at higher temperatures. The enzyme exhibited a preference for aliphatic saturated nitrile substrates over aliphatic unsaturated or aromatic ones. It was inhibited by sulfhydryl, oxidizing, and serine protease inhibitors, thus indicating that essential cysteine and serine residues can be found in the active site.The purified nitrile hydratase was able to convert 4-chloro-3-hydroxybutyronitrile into the corresponding amide at 15 °C. GC analysis showed that the initial conversion rate of the reaction was 215 mg substrate consumed min−1 mg−1. This demonstrated that this enzyme could be used in conjunction with a stereoselective amidase to synthesize ethyl (S)-4-chloro-3-hydroxybutyrate, an intermediate for a hypercholesterolemia drug, Atorvastatin.  相似文献   

20.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号