首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
UV-induced pyrimidine(6-4)pyrimidone photoproducts in DNA of mammalian cells are apparently repaired much more rapidly than cyclobutane dimers. Since only immunological assays for (6-4) photoproducts have been sensitive enough for repair measurements, it was possible that these apparently rapid repair kinetics reflected a change in physical conformation of antibody-binding sites, resulting in epitope loss rather than excision. To discriminate between these possibilities, we developed a procedure to photochemically convert (6-4) photoproducts to single-strand breaks in UV-irradiated DNA with a background low enough to permit repair measurements. Analysis of a specific DNA sequence indicated that photoinduced alkali-labile sites (PALS) were induced with the same site-specificity as (6-4) photoproducts. Normal human and xeroderma pigmentosum (XP) variant cells rapidly excised (6-4) photoproducts measured as PALS, but little repair was seen in cells from XP complementation group A. These repair kinetics corresponded to those determined in the same samples by radioimmunoassay of (6-4) photoproducts. Thus we conclude that the rapid repair of (6-4) photoproducts observed in UV-irradiated human cells is not the result of a conformational change resulting in epitope loss, but reflects excision of this photoproduct from DNA.  相似文献   

2.
Nucleotide-excision repair (NER) is the most versatile mechanism of DNA repair, recognizing and dealing with a variety of helix-distorting lesions, such as the UV-induced photoproducts cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) photoproducts. We investigated the influence of an anticancer drug, STI571, on the efficacy of NER in removing UV-induced DNA damage. STI571 is used mostly in the treatment of chronic myeloid leukemia and inhibits activity of the BCR/ABL oncogenic tyrosine kinase, which is a hallmark of this disease. NER activity was examined in the BCR/ABL-expressing cell lines K562 and BV173 of myeloid and lymphoid origin, respectively, as well as in CCRF-CEM cells, which do not express BCR/ABL. A murine myeloid parental 32D cell line and its counterpart transfected with the BCR/ABL gene were also tested. NER activity was assessed in the cell extracts by use of an UV-irradiated plasmid as a substrate and by a modified single-cell gel electrophoresis (comet) assay on UV-treated nucleoids. Additionally, quantitative PCR was performed to evaluate the efficacy of the removal of UV-induced lesions from the p53 gene by intact cells. Results obtained from these experiments indicate that STI571 decreases the efficacy of NER in leukemic cells expressing BCR/ABL. Therefore, STI571 may overcome the drug resistance associated with increased DNA repair in BCR/ABL-positive leukemias.  相似文献   

3.
4.
Cells derived from individuals with mutations in the xeroderma pigmentosum complementation group A gene (XP-A gene) are hypersensitive to UV light and have a severe defect in nucleotide excision repair of damaged DNA. UV-resistant revertant cell lines can arise from XP-A cells in culture. Cells of one such revertant, XP129, were previously shown to remove (6-4) photoproducts from irradiated DNA, but to have poor repair of cyclobutane pyrimidine dimers. To analyze the biochemical nature of the reversion, whole cell extracts were prepared from the SV40-immortalized fibroblast cell lines XP12RO (an XP-A cell line), the revertant XP129 (derived from XP12RO), and 1BR.3N (from a normal individual). The ability of extracts to carry out repair synthesis in UV-irradiated DNA was examined, and immunoblots were performed using antiserum that recognizes XP-A protein. XP12RO extracts exhibited a very low level of repair and no detectable XP-A protein, but repair activity could be conferred by adding purified XP-A protein to the reaction mixture. XP129 extracts have essentially normal repair synthesis consistent with the observation that most repair of UV-irradiated DNA by extracts appears to occur at (6-4) photoproducts. An XP-A polypeptide of normal size was present in XP129, but in reduced amounts. The results indicate that in XP129 a mutational event has converted the inactive XP12RO XP-A gene into a form which expresses an active XP-A protein.  相似文献   

5.
A polyclonal antiserum raised against UV-irradiated DNA can be used to assay cyclobutane pyrimidine dimers and Pyr(6-4)Pyo photoproducts specifically by changing the nature of the 32P-labelled antigen. Pyr(6-4)Pyo photoproducts were removed faster than cyclobutane dimers in UV-irradiated human, hamster and mouse cells. Xeroderma pigmentosum cells from complementation groups A, C and D were deficient in the repair of both lesions.  相似文献   

6.
Using a transient gene expression assay to measure host cell reactivation, the effects of cyclobutane dimer and noncyclobutane dimer uv photoproducts on expression of a reporter gene were examined in normal and repair-deficient Chinese hamster ovary (CHO) cell lines. Ultraviolet damage in plasmid pRSV beta gal DNA, containing the Escherichia coli beta-galactosidase gene, resulted in reduced reporter gene expression in both uv-hypersensitive mutant CHO cell lines UV5 and UV61 relative to wild-type, parental AA8 cells. However, the effects of uv irradiation of transfected plasmid DNA on gene activity were reduced in UV61, a mutant with normal (6-4) photoproduct repair, compared to UV5, which is deficient in (6-4) photoproduct repair; this reduction correlated with the intermediate uv-hypersensitivity of UV61. Selective removal of cyclobutane dimers by in vitro photoreactivation of uv-irradiated plasmid DNA prior to transfection substantially increased reporter gene activity in both uv-hypersensitive mutant cell lines. This increase was significantly greater in UV61 than in UV5, consistent with UV5 being deficient in repair of both (6-4) photoproducts and cyclobutane dimers. These results suggest that unrepaired (6-4) photoproducts in transfected pRSV beta gal plasmid DNA are responsible for a significant fraction of the reduction in transient gene expression observed in recipient uv-hypersensitive CHO cell mutants.  相似文献   

7.
We used a simian virus 40-based shuttle vector plasmid, pZ189, to determine the role of pyrimidine cyclobutane dimers in UV light-induced mutagenesis in monkey cells. The vector DNA was UV irradiated and then introduced into monkey cells by transfection. After replication, vector DNA was recovered from the cells and tested for mutations in its supF suppressor tRNA marker gene by transformation of Escherichia coli carrying a nonsense mutation in the beta-galactosidase gene. When the irradiated vector was treated with E. coli photolyase prior to transfection, pyrimidine cyclobutane dimers were removed selectively. Removal of approximately 90% of the pyrimidine cyclobutane dimers increased the biological activity of the vector by 75% and reduced its mutation frequency by 80%. Sequence analysis of 72 mutants recovered indicated that there were significantly fewer tandem double-base changes and G X C----A X T transitions (particularly at CC sites) after photoreactivation of the DNA. UV-induced photoproducts remained (although at greatly reduced levels) at all pyr-pyr sites after photoreactivation, but there was a relative increase in photoproducts at CC and TC sites and a relative decrease at TT and CT sites, presumably due to a persistence of (6-4) photoproducts at some CC and TC sites. These observations are consistent with the fact that mutations were found after photoreactivation at many sites at which only cyclobutane dimers would be expected to occur. From these results we conclude that UV-induced pyrimidine cyclobutane dimers are mutagenic in DNA replicated in monkey cells.  相似文献   

8.
S Kanno  S Iwai  M Takao    A Yasui 《Nucleic acids research》1999,27(15):3096-3103
UV damage endonuclease (UVDE) initiates a novel form of excision repair by introducing a nick imme-diately 5" to UV-induced cyclobutane pyrimidine dimers or 6-4 photoproducts. Here, we report that apurinic/apyrimidinic (AP) sites are also nicked by Neurospora crassa and Schizosaccharomyces pombe UVDE. UVDE introduces a nick immediately 5" to the AP site leaving a 3"-OH and a 5"-phosphate AP. Apyrimidinic sites are more effectively nicked by UVDE than apurinic sites. UVDE also possesses 3"-repair activities for AP sites nicked by AP lyase and for 3"-phosphoglycolate produced by bleomycin. The Uvde gene introduced into Escherichia coli cells lacking two types of AP endonuclease, Exo III and Endo IV, gave the host cells resistance to methylmethane sulfonate and t-butyl hydroperoxide. We identified two AP endonuclease activities in S.pombe cell extracts. Besides cyclobutane pyrimidine dimers and 6-4 photoproducts, N. crassa UVDE also nicks Dewar photoproducts. Thus, UVDE is able to repair both of the major forms of DNA damage in living organisms: UV-induced DNA lesions and AP sites.  相似文献   

9.
Introduction of the denV gene of phage T4, encoding the pyrimidine dimer-specific endonuclease V, into xeroderma pigmentosum cells XP12RO(M1) was reported to result in partial restoration of colony-forming ability and excision repair synthesis. We have further characterized 3 denV-transformed XP clones in terms of rates of excision of pyrimidine dimers and size of the resulting resynthesized regions following exposure to 100 J/m2 from an FS-40 sunlamp. In the denV-transformed XP cells we observed 50% dimer removal within 3-6 h after UV exposure as compared to no measurable removal in the XP12RO(M1) line and 50% dimer excision after 18 h in the GM637A human, control cells. Dimer removal was assayed with Micrococcus luteus UV-endonuclease in conjunction with sedimentation of treated DNA in alkaline sucrose gradients. The size of the resulting repaired regions was determined by the bromouracil photolysis technique. Based on the photolytic sensitivity of DNA repaired in the presence of bromodeoxyuridine, we calculated that the excision of a dimer in the GM637A cells appears to be accompanied by the resynthesis of a region approximately 95 nucleotides in length. Conversely, the resynthesized regions in the denV-transformed clones were considerably smaller and were estimated to be between 13 and 18 nucleotides in length. These results may indicate that either the endonuclease that initiated dimer repair dictated the size of the resynthesized region or that the long-patch repair observed in the normal cells resulted from the repair of non-dimer DNA lesions.  相似文献   

10.
11.
A partial revertant (RH1-26) of the UV-sensitive Chinese hamster V79 cell mutant V-H1 (complementation group 2) was isolated and characterized. It was used to analyze the mutagenic potency of the 2 major UV-induced lesions, cyclobutane pyrimidine dimers and (6-4) photoproducts. Both V-H1 and RH1-26 did not repair pyrimidine dimers measured in the genome overall as well as in the active hprt gene. Repair of (6-4) photoproducts from the genome overall was slower in V-H1 than in wild-type V79 cells, but was restored to normal in RH1-26. Although V-H1 cells have a 7-fold enhanced mutagenicity, RH1-26 cells, despite the absence of pyrimidine dimer repair, have a slightly lower level of UV-induced mutagenesis than observed in wild-type V79 cells. The molecular nature of hprt mutations and the DNA-strand specificity were similar in V79 and RH1-26 cells but different from that of V-H1 cells. Since in RH1-26 as well as in V79 cells most hprt mutations were induced by lesions in the non-transcribed DNA strand, in contrast to the transcribed DNA strand in V-H1, the observed mutation-strand bias suggests that normally (6-4) photoproducts are preferentially repaired in the transcribed DNA strand. The dramatic influence of the impaired (6-4) photoproduct repair in V-H1 on UV-induced mutability and the molecular nature of hprt mutations indicate that the (6-4) photoproduct is the main UV-induced mutagenic lesion.  相似文献   

12.
The effects of short wave ultraviolet (UV)-induced DNA lesions on the catalytic activity of Drosophila melanogaster topoisomerase II were investigated. The presence of these photoproducts impaired the enzyme's ability to relax negatively supercoiled pBR322 plasmid molecules. As determined by DNA photolyase-catalyzed photoreactivation experiments, enzyme inhibition was due to the presence of cyclobutane pyrimidine dimers in the DNA. When 10-20 cyclobutane dimers were present per plasmid, the initial velocity of topoisomerase II-catalyzed DNA relaxation was inhibited approximately 50%. Decreased relaxation activity correlated with an inhibition of the DNA strand passage step of the enzyme's catalytic cycle. In contrast, UV-induced photoproducts did not alter the prestrand passage DNA cleavage/religation equilibrium of topoisomerase II either in the absence or presence of antineoplastic agents. Results of the present study demonstrate that the repair of cyclobutane pyrimidine dimers is important for the efficient catalytic function of topoisomerase II.  相似文献   

13.
Trichothiodystrophy is a genetic disease which in the majority of cases studied is associated with a deficiency in the ability to repair UV damage in cellular DNA. Three categories of UV response have been identified. In type 1 the response is completely normal, whereas type 2 cells are deficient in excision-repair, with properties indistinguishable from those of XP complementation group D. Type 3 cells have normal survival following UV-irradiation and normal rates of removal of cyclobutane pyrimidine dimer sites. Nevertheless repair synthesis is reduced by 50% in these cell strains and this is associated with a marked reduction in the repair of 6-4 photoproducts from cellular DNA. The present results show that 50% or more of repair synthesis at early times after irradiation of normal primary human fibroblasts is attributable to repair of 6-4 products. They also suggest that repair of cyclobutane dimers is crucial for cell survival.  相似文献   

14.
Ultraviolet light (UV light) induces helix distorting DNA lesions that pose a block to replicative DNA polymerases. Recovery from this replication arrest is reportedly impaired in nucleotide excision repair (NER)-deficient xeroderma pigmentosum (XP) fibroblasts and primary fibroblasts lacking functional p53. These independent observations suggested that the involvement of p53 in the recovery from UV-induced replication arrest was related to its role in regulating the global genomic subpathway of NER (GG-NER). Using primary human fibroblasts, we confirm that the recovery from UV-induced replication arrest is impaired in cells lacking functional p53 and in primary XP fibroblasts derived from complementation groups A or C (XP-A and XP-C) that are defective in GG-NER. Surprisingly, DNA synthesis recovered normally in GG-NER-deficient XP complementation group E (XP-E) cells that carry mutations in the p53 regulated DNA repair gene DDB2 and are specifically defective in the repair of cyclobutane pyrimidine dimers (CPD) but not pyrimidine (6-4) pyrimidone photoproducts. Disruption of p53 in these XP-E fibroblasts prevented the recovery from UV-induced replication arrest. Therefore, the roles of p53 and GG-NER in the recovery from UV-induced replication are separable and DDB2-independent. These results further indicate that primary human fibroblasts expressing functional p53 efficiently replicate DNA containing CPD whereas p53-deficient cells do not, consistent with a role for p53 in permitting translesion DNA synthesis of these DNA lesions.  相似文献   

15.
Snopov SA  Roza L  de Gruijl FR 《Tsitologiia》2006,48(11):958-966
Using immuno-labelling of cyclobutane pyrimidine dimers (CPDs) in nuclei of peripheral lymphocytes after their UVC-irradiation and cultivation, we have found that within the first four hours of cultivation the CPD-specific fluorescent signal from cell nuclei increased. Earlier, a similar increase in binding of antibody specific for pyrimidine (6-4) pyrimidone photoproducts to undenatured DNA isolated from UV-irradiated Chinese hamster ovary cells was reported (Mitchell et al., 1986). Our experiments showed that nucleotide excision repair enzyme might induce such of DNA modification in lymphocyte nuclei that increased specific antibody binding to DNA fragments with lesions. We suggest that enzymatic formation of open structures in DNA predominated qualitatively over dual-incision and excision of these fragments, and resulted in the enhanced exposure of the pyrimidine dimers in nuclei to specific antibodies. The results evidence that nucleotid excision repair in unstimualted human lymphocytes being deficient in dual incision and removal of UV-induced DNA lesions appear to be capable of performing chromatin relaxation and pre-incision uncoiling of DNA fragments with lesions.  相似文献   

16.
The initial step in mammalian nucleotide excision repair (NER) of the major UV-induced photoproducts, cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs), requires lesion recognition. It is believed that the heterodimeric proteins XPC/hHR23B and UV-DDB (UV-damaged DNA binding factor, composed of the p48 and p127 subunits) perform this function in genomic DNA, but their requirement and lesion specificity in vivo remains unknown. Using repair-deficient xeroderma pigmentosum (XP)-A cells that stably express photoproduct-specific photolyases, we determined the binding characteristics of p48 and XPC to either CPDs or 6-4PPs in vivo. p48 localized to UV-irradiated sites that contained either CPDs or 6-4PPs. However, XPC localized only to UV-irradiated sites that contained 6-4PPs, suggesting that XPC does not efficiently recognize CPDs in vivo. XPC did localize to CPDs when p48 was overexpressed in the same cell, signifying that p48 activates the recruitment of XPC to CPDs and may be the initial recognition factor in the NER pathway.  相似文献   

17.
We demonstrate the feasibility of using passive host-cell reactivation of a shuttle-vector pRSVcat to detect cloned DNA-repair genes. As models, a transient expression vector, pRSVdenV, and a positive-selection vector, pRSVdenV/SVgpt, were constructed containing the T4 coliphage denV gene, coding for an ultraviolet-specific endonuclease, under promotion of the Rous sarcoma virus (RSV) long-terminal repeat. Cotransfection of one or three copies of pRSVdenV per UV-irradiated pRSVcat molecule into xeroderma pigmentosum (XP) cells (XP12Ro[M1]) resulted in a dramatic increase in transient expression of chloramphenicol acetyl transferase (CAT) activity. XP clones stable transformed by pRSVdenV/SVgpt but not the parent cell line rescued CAT activity from this UV-irradiated reporter gene. The ability to express CAT activity from a UV-irradiated pRSVcat correlated with the presence of the structural denV gene as detected by Southern blot analysis. Post-UV irradiation colony-forming ability and DNA nucleotide excision-repair synthesis were partially restored in XP clones which rescued CAT activity. These results demonstrate the feasibility of using the cloned denV gene with its well characterized pyrimidine cyclobutane dimer-specific endonuclease activity to reconstitute UV-induced DNA repair in human cells deficient in DNA repair. Measuring CAT expression from pRSVcat affords a rapid, sensitive procedure to screen for functional cloned DNA-repair genes and to test mutant cells for defects in DNA repair.  相似文献   

18.
19.
Ultraviolet (UV) irradiation induces predominantly cyclobutane and (6-4) pyrimidine dimer photoproducts in DNA. Several mechanisms for repairing these mutagenic UV-induced DNA lesions have been identified. Nucleotide excision repair is a major pathway, but mechanisms involving photolyases and DNA glycosylases have also been characterized. Recently, a novel UV damage endonuclease (UVDE) was identified that initiates an excision repair pathway different from previously established repair mechanisms. Homologues of UVDE have been found in eukaryotes as well as in bacteria. In this report, we have used oligonucleotide substrates containing site-specific cyclobutane pyrimidine dimers and (6-4) photoproducts for the characterization of this UV damage repair pathway. After introduction of single-strand breaks at the 5' sides of the photolesions by UVDE, these intermediates became substrates for cleavage by flap endonucleases (FEN-1 proteins). FEN-1 homologues from humans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe all cleaved the UVDE-nicked substrates at similar positions 3' to the photolesions. T4 endonuclease V-incised DNA was processed in the same way. Both nicked and flapped DNA substrates with photolesions (the latter may be intermediates in DNA polymerase-catalyzed strand displacement synthesis) were cleaved by FEN-1. The data suggest that the two enzymatic activities, UVDE and FEN-1, are part of an alternative excision repair pathway for repair of UV photoproducts.  相似文献   

20.
H Yajima  M Takao  S Yasuhira  J H Zhao  C Ishii  H Inoue    A Yasui 《The EMBO journal》1995,14(10):2393-2399
Many eukaryotic organisms, including humans, remove ultraviolet (UV) damage from their genomes by the nucleotide excision repair pathway, which requires more than 10 separate protein factors. However, no nucleotide excision repair pathway has been found in the filamentous fungus Neurospora crassa. We have isolated a new eukaryotic DNA repair gene from N.crassa by its ability to complement UV-sensitive Escherichia coli cells. The gene is altered in a N.crassa mus-18 mutant and responsible for the exclusive sensitivity to UV of the mutant. Introduction of the wild-type mus-18 gene complements not only the mus-18 DNA repair defect of N.crassa, but also confers UV-resistance on various DNA repair-deficient mutants of Saccharomyces cerevisiae and a human xeroderma pigmentosum cell line. The cDNA encodes a protein of 74 kDa with no sequence similarity to other known repair enzymes. Recombinant mus-18 protein was purified from E.coli and found to be an endonuclease for UV-irradiated DNA. Both cyclobutane pyrimidine dimers and (6-4)photoproducts are cleaved at the sites immediately 5' to the damaged dipyrimidines in a magnesium-dependent, ATP-independent reaction. This mechanism, requiring a single polypeptide designated UV-induced dimer endonuclease for incision, is a substitute for the role of nucleotide excision repair of UV damage in N.crassa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号