首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell wall proteinase fraction of Streptococcus cremoris HP has been isolated. This preparation did not exhibit any activity due to either specific peptidases known to be located near the outside surface of and in the membrane or intracellular proteolytic enzymes. By using thin-layer chromatography for the detection of relatively small hydrolysis products which remain soluble at pH 4.6, it was shown that β-casein is preferentially attacked by the cell wall proteinase. This was also the case when whole casein or micelles were used as the substrate. κ-casein hydrolysis is a relatively slow process, and αs-casein degradation appeared to proceed at an extremely low rate. These results could be confirmed by using 14CH3-labeled caseins. A relatively fast and linear initial progress of 14CH3-labeled β-casein degradation is not inhibited by αs-casein and only slightly by κ-casein at concentrations of these components which reflect their stoichiometry in the micelles. Possible implications of β-casein degradation for growth of the organism in milk are discussed.  相似文献   

2.
Partially purified cell wall proteinases of eight strains of Streptococcus cremoris were compared in their action on bovine αs1-, β-, and κ-casein, as visualized by starch gel electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and thin-layer chromatography. Characteristic degradation profiles could be distinguished, from which the occurrence of two proteinases, represented by strain HP and strain AM1, was concluded. The action of the HP-type proteinase P1 (also detectable in strains Wg2, C13, and TR) was established by electrophoretic methods to be directed preferentially towards β-casein. The AM1-type proteinase PIII (also detectable in strain SK11) was also able to degrade β-casein, but at the same time split αs1- and κ-casein more extensively than did PI. Strain FD27 exhibited mainly PI activity but also detectable PIII degradation characteristics. The cell wall proteinase preparation of strain E8 showed low PI as well as low PIII activity. All proteinase preparations produced from κ-casein positively charged degradation products with electrophoretic mobilities similar to those of degradation products released by the action of the milk-clotting enzyme chymosin. The differences between PI and PIII in mode of action, as detected by gel electrophoresis and thin-layer chromatography, were reflected by the courses of the initial degradation of methyl-14C-labeled β-casein and by the effect of αs1- plus κ-casein on these degradations. The results are discussed in the light of previous comparative studies of cell wall proteinases in strains of S. cremoris and with respect to the growth of this organism in milk.  相似文献   

3.
1. Fractions have been obtained from human whole casein closely resembling the αs- and κ-fractions of cow casein. 2. The αs-fraction (human αs-casein) is calcium-sensitive, heterogeneous in zone analysis and inert towards rennin. 3. The κ-fraction (human κ-casein) is calcium-insensitive, heterogeneous in zone analysis, and forms a soluble glycopeptide when acted upon by rennin. 4. Human κ-casein stabilizes human αs-casein in the presence of Ca2+ ions. 5. The glycopeptides released by rennin from human casein and from cow casein have been compared. There are important differences in both the peptide and non-peptide structures of the two compounds. 6. In both human and bovine glycopeptides some of the carbohydrate residues are joined to the peptide by O-glycosidic links with threonine, and possibly with serine.  相似文献   

4.
Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that αs1-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of αs1-casein in rat mammary epithelial cells. Using metabolic labelling we show that αs1-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of αs1-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of αs1-casein. These experiments reveal that the insolubility of αs1-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of αs1-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells.  相似文献   

5.
A ruminant mammary cell culture that accurately reproduces mammary function in vitro would be a valuable tool in studies of ruminant lactation, With this in mind, we have examined milk protein synthesis and secretion, milk protein mRNA abundance, and hormonal responsiveness in primary cultures of mammary acini from lecturing sheep. α- and β-casein protein synthesis, β-lactoglobulin synthesis, and α-casein, β-casein, and β-lactoglobulin secretion are maintained at high levels for 8 h in culture, but then decline to approximately 25% of maximal rates between 8 and 24 h in culture, whereas synthesis of other proteins remains unaltered. The relative abundance of α-S1-casein, β-lactoglobulin, and α-lactalbumin mRNAs similarly decline between 8 and 24 h in culture. Extracellular labeled α-casein is increased fourfold in the presence of fetal calf serum (FCS). In total, FCS alters the abundance of 47 of 68 secreted proteins detected by two-dimensional electrophoresis. However, FCS and lactogenic/galactopoietic hormones had no effect on the rate of decline of mammary function and did not promote any regaining of function when present for up to 9 days in culture. These results suggest that providing its limitations are recognized, this primary cell culture system may be useful in studying some aspects of ruminant mammary function in vitro.  相似文献   

6.
During the ripening of Gouda-type cheese, two kinds of endopeptidases were found to participate in the degradation of αs1-CN(f1-23), a specific product from αs1-casein hydrolyzed by chymosin. One of the endopeptidases, lactic acid bacteria endopeptidase (LEP-II), which can recognize the size of its substrates, has already been purified and characterized (T. R. Yan, N. Azuma, S. Kaminogawa, and K. Yamauchi, Eur. J. Biochem. 163:259-265, 1987). The other endopeptidase, LEP-I, was purified to homogeneity by conventional chromatographic techniques from Streptococcus cremoris H61. The enzyme appeared to be monomeric, with an apparent molecular weight of 98,000, and its isoelectric point was 5.1. For the hydrolysis of αs1-CN(f1-23), the enzyme had an optimum pH and temperature of 7.0 to 7.5 and 40°C, respectively. Its activity was inhibited by such chelating agents as EDTA and 1,10-phenanthrolin, and it could be fully reactivated by Mn2+. Inhibitors specific for serine and thiol proteases had no effect on the protease activity. The enzyme showed a high affinity toward the Glu-Asn peptide bond of αs1-CN(f1-23) and αs1-CN(f91-100) but showed no hydrolysis activity toward αs1-CN(f1-52), αs1-CN(61-122), αs1-CN(136-196), αs1-casein, β-casein, κ-casein, α-lactalbumin, and β-lactoglobulin. The Km and Vmax of LEP-I for αs1-CN(f1-23) were 14.2 pM and 139 U, respectively.  相似文献   

7.
1. The whey proteins of guinea-pig milk were examined by electrophoresis on paper, cellulose acetate, starch gel and polyacrylamide gel. 2. Two major proteins were detected, one of which was identified as blood serum albumin. 3. The major whey protein was isolated by CM-cellulose chromatography and on columns of Sephadex G-100. 4. The amino acid composition of the protein, taken in conjunction with its other properties, indicated that the major whey protein in guinea-pig milk is homologous with cow α-lactalbumin and that β-lactoglobulin is absent from guinea-pig milk. 5. Guinea-pig α-lactalbumin, which was obtained crystalline, had mol.wt. 15800, N-terminal lysine and C-terminal glutamine.  相似文献   

8.
H. Bovenhuis  J. I. Weller 《Genetics》1994,137(1):267-280
Maximum likelihood methodology was used to estimate effects of both a marker gene and a linked quantitative trait locus (QTL) on quantitative traits in a segregating population. Two alleles were assumed for the QTL. In addition to the effects of genotypes at both loci on the mean of the quantitative trait, recombination frequency between the loci, frequency of the QTL alleles and the residual standard deviation were also estimated. Thus six parameters were estimated in addition to the marker genotype means. The statistical model was tested on simulated data, and used to estimate direct and linked effects of the milk protein genes, β-lactoglobulin, κcasein, and β-casein, on milk, fat, and protein production and fat and protein percent in the Dutch dairy cattle population. β-Lactoglobulin had significant direct effects on milk yield and fat percent. κ-Casein had significant direct effects on milk yield, protein percent and fat yield. β-Casein had significant direct effects on milk yield, fat and protein percent and fat and protein yield. Linked QTL with significant effects on fat percent were found for κ-casein and β-casein. Since the β-casein and κ-casein genes are closely linked, it is likely that the same QTL was detected for those two markers. Further, a QTL with a significant effect on fat yield was found to be linked to κ-casein and a QTL with a significant effect on protein yield was linked to β-lactoglobulin.  相似文献   

9.
Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40°C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes β-casein mainly and α- and κ-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from β-casein, which have been identified.  相似文献   

10.
The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3β-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains the increase in 2H/1H fractionation in the sterol 24-methyl-cholesta-5,24(28)-dien-3β-ol from marine centric diatom T. pseudonana chemostat cultures as growth rate increases. Insensitivity of αFA in those same cultures may be attributable to a larger fraction of hydrogen in fatty acids sourced from intracellular water at the expense of NADPH as growth rate increases. The high sensitivity of α to growth rate in E. huxleyi lipids and a T. pseudonana sterol implies that any change in growth rate larger than ~0.15 div d-1 can cause a change in δ2Hlipid that is larger than the analytical error of the measurement (~5‰), and needs to be considered when interpreting δ2Hlipid variations in sediments.  相似文献   

11.
Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions of Staphylococcus aureus, Pseudomonas fragi, Escherichia coli, Listeria monocytogenes, and Serratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. marcescens. P. fragi and E. coli attached in very small numbers to the clear surfaces, making the effect of any adsorbed protein layer difficult to assess. Individual milk proteins α-casein, β-casein, κ-casein, and α-lactalbumin were also found to reduce the adhesion of S. aureus and L. monocytogenes. The adhesion of bacteria to samples treated with milk dilutions up to 0.001% was investigated. X-ray photoelectron spectroscopy was used to determine the proportion of nitrogen in the adsorbed films. Attached bacterial numbers were inversely related to the relative atomic percentage of nitrogen on the surface. A comparison of two types of stainless steel surface, a 2B and a no. 8 mirror finish, indicated that the difference in these levels of surface roughness did not greatly affect bacterial attachment, and reduction in adhesion to a milk-treated surface was still observed. Cross-linking of adsorbed proteins partially reversed the inhibition of bacterial attachment, indicating that protein chain mobility and steric exclusion may be important in this phenomenon.  相似文献   

12.
Membrane-associated lipoxygenase from green tomato (Lycopersicon esculentum L. cv Caruso) fruit has been purified 49-fold to a specific activity of 8.3 μmol·min−1·mg−1 of protein by solubilization of microsomal membranes with Triton X-100, followed by anion- exchange and size-exclusion chromatography. The apparent molecular mass of the enzyme was estimated to be 97 and 102 kD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion chromatography, respectively. The purified membrane lipoxygenase preparation consisted of a single major band following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which cross-reacts with immunoserum raised against soluble soybean lipoxygenase 1. It has a pH optimum of 6.5, an apparent Km of 6.2 μm, and Vmax of 103. μmol·min−1·mg−1 of protein with linoleic acid as substrate. Corresponding values for the partially purified soluble lipoxygenase from tomato are 3.8 μm and 1.3 μmol·min−1·mg−1 of protein, respectively. Thus, the membrane-associated enzyme is kinetically distinguishable from its soluble counterpart. Sucrose density gradient fractionation of the isolated membranes indicated that the membrane-associated lipoxygenase sediments with thylakoids. A lipoxygenase band with a corresponding apparent mol wt of 97,000 was identified immunologically in sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved proteins of purified thylakoids prepared from intact chloroplasts isolated from tomato leaves and fruit.  相似文献   

13.
Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gsα. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gsα in the osteoblast lineage. Postnatal removal of Gsα in the osteoblast lineage (P-GsαOsxKO mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1–34) (80 μg/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-GsαOsxKO mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-GsαOsxKO mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gsα but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gsα in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gsα and Gq/11 act downstream of PTH on osteoblast differentiation.  相似文献   

14.
Glucoamylase and α-amylase are present in callus and suspension cultures of sugar beets (Beta vulgaris L.) as well as in mature roots. The subcellular localization of glucoamylase differed in callus and suspension-cultured cells: in callus, glucoamylase was present together with α-amylase in the soluble fraction of cells, but in suspension cultures, it was present predominantly in the extracellular fraction while most of the α-amylase activity remained in cells. Glucoamylase activity was considerably lower in callus protoplasts relative to the activities of α-mannosidase and α-galactosidase and the suspension of callus in Murashige-Skoog liquid medium or in mannitol by brief agitation resulted in the release of glucoamylase to the medium. These findings suggest that glucoamylase in callus may be present in a soluble form in the free space in the cell wall. Both mature roots and callus contained α-amylase and glucoamylase in the soluble fraction. Glucoamylases in the soluble fraction of callus and in the medium of suspension cultures were purified separately to homogeneity by the same four-step purification procedure, which included fractionation with ammonium sulfate, column chromatography on carboxymethyl cellulose, gel filtration on Bio-Gel P-150, and preparative disc electrophoresis. The identity of the glucoamylases from the two sources was confirmed by a comparison of chromatographic behavior during purification, mobility during gel electrophoresis, Mr (83,000 D by SDS PAGE), and enzymic and kinetic properties of the catalytic reaction, such as optimal pH and temperature, heat stability, and Km value for soluble starch. Glucoamylase from suspension cultures was one of the major proteins that were secreted into the medium. Dedifferentiation of leaves of young plants to callus was accompanied by induction of glucoamylase and repression of some α-amylases and the debranching enzyme.  相似文献   

15.
Streptomyces mobaraensis DSM 40847 secretes transglutaminase that cross-links proteins via γ-glutamyl-ε-lysine isopeptide bonds. Characterized substrates are inhibitory proteins acting against various serine, cysteine and metalloproteases. In the present study, the bacterial secretome was examined to uncover additional transglutaminase substrates. Fractional ethanol precipitation of the exported proteins at various times of culture growth, electrophoresis of the precipitated proteins, and sequencing of a 39 kDa protein by mass spectrometry revealed the novel beta-lactamase Sml-1. As indicated by biotinylated probes, Sml-1, produced in E. coli, exhibits glutamine and lysine residues accessible for transglutaminase. The chromogenic cephalosporin analogue, nitrocefin, was hydrolyzed by Sml-1 with low velocity. The obtained Km and kcat values of the recombinant enzyme were 94.3±1.8 μM and 0.39±0.03 s-1, respectively. Penicillin G and ampicillin proved to be weak inhibitors of nitrocefin hydrolysis (Ki of 0.1 mM and 0.18 mM). Negligible influence of metals on β-lactamase activity ruled out that Sml-1 is a Zn2+-dependent class B beta-lactamase. Rather, sequence motifs such as SITK, YSN, and HDG forming the active core in a hypothetical structure may be typical for class C beta-lactamases. Based on the results, we assume that the novel transglutaminase substrate ensures undisturbed growth of aerial hyphae in Streptomyces mobaraensis by trapping and inactivating hostile beta-lactam antibiotics.  相似文献   

16.
The lymphocyte stimulation test (LST) facilitates the diagnosis of non-IgE-mediated gastrointestinal food allergies (non-IgE-GI-FAs). However, LSTs require large volumes of blood and prolonged culture durations. Recently, we found that IL2RA mRNA expression in peripheral blood mononuclear cells (PBMCs) of patients with non-IgE-GI-FAs increased after a 24 h stimulation with milk proteins. We designated this gene expression test as the instant peripheral blood allergen stimulation test (iPAST). In this study, we investigated whether other activated T cell-associated genes are superior to IL2RA in the iPAST for the supplementary diagnosis of non-IgE-GI-FAs. After incubating PBMCs with milk proteins for 24 h, the mRNA levels of three genes, LRRC32, TNFRSF4, and CD69, were assessed using quantitative RT-PCR. The diagnostic significance of the mRNA expression was evaluated by analyzing the receiver operating characteristic (ROC) curve. Upon stimulation with α-casein, κ-casein, α-lactalbumin, or a mixture of four milk protein components (Pmix), LRRC32 expression in the PBMCs of 16 patients with non-IgE-GI-FAs was found to be higher than that in their 17 control counterparts, whereas TNFRSF4 and CD69 levels remained unaltered. Except for β-lactoglobulin and cow’s milk (CM), the area under the ROC curve (AUC) for LRRC32 mRNA expression upon stimulation was >0.7, which validated the diagnostic ability of this test. Notably, α-casein and Pmix had higher AUC scores of 0.820 and 0.842, respectively, than other antigens. iPAST assessed by LRRC32 as well as IL2RA may be useful for the supplementary diagnosis of non-IgE-GI-FAs as an alternative to LSTs and provide insight into the pathogenesis of non-IgE-GI-FAs.  相似文献   

17.
Acetogenic bacteria are able to grow autotrophically on hydrogen and carbon dioxide by using the acetyl coenzyme A (acetyl-CoA) pathway. Acetate is the end product of this reaction. In contrast to the fermentative route of acetate production, which shows almost no fractionation of carbon isotopes, the acetyl-CoA pathway has been reported to exhibit a preference for light carbon. In Acetobacterium woodii the isotope fractionation factor (ε) for 13C and 12C has previously been reported to be ε = −58.6‰. To investigate whether such a strong fractionation is a general feature of acetogenic bacteria, we measured the stable carbon isotope fractionation factor of 10 acetogenic strains grown on H2 and CO2. The average fractionation factor was εTIC = −57.2‰ for utilization of total inorganic carbon and εacetate = −54.6‰ for the production of acetate. The strongest fractionation was found for Sporomusa sphaeroidesTIC = −68.3‰), the lowest fractionation for Morella thermoaceticaTIC = −38.2‰). To investigate the reproducibility of our measurements, we determined the fractionation factor of 21 biological replicates of Thermoanaerobacter kivui. In general, our study confirmed the strong fractionation of stable carbon during chemolithotrophic acetate formation in acetogenic bacteria. However, the specific characteristics of the bacterial strain, as well as the cultural conditions, may have a moderate influence on the overall fractionation.  相似文献   

18.
The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-2183.54, Tyr-224IC2, Asp-3386.30, Arg-3406.32, Leu-3416.33, and Thr-3446.36, as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.  相似文献   

19.
This work evaluated the angiotensin-converting-enzyme (ACE)-inhibitory activities of a bovine sodium caseinate fermentate generated using the proteolytic capabilities of the porcine small intestinal isolate Lactobacillus animalis DPC6134 (NCIMB deposit 41355). The crude 10-kDa L. animalis DPC6134 fermentate exhibited ACE-inhibitory activity of 85.51% (±15%) and had a 50% inhibitory concentration (IC50) of 0.8 mg protein/ml compared to captopril, which had an IC50 value of 0.005 mg/ml. Fractionation of the crude L. animalis DPC6134 fermentate by membrane filtration and reversed-phase high-performance liquid chromatography (HPLC) generated three bioactive fractions from a total of 72 fractions. Fractions 10, 19, and 43 displayed ACE-inhibitory activity percentages of 67.53 (±15), 83.71 (±19), and 42.36 (±11), respectively, where ACE inhibition was determined with 80 μl of the fractions with protein concentrations of 0.5 mg/ml. HPLC and mass spectrometry analysis identified 25 distinct peptide sequences derived from α-, β-, and κ-caseins. In silico predictions, based on the C-terminal tetrapeptide sequences, suggested that peptide NIPPLTQTPVVVPPFIQ, corresponding to β-casein f(73-89); peptide IGSENSEKTTMP, corresponding to αs1-casein f(201212); peptide SQSKVLPVPQ, corresponding to β-casein f(166-175); peptide MPFPKYPVEP, corresponding to β-casein f(124133); and peptide EPVLGPVRGPFP, corresponding to β-casein f(210-221), contained ACE-inhibitory activities. These peptides were chosen for chemical synthesis to confirm the ACE-inhibitory activity of the fractions. Chemically synthesized peptides displayed IC50 values in the range of 92 μM to 790 μM. Additionally, a simulated gastrointestinal digestion confirmed that the ACE-inhibitory 10-kDa L. animalis DPC6134 fermentation was resistant to a cocktail of digestive enzymes found in the gastrointestinal tract.  相似文献   

20.
Pten is a tumor suppressor gene regulating many cellular processes, including growth, adhesion, and apoptosis. In the aim of investigating the role of Pten during mammary gland development and lactation of dairy cows, we analyzed Pten expression levels in the mammary glands of dairy cows by using western blotting, immunohistochemistry, and quantitative polymerase chain reaction (qPCR) assays. Dairy cow mammary epithelial cells (DCMECs) were used to study the function of Pten in vitro. We determined concentrations of β-casein, triglyceride, and lactose in the culture medium following Pten overexpression and siRNA inhibition. To determine whether Pten affected DCMEC viability and proliferation, cells were analyzed by CASY-TT and flow cytometry. Genes involved in lactation-related signaling pathways were detected. Pten expression was also assessed by adding prolactin and glucose to cell cultures. When Pten was overexpressed, proliferation of DCMECs and concentrations for β-casein, triglyceride, and lactose were significantly decreased. Overexpression of Pten down-regulated expression of MAPK, CYCLIN D1, AKT, MTOR, S6K1, STAT5, SREBP1, PPARγ, PRLR, and GLUT1, but up-regulated 4EBP1 in DCMECs. The Pten siRNA inhibition experiments revealed results that opposed those from the gene overexpression experiments. Introduction of prolactin (PRL) increased secretion of β-casein, triglyceride, and lactose, but decreased Pten expression levels. Introduction of glucose also increased β-casein and triglyceride concentrations, but did not significantly alter Pten expression levels. The Pten mRNA and protein expression levels were decreased 0.3- and 0.4-fold in mammary glands of lactating cows producing high quality milk (milk protein >3.0%, milk fat >3.5%), compared with those cows producing low quality milk (milk protein <3.0%, milk fat <3.5%). In conclusion, Pten functions as an inhibitor during mammary gland development and lactation in dairy cows. It can down-regulate DCMECs secretion of β-casein, triglyceride, and lactose, and plays a critical role in lactation related signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号