首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
It has been frequently reported that gp96 acts as a strong biologic adjuvant. Some studies have even investigated adjuvant activity of the gp96 C- or N-terminal domain. The controversy surrounding adjuvant activity of gp96 terminal domains prompted us to compare adjuvant activity of gp96 C- or N-terminal domain toward Her2/neu, as DNA vaccine in a Her2/neu-positive breast cancer model. To do so, mice were immunized with DNA vaccine consisting of transmembrane and extracellular domain (TM + ECD) of rat Her2/neu alone or fused to N- or C-terminal domain of gp96. Treatment with Her2/neu fused to N-terminal domain of gp96 resulted in tumor progression, compared to the groups vaccinated with pCT/Her2 or pHer2. Immunological examination revealed that treatment with Her2/neu fused to N-terminal domain of gp96 led to significantly lower survival rates, higher interferon-γ secretion, and induced infiltration of CD4+/CD8+ cells to the tumor site. However, it could not induce cytotoxic T lymphocyte activity, did not decrease regulatory T cell percentage at the tumor site, and eventually led to tumor progression. Our results reveal that gp96 N-terminal domain does not have adjuvant activity toward Her2/neu. It is also proposed that adjuvant activity and the resultant immune response of gp96 terminal domains may be directed by the antigen applied.  相似文献   

2.
DNA vaccines consisted of tumor-associated antigen (TAA) are well suited for immunotherapy against tumor. The construct can contain TAA fused to an appropriate molecule (biologic adjuvant) to improve the efficacy of anti-tumor immune response. Heat shock protein 70 (HSP70) has been shown to be an excellent candidate, capable of cross-priming TAA by antigen presenting cells leading to a robust T-cell response. However, the relationship between strong T-cell responses and tumor rejection is not always mutually exclusive, for which TAA loss or activation of suppressive mechanisms may occur. HSP70 fused to downstream of Her2/neu as DNA vaccine has been shown to be efficient against Her2-expressing tumors. In this study, we examined if N-terminally fusion of Her2/neu to HSP70 could also improve efficiency of Her2/neu DNA vaccine. Therefore, mice with an established Her2/neu expressing tumor were immunized with DNA vaccine consisting of extracellular and trans-membrane domain (EC+TM) of rat Her2/neu alone or N-terminally fused to HSP70 and immune response was evaluated. Administration of rat Her2/neu led to partial control of tumor progression. Surprisingly, fusion of HSP70 to N-terminal of rat Her2/neu led to tumor progression. Our result proposes that fusion direction of biologic adjuvant is an important consideration when Her2/neu is used.  相似文献   

3.
The Her2 is one of tumor-associated antigens (TAA), regarded as an ideal target of immunotherapy. DNA encoding full-length or truncated rat Her2/neu have shown protective and therapeutics potentials against Her2/neu-expressing mammary tumors. However, the efficacy of active vaccination is limited since Her2 is a self-tolerated antigen. Hence, new strategies are required to enhance both the quality and quantity of the immune response against Her2-expressing tumors. Many studies have used Her2/neu gene with cytokine or other molecules involved in regulation of immune response to enhance the potency of Her2/neu DNA vaccines. Some studies fused adjuvant gene to C-terminal domain of Her2/neu gene, while others fused the adjuvant gene N-terminally to Her2/neu gene, but no comparison on how direction of fusion could affect efficiency of DNA vaccine has ever been made. Based on previous reports demonstrating potent adjuvant activity of gp96 C-terminal domain, we chose it as adjuvant. The aim of this study was to investigate if direction of fusion could affect adjuvant activity of gp96 C-terminal domain or potency of Her2/neu DNA vaccination. To do so, we fused C-terminal domain of gp96 to downstream or C-terminal end of transmembrane and extracellular domain (TM+ECD) of rat Her2/neu and resultant immune response to DNA vaccination was evaluated. The results were compared with that of N-terminally fusion of gp96 C-terminal domain to TM+ECD of rat Her2/neu. Our results revealed that adjuvant activity of gp96 C-terminal domain is enhanced when fused N-terminally to TM+ECD of rat Her2/neu. It suggests that adjuvant activity of gp96 C-terminal domain towards Her2/neu is fusion direction-dependent.  相似文献   

4.
One immunization with murine polyomavirus (MPyV) VP1 virus-like particles containing a fusion protein between MPyV VP2 and the extra cellular and transmembrane domain of Her2 (Her21–683PyVLPs) efficiently protects BALB/c mice from outgrowth of the Her2 expressing tumor D2F2/E2. To possibly enhance the anti-Her2 immune response and abrogate the induced anti-VLP antibody response, immunization with murine dendritic cells (DCs) loaded with Her21–683PyVLPs was performed. Mice were immunized once or more with 5 or 50 μg Her21–683PyVLPs alone or loaded on DCs, and challenged 14 days after the last immunization with a lethal dose of Her2-positive D2F2/E2 cells. Mice were protected from tumor outgrowth, when immunized only once with 5 or 50 μg Her21–683PyVLPs loaded on DCs, or 50 μg of Her21–683PyVLPs alone, whereas immunization once or more with 5 μg of Her21–683PyVLPs alone only protected half of the mice. Immunization with recombinant Her2 protein alone, or loaded on DCs, did not induce tumor immunity. Using both immunization strategies, Her2-specific T cell immunity was demonstrated, while Her2-specific antibodies were not detected. Loading VLPs on DCs reduced anti-VLP antibodies sixfold, but did not influence the efficiency of subsequent immunizations. Notably, DC maturation by Her21–683PyVLPs in vitro was not demonstrated although the IL-12 production was significantly increased. In conclusion, loading of VLPs on DCs can enhance specific VLP immunization considerably.  相似文献   

5.
Patients with antiphospholipid syndrome (APS) suffer recurrent thromboses, thrombocytopenia, and/or fetal loss in association with Abs that can be detected in phospholipid-dependent assays. Despite the name, the Igs associated with APS are predominantly directed against epitopes on phospholipid-binding plasma proteins, such as beta 2-glycoprotein-1 (beta 2GP1) and prothrombin. The aim of this study was to examine the cellular immune response to beta 2GP1 in patients with APS. Using a serum-free stimulation assay, PBMCs from 8 of 18 patients with APS proliferated to purified beta 2GP1 or to the beta 2GP1 present in serum, whereas no stimulation was observed by PBMCs from healthy individuals, patients with other autoimmune diseases, or anticardiolipin Ab-positive patients without histories of thromboses or fetal loss. The immune response was Ag-specific, requiring class II molecules, CD4+ T cells, and APCs, and was associated with a selective expansion of CD4+ but not CD8+ T cells. The proliferating T cells produced IFN-gamma but not IL-4, indicating a bias toward a type 1 immune response. Chronic low grade stimulation of autoreactive beta 2GP1-specific, IFN-gamma-producing Th1 CD4+ T cells may contribute to the high risk of thromboses and pregnancy failure in patients with APS.  相似文献   

6.
《MABS-AUSTIN》2013,5(5):614-622
Background: The trifunctional antibody ertumaxomab bivalently targets the human epidermal growth factor receptor 2 (Her2) on epithelial (tumor) cells and the T cell specific CD3 antigen, and its Fc region is selectively recognized by Fcγ type I/III receptor-positive immune cells. As a trifunctional immunoglobulin, ertumaxomab therefore not only targets Her2 on cancer cells, but also triggers immunological effector mechanisms mediated by T and accessory cells (e.g., macrophages, dendritic cells, natural killer cells). Whether molecular effects, however, might contribute to the cellular antitumor efficiency of ertumaxomab are largely unknown.

Methods: Potential molecular effects of ertumaxomab on Her2-overexpressing BT474 and SK-BR-3 breast cancer cells were evaluated. The dissociation constant Kd of ertumaxomab was calculated from titration curves that were recorded by flow cytometry. Treatment-induced changes in Her2 homodimerization were determined by flow cytometric fluorescence resonance energy transfer measurements on a cell-by-cell basis. Potential activation / deactivation of Her2, ERK1/2, AKT and STAT3 were analyzed by western blotting, Immunochemistry and immunofluorescent cell staining.

Results: The Kd of ertumaxomab for Her2-binding was determined at 265 nM and the ertumaxomab binding epitope was found to not overlap with that of the therapeutic anti-Her2 monoclonal antibodies trastuzumab and pertuzumab. Ertumaxomab caused an increase in Her2 phosphorylation at higher antibody concentrations, but changed neither the rate of Her2-homodimerization /-phosphorylation nor the activation state of key downstream signaling proteins analyzed.

Conclusions: The unique mode of action of ertumaxomab, which relies more on activation of immune-mediated mechanisms against tumor cells compared with currently available therapeutic antibodies for breast cancer treatment, suggests that modular or sequential treatment with the trifunctional bivalent antibody might complement the therapeutic activity of other anti-Her2/anti-ErbB receptor reagents.  相似文献   

7.
Background: The trifunctional antibody ertumaxomab bivalently targets the human epidermal growth factor receptor 2 (Her2) on epithelial (tumor) cells and the T cell specific CD3 antigen, and its Fc region is selectively recognized by Fcγ type I/III receptor-positive immune cells. As a trifunctional immunoglobulin, ertumaxomab therefore not only targets Her2 on cancer cells, but also triggers immunological effector mechanisms mediated by T and accessory cells (e.g., macrophages, dendritic cells, natural killer cells). Whether molecular effects, however, might contribute to the cellular antitumor efficiency of ertumaxomab are largely unknown. Methods: Potential molecular effects of ertumaxomab on Her2-overexpressing BT474 and SK-BR-3 breast cancer cells were evaluated. The dissociation constant Kd of ertumaxomab was calculated from titration curves that were recorded by flow cytometry. Treatment-induced changes in Her2 homodimerization were determined by flow cytometric fluorescence resonance energy transfer measurements on a cell-by-cell basis. Potential activation / deactivation of Her2, ERK1/2, AKT and STAT3 were analyzed by western blotting, Immunochemistry and immunofluorescent cell staining.Results: The Kd of ertumaxomab for Her2-binding was determined at 265 nM and the ertumaxomab binding epitope was found to not overlap with that of the therapeutic anti-Her2 monoclonal antibodies trastuzumab and pertuzumab. Ertumaxomab caused an increase in Her2 phosphorylation at higher antibody concentrations, but changed neither the rate of Her2-homodimerization /-phosphorylation nor the activation state of key downstream signaling proteins analyzed.Conclusions: The unique mode of action of ertumaxomab, which relies more on activation of immune-mediated mechanisms against tumor cells compared with currently available therapeutic antibodies for breast cancer treatment, suggests that modular or sequential treatment with the trifunctional bivalent antibody might complement the therapeutic activity of other anti-Her2/anti-ErbB receptor reagents.  相似文献   

8.
Central tolerance to tumor-associated Ags is an immune-escape mechanism that significantly limits the TCR repertoires available for tumor eradication. The repertoires expanded in wild-type BALB/c and rat-HER-2/neu (rHER-2) transgenic BALB-neuT mice following DNA immunization against rHER-2 were compared by spectratyping the variable (V)beta and the joining (J)beta CDR 3. Following immunization, BALB/c mice raised a strong response. Every mouse used one or more CD8+ T cell rearrangements of the Vbeta9-Jbeta1.2 segments characterized by distinct length of the CDR3 and specific for 63-71 or 1206-1214 rHER-2 peptides. In addition, two CD4+ T cell rearrangements recurred in >50% of mice. Instead, BALB-neuT mice displayed a limited response to rHER-2. Their repertoire is smaller and uses different rearrangements confined to CD4+ T cells. Thus, central tolerance in BALB-neuT mice acts by silencing the BALB/c mice self-reactive repertoire and reducing the size of the CD8+ T cell component. CD8+ and CD4+ T cells from both wild-type and transgenic mice home to tumors. This definition of the T cell repertoires available is critical to the designing of immunological maneuvers able to elicit an effective immune reaction against HER-2-driven carcinogenesis.  相似文献   

9.
Helper CD4+ T lymphocytes can be divided into two subsets, Th1 and Th2. The types of Th subsets activated during the adaptive immune response inductiondetermine the efficacy of immune responses against thee antigens introduced. Selective differentiation of subsets of CD4+ T lymphocytes has been known to be influenced by several factors, such as the cytokine environment around the T cells, the specificity of antigen recognition bythe T cell receptor, the expression of costimulatory molecules, and/ or the dose of the antigen applied to stimulate the T cells. In this study, we tried to determine the influence of the antigen dose on the selective priming of T lymphocytes when an inefficient antigen was applied since all the conclusions drawn from previous experiments were based on experiments with immune systems which responded well against the antigens introduced. When the recombinant hen egg-white lysozyme (HEL) was used too stimulate immune responses in HEL low-responder C57B3L/6 mice, dose-dependent selective priming of immune responses was not observed. However, when the variant antigen, which had been characterized as an efficientantigen in anti-HEL immune response induction in the low-responder mice, was applied, dose-dependent selective priming of Th immune responses was clearly demonstrated. These results suggested that dose-dependent selective priming of Th immune responses could be achieved only by the antigens with an affinity over a certain level.  相似文献   

10.
Prostatic acid phosphatase (PAP) is a prostate cancer tumor antigen and a prostate-specific protein shared by rats and humans. Previous studies indicated that Copenhagen rats immunized with a recombinant vaccinia virus expressing human PAP (hPAP) developed PAP-specific cytotoxic T cells (CTL) with cross reactivity to rat PAP (rPAP) and evidence of prostate inflammation. Viral delivery of vaccine antigens is an active area of clinical investigation. However, a potential difficulty with viral-based immunizations is that immune responses elicited to the viral vector might limit the possibility of multiple immunizations. In this paper, we investigate the ability of another genetic immunization method, a DNA vaccine encoding PAP, to elicit antigen-specific CD8+ T cell immune responses. Specifically, Lewis rats were immunized with either a plasmid DNA-based (pTVG-HP) or vaccinia-based (VV-HP) vaccine each encoding hPAP. We determined that rats immunized with a DNA vaccine encoding hPAP developed a Th1-biased immune response as indicated by proliferating PAP-specific CD4+ and CD8+ cells and IFNγ production. Rats immunized with vaccinia virus encoding PAP did not develop a PAP-specific response unless boosted with a heterologous vaccination scheme. Most importantly, multiple immunizations with a DNA vaccine encoding the rat PAP homologue (pTVG-RP) could overcome peripheral self-tolerance against rPAP and generate a Th1-biased antigen-specific CD4+ and CD8+ T cell response. Overall, DNA vaccines provide a safe and effective method of generating prostate antigen-specific T cell responses. These findings support the investigation of PAP-specific DNA vaccines in human clinical trials.  相似文献   

11.
Interaction of the B7 molecule on antigen-presenting cells with its receptors CD28 and CTLA-4 on T cells provides costimulatory signals for T cell activation. We have studied the effects of B7 on antitumor immunity to a murine melanoma that expresses a rejection antigen associated with the E7 gene product of human papillomavirus 16. While this E7+ tumor grows progressively in immunocompetent hosts, cotransfection of its cells with B7 led to tumor regression by a B7-dependent immune response mediated by CD8+ cytolytic T lymphocytes. The immune response induced by E7+B7+ tumor cells also caused regression of E7+B7- tumors at distant sites and was curative for established E7+B7- micrometastases. Our findings suggest that increasing T cell costimulation through the CD28 and CTLA-4 receptors may have therapeutic usefulness for generating immunity against tumors expressing viral antigens.  相似文献   

12.
Direct vaccination with mRNA encoding tumor antigens is a novel and promising approach in cancer immunotherapy. CureVac's mRNA vaccines contain free and protamine-complexed mRNA. Such two-component mRNA vaccines support both antigen expression and immune stimulation. These self-adjuvanting RNA vaccines, administered intradermally without any additional adjuvant, induce a comprehensive balanced immune response, comprising antigen specific CD4+ T cells, CD8+ T cells and B cells. The balanced immune response results in a strong anti-tumor effect and complete protection against antigen positive tumor cells. This tumor inhibition elicited by mRNA vaccines is a result of the concerted action of different players. After just two intradermal vaccinations, we observe multiple changes at the tumor site, including the up-regulation of many genes connected to T and natural killer cell activation, as well as genes responsible for improved infiltration of immune cells into the tumor via chemotaxis. The two-component mRNA vaccines induce a very fast and boostable immune response. Therefore, the vaccination schedules can be adjusted to suit the clinical situation. Moreover, by combining the mRNA vaccines with therapies in clinical use (chemotherapy or anti-CTLA-4 antibody therapy), an even more effective anti-tumor response can be elicited. The first clinical data obtained from two separate Phase I/IIa trials conducted in PCA (prostate cancer) and NSCLC (non-small cell lung carcinoma) patients have shown that the two-component mRNA vaccines are safe, well tolerated and highly immunogenic in humans.  相似文献   

13.
While most immunotherapies for cancer have focused on eliciting specific CD8+ cytotoxic T lymphocyte killing of tumor cells, a mounting body of evidence suggests that stimulation of anti-tumor CD4+ T cell help may be required for highly effective therapy. Several MHC class II-restricted tumor antigens that specifically activate such CD4+ helper T lymphocytes have now been identified, including one from a melanoma tumor that is caused by a single base-pair mutation in the glycolytic enzyme triosephosphate isomerase. This mutation results in the conversion of a threonine residue to isoleucine within the antigenic epitope, concomitant with a greater than five log-fold increase in stimulation of a CD4+ tumor-infiltrating lymphocyte line. Here, we present the crystal structures of HLA-DR1 in complex with both wild-type and mutant TPI peptide antigens, the first structures of tumor peptide antigen/MHC class II complexes recognized by CD4+ T cells to be reported. These structures show that very minor changes in the binding surface for T cell receptor correspond to the dramatic differences in T cell stimulation. Defining the structural basis by which CD4+ T cell help is invoked in an anti-tumor immune response will likely aid the design of more effective cancer immunotherapies.  相似文献   

14.
Cellular mechanisms of immune response to type 2 T-independent antigens (TI-2 antigens) are not fully elucidated up till now. In vitro system is the most convenient model for such studies. However, in vitro model requires relatively high cell density in the cultures. It hampers the study of minor lymphocyte subsets like CD5+ B-1 splenocytes, which play the main role in the immune response to TI-2 antigens. The use of cell mixtures of normal and immunodeficient congenic animals may help to resolve this problem. In this work, immune responses to TI-antigens of type 1 (TI-1 antigens) and to TI-2 antigens in vitro were studied in the mixtures of cells of normal (CBA) and congenic xid-mice (CBA/N). CBA/N mice lack CD5+ B-1 cells and do not respond to TI-2 antigens. Therefore, their splenocytes can be used as “filler” cells to create the optimal cell density in the cell cultures. Spleen and peritoneal cells of CBA mice and B-1 and B-2 lymphocytes isolated from peritoneum and spleen, respectively, were cultured in different proportions with CBA/N splenocytes with or without antigens. LPS and polyvinylpyrrolidone (PVP) were used as TI-1 and TI-2-antigens, respectively. Antibody- and immunoglobulin-forming cells (AFC and IFC, respectively) were determined by the ELISPOT method on the 4th day of cultivation. It was shown that CBA and CBA/N cells in mixed cell cultures retained their functional activity. Splenocytes of CBA mice responded to both TI-antigens. Splenocytes of CBA/N mice responded to TI-1 antigen (LPS) only. It means that in vitro B-1 cells play the main role in the immune response to TI-2 antigens, as they do in vivo. Thus, the developed model system can be used to study cellular mechanisms of immune response to TI-1 and TI-2 antigens in vitro.  相似文献   

15.
Induction of effective immune attack on cancer cells in patients requires conversion of weak tumor antigens into strong immunogens. Our strategy employs genetic technology to create DNA vaccines containing tumor antigen sequences fused to microbial genes. The fused microbial protein engages local CD4+ T cells to provide help for anti-tumor immunity, and to reverse potential regulation. In this review, we focus on induction of CD8+ T cells able to kill target tumor cells. The DNA vaccines incorporate tumor-derived peptide sequences fused to an engineered domain of tetanus toxin. In multiple models, this design induces strong CD8+ T-cell responses, able to suppress tumor growth. For clinical relevance, we have used “humanized” mice expressing HLA-A2, successfully inducing cytolytic T-cell responses against a range of candidate human peptides. To overcome physical restriction in translating to patients, we have used electroporation. Clinical trials of patients with cancer are showing induction of responses, with preliminary indications of suppression of tumor growth and evidence for clinically manageable concomitant autoimmunity.  相似文献   

16.

Background

Immunization with murine pneumotropic virus virus-like particles carrying Her2/neu (Her2MPtVLPs) prevents tumour outgrowth in mice when given prophylactically, and therapeutically if combined with the adjuvant CpG. We investigated which components of the immune system are involved in tumour rejection, and whether long-term immunological memory can be obtained.

Methodology and Results

During the effector phase in BALB/c mice, only depletion of CD4+ and CD8+ in combination, with or without NK cells, completely abrogated tumour protection. Depletion of single CD4+, CD8+ or NK cell populations only had minor effects. During the immunization/induction phase, combined depletion of CD4+ and CD8+ cells abolished protection, while depletion of each individual subset had no or negligible effect. When tumour rejection was studied in knock-out mice with a C57Bl/6 background, protection was lost in CD4−/−CD8−/− and CD4−/−, but not in CD8−/− mice. In contrast, when normal C57Bl/6 mice were depleted of different cell types, protection was lost irrespective of whether only CD4+, only CD8+, or CD4+ and CD8+ cells in combination were eradicated. No anti-Her2/neu antibodies were detected but a Her2/neu-specific IFNγ response was seen. Studies of long-term memory showed that BALB/c mice could be protected against tumour development when immunized together with CpG as long as ten weeks before challenge.

Conclusion

Her2MPtVLP immunization is efficient in stimulating several compartments of the immune system, and induces an efficient immune response including long-term memory. In addition, when depleting mice of isolated cellular compartments, tumour protection is not as efficiently abolished as when depleting several immune compartments together.  相似文献   

17.
The central role of CD4+ T lymphocytes in mediating DNA vaccine-induced tumor immunity against the viral oncoprotein simian virus 40 (SV40) large tumor antigen (Tag) has previously been described by our laboratory. In the present study, we extend our previous findings by examining the roles of IFN-γ and Th1-associated effector cells within the context of DNA immunization in a murine model of pulmonary metastasis. Immunization of BALB/c mice with plasmid DNA encoding SV40 Tag (pCMV-Tag) generated IFN-γ-secreting T lymphocytes that produced this cytokine upon in vitro stimulation with mKSA tumor cells. The role of IFN-γ as a mediator of protection against mKSA tumor development was assessed via in vivo IFN-γ neutralization, and these experiments demonstrated a requirement for this cytokine in the induction immune phase. Neutralization of IFN-γ was associated with a reduction in Th1 cytokine-producing CD4+ and CD8+ splenocytes, as assessed by flow cytometry analysis, and provided further evidence for the role of CD4+ T lymphocytes as drivers of the cellular immune response. Depletion of NK cells and CD8+ T lymphocytes demonstrated the expendability of these cell types individually, but showed a requirement for a resident cytotoxic cell population within the immune effector phase. Our findings demonstrate the importance of IFN-γ in the induction of protective immunity stimulated by pCMV-Tag DNA-based vaccine and help to clarify the general mechanisms by which DNA vaccines trigger immunity to tumor cells.  相似文献   

18.
Regulation of immune response is marked by complex interactions among the cells that recognize and present antigens. Antigen presenting cells (APCs), the antigen presenting cell component of the innate immune response plays an important role in effector CD4+ T cell response. Thermal injury and/or superimposed sepsis in rats' leads to suppressed CD4+ T cell functions. We investigated modulations of CD4+ T cell function by APCs (purified non-T cells) from thermally injured and/or septic rats. Rats were subjected to 30% total body surface area scald burn or exposed to 37 degrees C water (Sham burn) and sepsis was induced by cecal-ligation and puncture (CLP) method. At day 3 post-injury animals were sacrificed and CD4+ T cells and APCs from mesenteric lymph nodes (MLN) were obtained using magnetic microbead isolation procedure. APCs from injured rats were co-cultured with sham rat MLN CD4+ T cells and proliferative responses (thymidine incorporation), phenotypic changes (Flow cytometry), IL-2 production (ELISA) and CTLA-4 mRNA (RT-PCR) were determined in naive rat CD4+ T cells. The data indicate that APCs from thermally injured and/or septic rats when co-cultured with CD4+ T cells suppressed CD4+ T cell effector functions. This lack of CD4+ T cell activation was accompanied with altered co-stimulatory molecules, i.e., CD28 and/or CTLA-4 (CD152). In conclusion, our studies indicated that defective APCs from thermally injured and/or septic rats modulate CD4+ T cell functions via changes in co-stimulatory molecules expressed on naive CD4+ T cells. This altered APC: CD4+ T cell interaction leads to suppressed CD4+ T cell activation of healthy animals.  相似文献   

19.
DNA delivery of tumor antigens can activate specific immune attack on cancer cells. However, antigens may be weak, and immune capacity can be compromised. Fusion of genes encoding activating sequences to the tumor antigen sequence facilitates promotion and manipulation of effector pathways. Idiotypic determinants of B-cell tumors, encoded by the variable region genes, are clone-specific tumor antigens. When assembled as single-chain Fv (scFv) alone in a DNA vaccine, immunogenicity is low. Previously, we found that fusion of a sequence from tetanus toxin (fragment C; FrC) promoted anti-idiotypic protection against lymphoma and myeloma. We have now investigated an alternative fusion gene derived from a plant virus, potato virus X coat protein, a primary antigen in humans. When fused to scFv, the self-aggregating protein generates protection against lymphoma and myeloma. In contrast to scFv-FrC, protection against lymphoma is mediated by CD4+ T cells, as is protection against myeloma. Plant viral proteins offer new opportunities to activate immunity against linked T-cell epitopes to attack cancer.  相似文献   

20.
Aged C57BL/6 (B6) mice could reject allogeneic BALB/c RL male 1 tumor as efficiently as young B6 mice. However, in vitro analysis showed impaired generation of cytotoxic T cell response in aged B6 mice against allogeneic tumor. The reaction could be augmented by the addition of recombinant interleukin-2 (rIL-2). Enzyme-linked immunospots (ELISPOT) produced by CD8+ T cells purified from spleen cells showed no reduction in aged mice. The findings suggested that the number of CD8+ T cells capable of reacting against allogeneic H-2 antigens was similar in young and aged B6 mice. Low cytotoxic T lymphocyte (CTL) responsiveness in aged B6 mice appeared to have resulted from low responsiveness of CD4+ T cells producing IL-2. Although CTL generation was apparently impaired, strong multiple antigenicity of allogeneic tumor evoked a rejection response in aged B6 mice. On the other hand, no rejection response was observed against syngeneic EL4 tumor in aged B6 mice even after depletion of CD4+ CD25+ immunoregulatory cells. Depletion of CD4+ CD25+ cells caused rejection of EL4 tumor in young B6 mice. The findings suggested that aged B6 mice were incapable of inducing effector cells against weak tumor antigens. Only marginal CTL response and small number of ELISPOTs were generated in young but not aged B6 mice against EL4. Addition of rIL-2 to the culture augmented EL4 killing and ELISPOTs in spleen cells from young and aged B6 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号