首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A1 adenosine receptors in coated vesicles have been characterized by radioligand binding and photoaffinity labelling. Saturation experiments with the antagonist 8-cyclopentyl-1,3-[3H]dipropyl-xanthine ([3H]DPCPX) gave a Kd value of 0.7 nM and a Bmax value of 82 ± 13 fmol/mg protein. For the highly A1-selective agonist 2-chloro-N6-[3H]cyclopentyladenosine ([3H]CCPA) a Kd value of 1.7 nM and a Bmax value of 72 ± 29 fmol/mg protein was estimated. Competition of agonists for [3H]DPCPX binding gave a pharmacological profile with R-N6-phenylisopropyladenosine (R-PIA) > CCPA > S-PIA > 5′-N-ethylcarboxamido-adenosine (NECA), which is identical to brain membranes. The competition curves were best fitted according to a two-site model, suggesting the existence of two affinity states. GTP shifted the competition curve for CCPA to the right and only one affinity state similar to the low affinity state in the absence of GTP was detected. The photoreactive agonist 2-azido-N6-125I-p-hydroxyphenylisopropyladenosine ([125I]AHPIA) specifically labelled a single protein with an apparent molecular weight of 35,000 in coated vesicles, which is identical to A1 receptors labelled in brain membranes. Therefore, coated vesicles contain A1 adenosine receptors with similar binding characteristics as membrane-bound receptors, including GTP-sensitive high-affinity agonist binding. Photoaffinity labelling data suggest that A1 receptors in these vesicles are not a processed receptor form. These results confirm that A1 receptors in coated vesicles are coupled to a G-protein, and it appears that the A1 receptor systems in coated vesicles and in plasma membranes are identical.  相似文献   

2.
Abstract: Adenosine deaminase is an enzyme of purine metabolism that has largely been considered to be cytosolic. A few years ago, adenosine deaminase was reported to appear on the surface of cells. Recently, it has been demonstrated that adenosine deaminase interacts with a type II membrane protein known as either CD26 or dipeptidylpeptidase IV. In this study, by immunoprecipitation and affinity chromatography it is shown that adenosine deaminase and A1 adenosine receptors interact in pig brain cortical membranes. This is the first report in brain demonstrating an interaction between a degradative ectoenzyme and the receptor whose ligand is the enzyme substrate. By means of this interaction adenosine deaminase leads to the appearance of the high-affinity site of the receptor, which corresponds to the receptor-G protein complex. Thus, it seems that adenosine deaminase is necessary for coupling A1 adenosine receptors to heterotrimeric G proteins.  相似文献   

3.
Adenosine deaminase (ADA) is expressed intracellularly by all cells, but in some tissues, it is also associated with the cell surface multifunctional glycoprotein CD26/dipeptidyl peptidase IV. By modulating extracellular adenosine, this "ecto-ADA" may regulate adenosine receptor signaling implicated in various cellular functions. CD26 is expressed on the surface of human prostate cancer 1-LN cells acting as a receptor for plasminogen (Pg). Since ADA and Pg bind to CD26 at distinct but nearby sites, we investigated a possible interaction between these two proteins on the surface of 1-LN cells. Human ADA binds to CD26 on the surface 1-LN cells and immobilized CD26 isolated from the same cells with similar affinity. In both cases, ADA binding is diminished by mutation of ADA residues known to interact with CD26. ADA was also found to bind Pg 2 in the absence of CD26 via the Pg kringle 4 (K4) domain. In the presence of 1-LN cells or immobilized CD26, exogenous ADA enhances conversion of Pg 2 to plasmin by 1-LN endogenous urinary plasminogen activator (u-PA), as well as by added tissue Pg Activator (t-PA), suggesting that ADA and Pg bind simultaneously to CD26 in a ternary complex that stimulates the Pg activation by its physiologic activators. Consistent with this, in melanoma A375 cells that bind Pg, but do not express CD26, the rate of Pg activation was not affected by ADA. Thus, ADA may be a factor regulating events in prostate cancer cells that occur when Pg binds to the cell surface and is activated.  相似文献   

4.
The specific binding of adenosine deaminase to the multifunctional membrane glycoprotein dipeptidyl peptidase IV is thought to be immunologically relevant for certain regulatory and co-stimulatory processes. In this study we present the 3D structure of the complete CD26-ADA complex obtained by single particle cryo-EM at 22A resolution. ADA binding occurs at the outer edges of the beta-propeller of CD26. Docking calculations of available CD26 and ADA crystal data into the obtained EM density map revealed that the ADA-binding site is stretched across CD26 beta-propeller blades 4 and 5 involving the outermost distal hydrophobic amino acids L294 and V341 but not T440 and K441 as suggested by antibody binding. Though the docking of the ADA orientation appears less significant due to the lack of distinct surface features, non-ambiguous conclusions can be drawn in the combination with earlier indirect non-imaging methods affirming the crucial role of the ADA alpha2-helix for binding.  相似文献   

5.
The importance of ADA (adenosine deaminase) in the immune system and the role of its interaction with an ADA-binding cell membrane protein dipeptidyl peptidase IV (DPPIV), identical to the activated immune cell antigen, CD26, has attracted the interest of researchers for many years. To investigate the specific properties in the structure-function relationship of the ADA/DPPIV-CD26 complex, its soluble form, identical to large ADA (LADA), was isolated from human blood serum, human pleural fluid and bovine kidney cortex. The kinetic constants (Km and Vmax) of LADA and of small ADA (SADA), purified from bovine lung and spleen, were compared using adenosine (Ado) and 2'-deoxyadenosine (2'-dAdo) as substrates. The Michaelis constant, Km, evidences a higher affinity of both substrates (in particular of more toxic 2'-dAdo) for LADA and proves the modulation of toxic nucleoside neutralization in the extracellular medium due to complex formation between ADA and DPPIV-CD26. The values of Vmax are significantly higher for SADA, but the efficiency, Vmax/Km, in LADA-catalyzed 2'-dAdo deamination is higher than that in Ado deamination. The interaction of all enzyme preparations with derivatives of adenosine and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) was studied. 1-DeazaEHNA and 3-deazaEHNA demonstrate stronger inhibiting activity towards LADA, the DPPIV-CD26-bound form of ADA. The observed differences between the properties of the two ADA isoforms may be considered as a consequence of SADA binding with DPPIV-CD26. Both SADA and LADA indicated a similar pH-profile of adenosine deamination reaction with the optimum at pHs 6.5-7.5, while the pH-profile of dipeptidyl peptidase activity of the ADA/DPPIV-CD26 complex appeared in a more alkaline region.  相似文献   

6.
Two series of N6-substituted adenosines with monocyclic and bicyclic N6 substituents containing a heteroatom were synthesized in good yields. These derivatives were assessed for their affinity ([3H]CPX), potency, and intrinsic activity (cAMP accumulation) at the A1 adenosine receptor in DDT1 MF-2 cells. In the monocyclic series, the N6-tetrahydrofuran-3-yl and thiolan-3-yl adenosines (1 and 26, respectively) were found to possess similar activities, whereas the corresponding selenium analogue 27 was found to be more potent. A series of nitrogen containing analogues showed varying properties, N6-((3R)-1-benzyloxycarbonylpyrrolidin-3-yl)adenosine (30) was the most potent at the A1AR; IC50 = 3.2 nM. In the bicyclic series, the effect of a 7-azabicyclo[2.2.1]heptan-2-yl substituent in the N6-position was explored. N6-(7-Azabicyclo[2.2.1]heptan-2-yl)adenosine (38) proved to be a reasonably potent A1 agonist (Ki = 51 nM, IC50 = 35 nM) while further substitution on the 7″-nitrogen with tert-butoxycarbonyl (31, IC50 = 2.5 nM) and 2-bromobenzyloxycarbonyl (34, IC50 = 9.0 nM) gave highly potent A1AR agonists.  相似文献   

7.
HIV-1 external envelope glycoprotein gp120 inhibits adenosine deaminase (ADA) binding to its cell surface receptor in lymphocytes, CD26, by a mechanism that does not require the gp120-CD4 interaction. To further characterize this mechanism, we studied ADA binding to murine clones stably expressing human CD26 and/or human CD4, and transiently expressing human CXCR4. In this heterologous model, we show that both recombinant gp120 and viral particles from the X4 HIV-1 isolate IIIB inhibited the binding of ADA to wild-type or catalytically inactive forms of CD26. In cells lacking human CXCR4 expression, this gp120-mediated inhibition of ADA binding to human CD26 was completely dependent on the expression of human CD4. In contrast, when cells were transfected with human CXCR4 the inhibitory effect of gp120 was significantly enhanced and was not blocked by anti-CD4 antibodies. These data suggest that the interaction of gp120 with CD4 or CXCR4 is required for efficient inhibition of ADA binding to CD26, although in the presence of CXCR4 the interaction of gp120 with CD4 may be dispensable.  相似文献   

8.
Summary A deficiency of the enzyme adenosine deaminase is associated with an autosomal recessive form of severe combined immunodeficiency disease in man. The molecular forms of the normal human enzyme have now been well characterized in an effort to better understand the nature of the enzyme defect in affected patients.In some human tissues adenosine deaminase exists predominantly as a small molecular form while in other tissues a large form composed of adenosine deaminase (small form) and an adenosine deaminase-binding protein predominates. The small form of the enzyme purified to homogeneity by antibody affinity chromatography is a monomer of native molecular weight of 37,600. The adenosine deaminase-binding protein, purified by adenosine deaminase affinity chromatography, appears to be a dimer of native molecular weight 213,000 and contains carbohydrate. Based on direct binding measurements, chemical cross-linking studies and sedimentation equilibrium analyses, small form adenosine deaminase has been shown to combine with purified binding protein in a molar ratio of 2:1 respectively to produce the large form adenosine deaminase.Reduced, but widely ranging levels of adenosine deaminating activity, have been reported in various tissues of adenosine deaminase deficient patients. Further, the characteristics of this residual enzyme activity have been analyzed immunochemically to substantiate genetic heterogeneity in this disorder.While many types of immunodeficiency are currently recognized in man, in most cases the molecular defect is unknown. The discovery of a deficiency of the enzyme, adenosine deaminase, ADA, (EC 3.5.4.4), in some patients with severe combined immunodeficiency disease represented an early clue to the pathogenesis of immune dysfunction at the molecular level1-4. Affected patients with markedly reduced levels of ADA exhibit a defect of both cellular and humoral immunity characterized clinically by severe recurrent infections with a fatal outcome if untreated. Attempts to elucidate the nature of the genetic mutation(s) leading to the reduction of ADA activity in these immunodeficient patients have been complicated in part by an incomplete understanding of the nature of ADA in normal tissues. In this review we will consider the structural characteristics of the normal and mutant forms of ADA as they are currently understood.  相似文献   

9.
CD26 or dipeptidyl peptidase IV (DPP-IV) is a cell surface protease involved in T cell activation. Monoclonal antibodies (mAbs) directed against the CD26 molecule are able to stimulate CD26-expressing T cells. Although many different CD26-specific mAbs exist which are able to provide a triggering signal in T cells, little is known about their specific epitopes on the CD26 molecule. Whereas some mAbs were shown to compete with each other and to inhibit the association of adenosine deaminase (ADA) and human immunodeficiency virus 1 (HIV-1)-derived Tat protein with CD26, other CD26-specific mAbs obviously bind to distinct regions on DPP-IV. In the present study we have generated truncated versions of the human CD26 molecule and expressed them in COS-1 cells to study the binding pattern of a panel of 14 CD26-specific mAbs in confocal microscopy and, thus, correlated the CD26-specific mAbs epitopes with the binding region of ADA. We show that the majority of anti-CD26 mAbs is directed against the glycosylation-rich region of the molecule whereas the ADA-binding site could be located in the cysteine-rich region of DPP-IV. In contrast to binding experiments with purified ADA, which revealed a specific association with CD26 on CD26-positive Jurkat cells, HIV-derived Tat protein did not interact specifically with CD26 on transfected Jurkat cells, nor could Tat binding be competed by anti-CD26-specific mAbs.  相似文献   

10.
A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.  相似文献   

11.
Neuromuscular transmission is decreased in aged subject. Since endogenous adenosine is a potent neuromodulator at motor nerve endings, either inhibiting via A1 receptors or facilitating via A2A receptors acetylcholine release, we now investigated if the tonic effect of endogenous adenosine was modified at phrenic nerve endings of aged rats. The A2A receptor antagonist (ZM241385, 50 nM) inhibited (77 ± 9%) and the A1 receptor antagonist (DPCPX, 50 nM) facilitated (74 ± 13%) acetylcholine release from young adult (6 weeks old) rat preparations, indicating a simultaneous tonic activation of A2A and A1 receptors. Tonic modulation by adenosine was unaltered in aged (24 months old) rats, since ZM241385 (50 nM) inhibited (73 ± 8%) and DPCPX (50 nM) facilitated (91 ± 20%) acetylcholine release in aged animals similarly to young rats. This indicates that, in contrast to the central nervous system where adenosine neuromodulation is modified in aged animals, the control by adenosine of phrenic nerve function is preserved in aged animals  相似文献   

12.
Comodulation of CXCR4 and CD26 in human lymphocytes   总被引:2,自引:0,他引:2  
We provide convergent and multiple evidence for a CD26/CXCR4 interaction. Thus, CD26 codistributes with CXCR4, and both coimmunoprecipitate from membranes of T (CD4(+)) and B (CD4(-)) cell lines. Upon induction with stromal cell-derived factor 1alpha (SDF-1alpha), CD26 is cointernalized with CXCR4. CXCR4-mediated down-regulation of CD26 is not induced by antagonists or human immunodeficiency virus (HIV)-1 gp120. SDF-1alpha-mediated down-regulation of CD26 is not blocked by pertussis toxin but does not occur in cells expressing mutant CXCR4 receptors unable to internalize. Codistribution and cointernalization also occurs in peripheral blood lymphocytes. Since CD26 is a cell surface endopeptidase that has the capacity to cleave SDF-1alpha, the CXCR4.CD26 complex is likely a functional unit in which CD26 may directly modulate SDF-1alpha-induced chemotaxis and antiviral capacity. CD26 anchors adenosine deaminase (ADA) to the lymphocyte cell surface, and this interaction is blocked by HIV-1 gp120. Here we demonstrate that gp120 interacts with CD26 and that gp120-mediated disruption of ADA/CD26 interaction is a consequence of a first interaction of gp120 with a domain different from the ADA binding site. SDF-1alpha and gp120 induce the appearance of pseudopodia in which CD26 and CXCR4 colocalize and in which ADA is not present. The physical association of CXCR4 and CD26, direct or part of a supramolecular structure, suggests a role on the function of the immune system and the pathophysiology of HIV infection.  相似文献   

13.
Abstract: A high-affinity binding site for 5'- N -ethylcarboxamido[3H]adenosine ([3H]NECA) from bovine cerebral cortex has been characterized in its membrane-bound and solubilized state after gel filtration on Sepharose CL-6B. For detection of this site in membranes, it was necessary to remove metabolites with high affinities for this site enzymatically, e.g., adenosine by addition of adenosine deaminase and inosine by addition of nucleoside phosphorylase. The pore-forming peptide antibiotic alamethicin further enhanced binding of [3H]NECA to this site in membranes. In contrast to adenosine receptors and the adenotin-like low-affinity binding protein, this novel site was extremely sensitive against treatment with the sulfhydryl alkylating agent N -ethylmaleimide. In competition experiments, this site could be differentiated from adenosine receptors by its high affinity for adenine nucleotides and its lack of affinity for adenosine receptor antagonists. Inosine and its derivative S -(4-nitrobenzyl)-6-thioinosine were relatively potent ligands with K i values in the high nano- and low micromolar range, respectively. We conclude that the high-affinity NECA binding site described previously in bovine striatum is not exclusively located in the striatum, but can also be detected in membrane preparations and soluble extracts of bovine brain cortex.  相似文献   

14.
The expression patterns of adenosine A(1) receptors (A(1)Rs), adenosine deaminase (ADA) and ADA binding protein (CD26) were studied in goldfish brain using mammalian monoclonal antibody against A(1)R and polyclonal antibodies against ADA and CD26. Western blot analysis revealed the presence of a band of 35 kDa for A(1)R in membrane preparations and a band of 43 kDa for ADA in both cytosol and membranes. Immunohistochemistry on goldfish brain slices showed that A(1) receptors were present in several neuronal cell bodies diffused in the telencephalon, cerebellum, optic tectum. In the rhombencephalon, large and medium sized neurons of the raphe nucleus showed a strong immunopositivity. A(1)R immunoreactivity was also present in the glial cells of the rhombencephalon and optic tectum. An analogous distribution was observed for ADA immunoreactivity. Tests for the presence of CD26 gave positive labelling in several populations of neurons in the rhombencephalon as well as in the radial glia of optic tectum, where immunostaining for ADA and A(1)R was observed. In goldfish astrocyte cultures the immunohistochemical staining of A(1)R, ADA and CD26, performed on the same cell population, displayed a complete overlapping distribution of the three antibodies. The parallel immunopositivity, at least in some discrete neuronal areas, for A(1)Rs, ADA and CD26 led us to hypothesize that a co-localization among A(1)R, ecto-ADA and CD26 also exists in the neurons of goldfish since it has been established to exist in the neurons of mammals. Moreover, we have demonstrated for the first time, that A(1)R, ecto-ADA and CD26 co-localization is present on the astroglial component of the goldfish brain. This raises the possibility that a similar situation is also shown in the glia of the mammalian brain.  相似文献   

15.
It has been shown that adenosine deaminase (ADA; EC 3.5.4.4) behaves as an ecto-enzyme anchored to membrane proteins, among them A(1) adenosine receptors (A(1)Rs). Bovine ADA interacts with A(1)Rs from many species and regulates agonists binding to receptors in an activity-independent form. However, it was not known whether human ADA exerted any effect on the agonist binding to human A(1)Rs, because of both technical difficulties in obtaining pure human ADA and tissues containing human A(1)Rs. In this study, human ADA was purified to homogeneity. Taking in consideration that A(1)Rs form homodimers and taking advantage of a new procedure to fit binding data to receptors dimers, which allows to calculate ligand dissociation constants and the degree of cooperativity between the two subunits in the dimer, here it is demonstrated that human ADA markedly enhances the agonist and antagonist affinity and abolishes the negative cooperativity on agonist binding to human striatal A(1)Rs. ADA also increases the ability of the agonist to decrease the forskolin-induced cAMP levels. The results show that human ADA, apart from reducing the adenosine concentration and thus preventing A(1)R desensitization, binds to A(1)R behaving as an allosteric effector that markedly enhances agonist affinity and increases receptor functionality. The physiological role of the interaction is to make receptors more sensitive to adenosine. This powerful regulation has important implications for the physiology and pharmacology of neuronal A(1)Rs.  相似文献   

16.
2-Chloro-5′-N-methylcarboxamidoadenosine analogues containing the (N)-methanocarba (bicyclo[3.1.0]hexane) ring system as a ribose substitute display increased selectivity as agonists of the human A3 adenosine receptor (AR). However, the selectivity in mouse was greatly reduced due to an increased tolerance of this ring system at the mouse A1AR. Therefore, we varied substituents at the N6 and C2 positions in search of compounds that have improved A3AR selectivity and are species independent. An N6-methyl analogue was balanced in affinity at mouse A1/A3ARs, with high selectivity in comparison to the A2AAR. Substitution of the 2-chloro atom with larger and more hydrophobic substituents, such as iodo and alkynyl groups, tended to increase the A3AR selectivity (up to 430-fold) in mouse and preserve it in human. Extended and chemically functionalized alkynyl chains attached at the C2 position of the purine moiety preserved A3AR selectivity more effectively than similar chains attached at the 3-position of the N6-benzyl group.  相似文献   

17.
The molecular mechanism controlling the variable activity of the malignancy marker adenosine deaminase (ADA) is enigmatic. ADA activity was found to be modulated by the membrane-bound adenosine deaminase complexing protein (CP=DPPIV=CD26). The role of lipid-protein interactions in this modulation was sought. While direct solubilization of ADA in vesicles resulted in loss of ADA activity, the binding of ADA to CP reconstituted in vesicles restored the specific activity. The activity of ADA, free or bound to CP in solution, resulted in continuous linear Arrhenius plots. However, ADA bound to reconstituted CP exhibited two breaks associated with approximately 30% increased activity, at 25 and 13 degrees C, yielding three lines with similar apparent activation energies (E(a)). Continuum solvent model calculations of the free energy of transfer of the transmembrane helix of CP from the aqueous phase into membranes of various widths show that the most favorable orientations of the helix above and below the main phase transition may be different. We suggest that the 20% change in the thickness of the bilayer below and above the main phase transition may modify the orientation of CP in the membrane, thereby affecting substrate accessibility of ADA. This could account for ADA's reduced activity associated with increased membrane fluidity in transformed vs. normal fibroblasts.  相似文献   

18.
19.
 腺嘌呤核苷(ADO)和它的类似物2-Cl-ADO对牛附睾尾部精子的运动有刺激作用,为了探讨ADO及其类似物对精子运动调节作用的机理,我们从ADO受体,核苷运转系统(NTS)及腺苷脱氨酶(ADA)三个方面对牛附睾尾部的精子进行了研究。我们发现腺苷受体不存在于牛精子膜上,但ADA和NTS以膜蛋白的形式结合在精子膜上,并对精子体内的ADO浓度起调节作用。我们的结论是ADO及其类似物对牛精子运动的调节作用是首先通过精子膜上的ADA和NTS影响精子体内的ADO浓度,进而ADO又通过调节钙离子浓度刺激牛精子运动。  相似文献   

20.
Abstract: The adenosine modulation of glutamate exoeytosis from guinea pig cerebrocortical synaptosomes is investigated. Endogenously leaked adenosine is sufficient to cause a partial tonic inhibition of 4-aminopyridine-evoked glutamate release, which can be relieved by adenosine deaminase. The adenosine A1 receptor is equally effective in mediating inhibition of glutamate exocytosis evoked by 4-aminopyridine (where K+-channel activation would inhibit release) and by elevated KC1 (where K+-channel activation would have no effect), arguing for a central role of Ca2+-channel modulation. In support of this, the plateau phase of depolarization-evoked free Ca2+ elevation is decreased by adenosine with both depolarization protocols. No effect of adenosine agonists is seen on membrane potential in polarized or KC1- or 4-aminopyridine-stimulated synaptosomes. The interaction of protein kinase C with the A1 receptormediated inhibition is examined. Activation of protein kinase C by 4β-phorbol dibutyrate has been shown previously by this laboratory to modulate glutamate release via K+-channel inhibition, and is shown here to have an additional action of decoupling the adenosine inhibition of glutamate exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号