首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Measles virus (MV) is typically spread by aerosol droplets and enters via the respiratory tract. The progression of MV infection has been widely studied; yet, the pathway for virus entry in polarized human airway epithelia has not been investigated. Herein we report the use of a replication-competent Edmonston vaccine strain of MV expressing enhanced green fluorescent protein (MV-eGFP) to infect primary cultures of well-differentiated human airway epithelia. Previous studies with polarized Caco-2 cells (intestine-derived human epithelia) and MDCK cells (kidney-derived canine epithelia) demonstrated that MV primarily infected and exited the apical surface. In striking contrast, our results indicate that MV preferentially transduces human airway cells from the basolateral surface; however, virus release remains in an apical direction. When MV-eGFP was applied apically or basolaterally to primary cultures of airway epithelia, discrete foci of eGFP expression appeared and grew; however, the cell layer integrity was maintained for the duration of the study (7 days). Interestingly, utilizing immunohistochemistry and confocal microscopy, we observed widespread expression of the receptor for the vaccine strain of MV (CD46) at greatest abundance on the apical surface of the differentiated human airway epithelia as well as in human tracheal tissue sections. These data suggest that the progression of MV infection through the respiratory epithelium may involve pathways other than direct binding and entry through the apical surface of airway epithelia.  相似文献   

2.
The type II transmembrane protease TMPRSS2 activates the spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) on the cell surface following receptor binding during viral entry into cells. In the absence of TMPRSS2, SARS-CoV achieves cell entry via an endosomal pathway in which cathepsin L may play an important role, i.e., the activation of spike protein fusogenicity. This study shows that a commercial serine protease inhibitor (camostat) partially blocked infection by SARS-CoV and human coronavirus NL63 (HCoV-NL63) in HeLa cells expressing the receptor angiotensin-converting enzyme 2 (ACE2) and TMPRSS2. Simultaneous treatment of the cells with camostat and EST [(23,25)trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester], a cathepsin inhibitor, efficiently prevented both cell entry and the multistep growth of SARS-CoV in human Calu-3 airway epithelial cells. This efficient inhibition could be attributed to the dual blockade of entry from the cell surface and through the endosomal pathway. These observations suggest camostat as a candidate antiviral drug to prevent or depress TMPRSS2-dependent infection by SARS-CoV.  相似文献   

3.
We have recently demonstrated that the severe acute respiratory syndrome coronavirus (SARS-CoV) receptor angiotensin converting enzyme 2 (ACE2) also mediates cellular entry of the newly discovered human coronavirus (hCoV) NL63. Here, we show that expression of DC-SIGN augments NL63 spike (S)-protein-driven infection of susceptible cells, while only expression of ACE2 but not DC-SIGN is sufficient for entry into nonpermissive cells, indicating that ACE2 fulfills the criteria of a bona fide hCoV-NL63 receptor. As for SARS-CoV, murine ACE2 is used less efficiently by NL63-S for entry than human ACE2. In contrast, several amino acid exchanges in human ACE2 which diminish SARS-S-driven entry do not interfere with NL63-S-mediated infection, suggesting that SARS-S and NL63-S might engage human ACE2 differentially. Moreover, we observed that NL63-S-driven entry was less dependent on a low-pH environment and activity of endosomal proteases compared to infection mediated by SARS-S, further suggesting differences in hCoV-NL63 and SARS-CoV cellular entry. NL63-S does not exhibit significant homology to SARS-S but is highly related to the S-protein of hCoV-229E, which enters target cells by engaging CD13. Employing mutagenic analyses, we found that the N-terminal unique domain in NL63-S, which is absent in 229E-S, does not confer binding to ACE2. In contrast, the highly homologous C-terminal parts of the NL63-S1 and 229E-S1 subunits in conjunction with distinct amino acids in the central regions of these proteins confer recognition of ACE2 and CD13, respectively. Therefore, despite the high homology of these sequences, they likely form sufficiently distinct surfaces, thus determining receptor specificity.  相似文献   

4.
Gene transfer to differentiated airway epithelia with existing viral vectors is very inefficient when they are applied to the apical surface. This largely reflects the polarized distribution of receptors on the basolateral surface. To identify new receptor-ligand interactions that might be used to redirect vectors to the apical surface, we investigated the process of infection of airway epithelial cells by human coronavirus 229E (HCoV-229E), a common cause of respiratory tract infections. Using immunohistochemistry, we found the receptor for HCoV-229E (CD13 or aminopeptidase N) localized mainly to the apical surface of airway epithelia. When HCoV-229E was applied to the apical or basolateral surface of well-differentiated primary cultures of human airway epithelia, infection primarily occurred from the apical side. Similar results were noted when the virus was applied to cultured human tracheal explants. Newly synthesized virions were released mainly to the apical side. Thus, HCoV-229E preferentially infects human airway epithelia from the apical surface. The spike glycoprotein that mediates HCoV-229E binding and fusion to CD13 is a candidate for pseudotyping retroviral envelopes or modifying other viral vectors.  相似文献   

5.
Replication of viruses in species other than their natural hosts is frequently limited by entry and postentry barriers. The coronavirus that causes severe acute respiratory syndrome (SARS-CoV) utilizes the receptor angiotensin-converting enzyme 2 (ACE2) to infect cells. Here we compare human, mouse, and rat ACE2 molecules for their ability to serve as receptors for SARS-CoV. We found that, compared to human ACE2, murine ACE2 less efficiently bound the S1 domain of SARS-CoV and supported less-efficient S protein-mediated infection. Rat ACE2 was even less efficient, at near background levels for both activities. Murine 3T3 cells expressing human ACE2 supported SARS-CoV replication, whereas replication was less than 10% as efficient in the same cells expressing murine ACE2. These data imply that a mouse transgenically expressing human ACE2 may be a useful animal model of SARS.  相似文献   

6.
Infection of receptor-bearing cells by coronaviruses is mediated by their spike (S) proteins. The coronavirus (SARS-CoV) that causes severe acute respiratory syndrome (SARS) infects cells expressing the receptor angiotensin-converting enzyme 2 (ACE2). Here we show that codon optimization of the SARS-CoV S-protein gene substantially enhanced S-protein expression. We also found that two retroviruses, simian immunodeficiency virus (SIV) and murine leukemia virus, both expressing green fluorescent protein and pseudotyped with SARS-CoV S protein or S-protein variants, efficiently infected HEK293T cells stably expressing ACE2. Infection mediated by an S-protein variant whose cytoplasmic domain had been truncated and altered to include a fragment of the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein was, in both cases, substantially more efficient than that mediated by wild-type S protein. Using S-protein-pseudotyped SIV, we found that the enzymatic activity of ACE2 made no contribution to S-protein-mediated infection. Finally, we show that a soluble and catalytically inactive form of ACE2 potently blocked infection by S-protein-pseudotyped retrovirus and by SARS-CoV. These results permit studies of SARS-CoV entry inhibitors without the use of live virus and suggest a candidate therapy for SARS.  相似文献   

7.
Severe acute respiratory syndrome (SARS), caused by a novel coronavirus (CoV) known as SARS-CoV, is a contagious and life-threatening respiratory illness with pneumocytes as its main target. A full understanding of how SARS-CoV would interact with lung epithelial cells will be vital for advancing our knowledge of SARS pathogenesis. However, an in vitro model of SARS-CoV infection using relevant lung epithelial cells is not yet available, making it difficult to dissect the pathogenesis of SARS-CoV in the lungs. Here, we report that SARS-CoV can productively infect human bronchial epithelial Calu-3 cells, causing cytopathic effects, a process reflective of its natural course of infection in the lungs. Indirect immunofluorescence studies revealed a preferential expression of angiotensin-converting enzyme 2 (ACE-2), the functional receptor of SARS-CoV, on the apical surface. Importantly, both ACE-2 and viral antigen appeared to preferentially colocalize at the apical domain of infected cells. In highly polarized Calu-3 cells grown on the membrane inserts, we found that cells exposed to virus through the apical rather than the basolateral surface showed high levels of viral replication. Progeny virus was released into the apical chamber at titers up to 5 logs higher than those recovered from the basolateral chambers of polarized cultures. Taken together, these results indicate that SARS-CoV almost exclusively entered and was released from the apical domain of polarized Calu-3 cells, which might provide important insight into the mechanism of transmission and pathogenesis of SARS-CoV.  相似文献   

8.
重症急性呼吸综合征(SARS)是由SARS冠状病毒(SARS-CoV)引起的一种急性传染病,在其序列被测出后几个月内人们就找到了SARS-CoV的受体血管紧张素转换酶2(ACE2)。因病毒受体与病毒入侵细胞密切相关,因而有必要深入研究ACE2与SARS-CoV之间的关系。本文总结了ACE2在各组织器官的分布及功能,分析了ACE2基因的变异与病毒进入及SARS疾病严重程度之间的关系、ACE2基因的表达水平与病毒进入及SARS疾病严重程度之间的关系。这些研究将为理解SARS-CoV与ACE2之间的相互作用及设计针对ACE2的抗SARS药物提供重要的理论依据。  相似文献   

9.
Viruses require specific cellular receptors to infect their target cells. Angiotensin-converting enzyme 2 (ACE2) is a cellular receptor for two divergent coronaviruses, SARS coronavirus (SARS-CoV) and human coronavirus NL63 (HCoV-NL63). In addition to hostcell receptors, lysosomal cysteine proteases are required for productive infection by some viruses. Here we show that SARS-CoV, but not HCoV-NL63, utilizes the enzymatic activity of the cysteine protease cathepsin L to infect ACE2-expressing cells. Inhibitors of cathepsin L blocked infection by SARS-CoV and by a retrovirus pseudotyped with the SARS-CoV spike (S) protein but not infection by HCoV-NL63 or a retrovirus pseudotyped with the HCoV-NL63 S protein. Expression of exogenous cathepsin L substantially enhanced infection mediated by the SARS-CoV S protein and by filovirus GP proteins but not by the HCoV-NL63 S protein or the vesicular stomatitis virus G protein. Finally, an inhibitor of endosomal acidification had substantially less effect on infection mediated by the HCoV-NL63 S protein than on that mediated by the SARS-CoV S protein. Our data indicate that two coronaviruses that utilize a common receptor nonetheless enter cells through distinct mechanisms.  相似文献   

10.
In 2002, severe acute respiratory syndrome (SARS)-coronavirus (CoV) appeared as a novel human virus with high similarity to bat coronaviruses. However, while SARS-CoV uses the human angiotensin-converting enzyme 2 (ACE2) receptor for cellular entry, no coronavirus isolated from bats appears to use ACE2. Here we show that signatures of recurrent positive selection in the bat ACE2 gene map almost perfectly to known SARS-CoV interaction surfaces. Our data indicate that ACE2 utilization preceded the emergence of SARS-CoV-like viruses from bats.  相似文献   

11.
How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.  相似文献   

12.

Background

Entry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike) of the severe acute respiratory syndrome coronavirus (SARS-CoV) to cleavage by various airway proteases.

Methodology/Principal Findings

Purified triSpike proteins were readily cleaved in vitro by three different airway proteases: trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC) and amino acid sequencing analyses identified two arginine residues (R667 and R797) as potential protease cleavage site(s). The effect of protease-dependent enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE. Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A). Mutation of R667 or R797 did not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment.

Conclusions/Significance

These results suggest that SARS S-protein is susceptible to airway protease cleavage and, furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV.  相似文献   

13.
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The SARS-CoV receptor, human angiotensin 1-converting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway tissues derived from nasal or tracheobronchial regions, suggesting that SARS-CoV may infect the proximal airways. To assess infectivity in an in vitro model of human ciliated airway epithelia (HAE) derived from nasal and tracheobronchial airway regions, we generated recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF7a/7b) and insertion of the green fluorescent protein (GFP), resulting in SARS-CoV GFP. SARS-CoV GFP replicated to titers similar to those of wild-type viruses in cell lines. SARS-CoV specifically infected HAE via the apical surface and replicated to titers of 10(7) PFU/ml by 48 h postinfection. Polyclonal antisera directed against hACE2 blocked virus infection and replication, suggesting that hACE2 is the primary receptor for SARS-CoV infection of HAE. SARS-CoV structural proteins and virions localized to ciliated epithelial cells. Infection was highly cytolytic, as infected ciliated cells were necrotic and shed over time onto the luminal surface of the epithelium. SARS-CoV GFP also replicated to a lesser extent in ciliated cell cultures derived from hamster or rhesus monkey airways. Efficient SARS-CoV infection of ciliated cells in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.  相似文献   

14.
To understand the pathogenesis and develop an animal model of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV), the Frankfurt 1 SARS-CoV isolate was passaged serially in young F344 rats. Young rats were susceptible to SARS-CoV but cleared the virus rapidly within 3 to 5 days of intranasal inoculation. After 10 serial passages, replication and virulence of SARS-CoV were increased in the respiratory tract of young rats without clinical signs. By contrast, adult rats infected with the passaged virus showed respiratory symptoms and severe pathological lesions in the lung. Levels of inflammatory cytokines in sera and lung tissues were significantly higher in adult F344 rats than in young rats. During in vivo passage of SARS-CoV, a single amino acid substitution was introduced within the binding domain of the viral spike protein recognizing angiotensin-converting enzyme 2 (ACE2), which is known as a SARS-CoV receptor. The rat-passaged virus more efficiently infected CHO cells expressing rat ACE2 than did the original isolate. These results strongly indicate that host and virus factors such as advanced age and virus adaptation are critical for the development of SARS in rats.  相似文献   

15.
The limitations of adeno-associated virus (AAV)-mediated vectors for lung-directed gene transfer were investigated by using differentiated human respiratory epithelium in air-liquid interface cultures. Transduction efficiency was high in undifferentiated cells and was enhanced in well-differentiated cells after basolateral application of the vector or after apical application following disruption of tight junctions or pretreatment of the cultures with glycosidases. These results indicate that transduction of airway epithelia by AAV vectors is limited by entry and reinforce the importance of a physical barrier on the airway surface.  相似文献   

16.
The severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible. Here we show that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus. Infection begins in airway epithelia, with subsequent alveolar involvement and extrapulmonary virus spread to the brain. Infection results in macrophage and lymphocyte infiltration in the lungs and upregulation of proinflammatory cytokines and chemokines in both the lung and the brain. This model of lethal infection with SARS-CoV should be useful for studies of pathogenesis and for the development of antiviral therapies.  相似文献   

17.
Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.  相似文献   

18.
Ren W  Qu X  Li W  Han Z  Yu M  Zhou P  Zhang SY  Wang LF  Deng H  Shi Z 《Journal of virology》2008,82(4):1899-1907
Severe acute respiratory syndrome (SARS) is caused by the SARS-associated coronavirus (SARS-CoV), which uses angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entry. A group of SARS-like CoVs (SL-CoVs) has been identified in horseshoe bats. SL-CoVs and SARS-CoVs share identical genome organizations and high sequence identities, with the main exception of the N terminus of the spike protein (S), known to be responsible for receptor binding in CoVs. In this study, we investigated the receptor usage of the SL-CoV S by combining a human immunodeficiency virus-based pseudovirus system with cell lines expressing the ACE2 molecules of human, civet, or horseshoe bat. In addition to full-length S of SL-CoV and SARS-CoV, a series of S chimeras was constructed by inserting different sequences of the SARS-CoV S into the SL-CoV S backbone. Several important observations were made from this study. First, the SL-CoV S was unable to use any of the three ACE2 molecules as its receptor. Second, the SARS-CoV S failed to enter cells expressing the bat ACE2. Third, the chimeric S covering the previously defined receptor-binding domain gained its ability to enter cells via human ACE2, albeit with different efficiencies for different constructs. Fourth, a minimal insert region (amino acids 310 to 518) was found to be sufficient to convert the SL-CoV S from non-ACE2 binding to human ACE2 binding, indicating that the SL-CoV S is largely compatible with SARS-CoV S protein both in structure and in function. The significance of these findings in relation to virus origin, virus recombination, and host switching is discussed.  相似文献   

19.
The practical application of gene therapy as a treatment for cystic fibrosis is limited by poor gene transfer efficiency with vectors applied to the apical surface of airway epithelia. Recently, folate receptor alpha (FR alpha), a glycosylphosphatidylinositol-linked surface protein, was reported to be a cellular receptor for the filoviruses. We found that polarized human airway epithelia expressed abundant FR alpha on their apical surface. In an attempt to target these apical receptors, we pseudotyped feline immunodeficiency virus (FIV)-based vectors by using envelope glycoproteins (GPs) from the filoviruses Marburg virus and Ebola virus. Importantly, primary cultures of well-differentiated human airway epithelia were transduced when filovirus GP-pseudotyped FIV was applied to the apical surface. Furthermore, by deleting a heavily O-glycosylated extracellular domain of the Ebola GP, we improved the titer of concentrated vector severalfold. To investigate the folate receptor dependence of gene transfer with the filovirus pseudotypes, we compared gene transfer efficiency in immortalized airway epithelium cell lines and primary cultures. By utilizing phosphatidylinositol-specific phospholipase C (PI-PLC) treatment and FR alpha-blocking antibodies, we demonstrated FR alpha-dependent and -independent entry by filovirus glycoprotein-pseudotyped FIV-based vectors in airway epithelia. Of particular interest, entry independent of FR alpha was observed in primary cultures of human airway epithelia. Understanding viral vector binding and entry pathways is fundamental for developing cystic fibrosis gene therapy applications.  相似文献   

20.
During several months of 2003, a newly identified illness termed severe acute respiratory syndrome (SARS) spread rapidly through the world. A new coronavirus (SARS-CoV) was identified as the SARS pathogen, which triggered severe pneumonia and acute, often lethal, lung failure. Moreover, among infected individuals influenza such as the Spanish flu and the emergence of new respiratory disease viruses have caused high lethality resulting from acute lung failure. In cell lines, angiotensin-converting enzyme 2 (ACE2) has been identified as a potential SARS-CoV receptor. The high lethality of SARS-CoV infections, its enormous economic and social impact, fears of renewed outbreaks as well as the potential misuse of such viruses as biologic weapons make it paramount to understand the pathogenesis of SARS-CoV. Here we provide the first genetic proof that ACE2 is a crucial SARS-CoV receptor in vivo. SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo that can be attenuated by blocking the renin-angiotensin pathway. These results provide a molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号