首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of 30 cell lines and primary cells examined, productive severe acute respiratory syndrome coronavirus (Urbani strain) (SARS-CoV) infection after low-multiplicity inoculation was detected in only six: three African green monkey kidney epithelial cell lines (Vero, Vero E6, and MA104), a human colon epithelial line (CaCo-2), a porcine kidney epithelial line [PK(15)], and mink lung epithelial cells (Mv 1 Lu). SARS-CoV produced a lytic infection in Vero, Vero E6, and MA104 cells, but there was no visible cytopathic effect in Caco-2, Mv 1 Lu, or PK(15) cells. Multistep growth kinetics were identical in Vero E6 and MA104 cells, with maximum titer reached 24 h postinoculation (hpi). Virus titer was maximal 96 hpi in CaCo-2 cells, and virus was continually produced from infected CaCo-2 cells for at least 6 weeks after infection. CaCo-2 was the only human cell type of 13 tested that supported efficient SARS-CoV replication. Expression of the SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), resulted in SARS-CoV replication in all refractory cell lines examined. Titers achieved were variable and dependent upon the method of ACE2 expression.  相似文献   

2.
In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged and caused over 8,000 human cases of infection and more than 700 deaths worldwide. Zoonotic SARS-CoV likely evolved to infect humans by a series of transmission events between humans and animals for sale in China. Using synthetic biology, we engineered the spike protein (S) from a civet strain, SZ16, into our epidemic strain infectious clone, creating the chimeric virus icSZ16-S, which was infectious but yielded progeny viruses incapable of propagating in vitro. After introducing a K479N mutation within the S receptor binding domain (RBD) of SZ16, the recombinant virus (icSZ16-S K479N) replicated in Vero cells but was severely debilitated in growth. The in vitro evolution of icSZ16-S K479N on human airway epithelial (HAE) cells produced two viruses (icSZ16-S K479N D8 and D22) with enhanced growth on HAE cells and on delayed brain tumor cells expressing the SARS-CoV receptor, human angiotensin I converting enzyme 2 (hACE2). The icSZ16-S K479N D8 and D22 virus RBDs contained mutations in ACE2 contact residues, Y442F and L472F, that remodeled S interactions with hACE2. Further, these viruses were neutralized by a human monoclonal antibody (MAb), S230.15, but the parent icSZ16-S K479N strain was eight times more resistant than the mutants. These data suggest that the human adaptation of zoonotic SARS-CoV strains may select for some variants that are highly susceptible to select MAbs that bind to RBDs. The epidemic, icSZ16-S K479N, and icSZ16-S K479N D22 viruses replicate similarly in the BALB/c mouse lung, highlighting the potential use of these zoonotic spike SARS-CoVs to assess vaccine or serotherapy efficacy in vivo.  相似文献   

3.
4.
免疫系统是人体内的一把双刃剑,它一方面能清除侵染的各类病原体,但另一方面其异常调控又能在人体中引发各类免疫性疾病,甚至导致死亡。本文将简要讨论人体免疫系统与新的冠状病毒﹝即严重急性呼吸综合征冠状病毒2型(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)〕感染的相互关系。一方面免疫系统能全方位地预防病毒感染,进化出一整套从分子到细胞、从短期到长期的病毒清除机制;另一方面,免疫系统又可能引发“细胞因子风暴”,给SARS-CoV-2的感染患者带来负面作用。本文还将讨论受到广泛关注的免疫相关的治疗策略,着重探讨抗体依赖的增强效应(antibody-dependent enhancement, ADE)可能给疫苗研发带来的困难与挑战。  相似文献   

5.
The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.  相似文献   

6.
The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients.  相似文献   

7.
Animal models for severe acute respiratory syndrome (SARS) coronavirus infection of humans are needed to elucidate SARS pathogenesis and develop vaccines and antivirals. We developed transgenic mice expressing human angiotensin-converting enzyme 2, a functional receptor for the virus, under the regulation of a global promoter. A transgenic lineage, designated AC70, was among the best characterized against SARS coronavirus infection, showing weight loss and other clinical manifestations before reaching 100% mortality within 8 days after intranasal infection. High virus titers were detected in the lungs and brains of transgene-positive (Tg+) mice on days 1 and 3 after infection. Inflammatory mediators were also detected in these tissues, coinciding with high levels of virus replication. Lower virus titers were also detected in other tissues, including blood. In contrast, infected transgene-negative (Tg-) mice survived without showing any clinical illness. Pathologic examination suggests that the extensive involvement of the central nervous system likely contributed to the death of Tg+ mice, even though viral pneumonia was present. Preliminary studies with mice of a second lineage, AC63, in which the transgene expression was considerably less abundant than that in the AC70 line, revealed that virus replication was largely restricted to the lungs but not the brain. Importantly, despite significant weight loss, infected Tg+ AC63 mice eventually recovered from the illness without any mortality. The severity of the disease that developed in these transgenic mice--AC70 in particular--makes these mouse models valuable not only for evaluating the efficacy of antivirals and vaccines, but also for studying SARS coronavirus pathogenesis.  相似文献   

8.
Smoking is one of the risk factors most closely related to the severity of coronavirus disease 2019 (COVID-19). However, the relationship between smoking history and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is unknown. In this study, we evaluated the ACE2 expression level in the lungs of current smokers, ex-smokers, and nonsmokers. The ACE2 expression level of ex-smokers who smoked cigarettes until recently (cessation period shorter than 6 months) was higher than that of nonsmokers and ex-smokers with a long history of nonsmoking (cessation period longer than 6 months). We also showed that the efficiency of SARS-CoV-2 infection was enhanced in a manner dependent on the angiotensin-converting enzyme 2 (ACE2) expression level. Using RNA-seq analysis on the lungs of smokers, we identified that the expression of inflammatory signaling genes was correlated with ACE2 expression. Notably, with increasing duration of smoking cessation among ex-smokers, not only ACE2 expression level but also the expression levels of inflammatory signaling genes decreased. These results indicated that smoking enhances the expression levels of ACE2 and inflammatory signaling genes. Our data suggest that the efficiency of SARS-CoV-2 infection is enhanced by smoking-mediated upregulation of ACE2 expression level.  相似文献   

9.
The severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible. Here we show that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus. Infection begins in airway epithelia, with subsequent alveolar involvement and extrapulmonary virus spread to the brain. Infection results in macrophage and lymphocyte infiltration in the lungs and upregulation of proinflammatory cytokines and chemokines in both the lung and the brain. This model of lethal infection with SARS-CoV should be useful for studies of pathogenesis and for the development of antiviral therapies.  相似文献   

10.
The worldwide epidemic of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus called SARS-CoV. Coronaviruses and their closest relatives possess extremely large plus-strand RNA genomes and employ unique mechanisms and enzymes in RNA synthesis that separate them from all other RNA viruses. The SARS epidemic prompted a variety of studies on multiple aspects of the coronavirus replication cycle, yielding both rapid identification of the entry mechanisms of SARS-CoV into host cells and valuable structural and functional information on SARS-CoV proteins. These recent advances in coronavirus research have important implications for the development of anti-SARS drugs and vaccines.  相似文献   

11.
Infection of humans with the severe acute respiratory syndrome coronavirus (SARS-CoV) results in substantial morbidity and mortality, with death resulting primarily from respiratory failure. While the lungs are the major site of infection, the brain is also infected in some patients. Brain infection may result in long-term neurological sequelae, but little is known about the pathogenesis of SARS-CoV in this organ. We previously showed that the brain was a major target organ for infection in mice that are transgenic for the SARS-CoV receptor (human angiotensin-converting enzyme 2). Herein, we use these mice to show that virus enters the brain primarily via the olfactory bulb, and infection results in rapid, transneuronal spread to connected areas of the brain. This extensive neuronal infection is the main cause of death because intracranial inoculation with low doses of virus results in a uniformly lethal disease even though little infection is detected in the lungs. Death of the animal likely results from dysfunction and/or death of infected neurons, especially those located in cardiorespiratory centers in the medulla. Remarkably, the virus induces minimal cellular infiltration in the brain. Our results show that neurons are a highly susceptible target for SARS-CoV and that only the absence of the host cell receptor prevents severe murine brain disease.  相似文献   

12.
自2019年12月2019冠状病毒病暴发流行以来,严重急性呼吸综合征冠状病毒 2 型已经产生了1万个以上的变异株。其中有些可能获得更强的传染性,有的致病性得以提高,有的或许不能被现有的检测试剂检测出来,还有的也许能够逃逸疫苗的免疫保护作用。世界卫生组织于2021年5月31日发布了针对这些变异株的新的命名系统。本文对当前世界上流行较广的4个变异株进行综述,包括最近在广州市引起小暴发的δ变异株。  相似文献   

13.
The clinical picture of severe acute respiratory syndrome (SARS) is characterized by pulmonary inflammation and respiratory failure, resembling that of acute respiratory distress syndrome. However, the events that lead to the recruitment of leukocytes are poorly understood. To study the cellular response in the acute phase of SARS coronavirus (SARS-CoV)-host cell interaction, we investigated the induction of chemokines, adhesion molecules, and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin) by SARS-CoV. Immunohistochemistry revealed neutrophil, macrophage, and CD8 T-cell infiltration in the lung autopsy of a SARS patient who died during the acute phase of illness. Additionally, pneumocytes and macrophages in the patient's lung expressed P-selectin and DC-SIGN. In in vitro study, we showed that the A549 and THP-1 cell lines were susceptible to SARS-CoV. A549 cells produced CCL2/monocyte chemoattractant protein 1 (MCP-1) and CXCL8/interleukin-8 (IL-8) after interaction with SARS-CoV and expressed P-selectin and VCAM-1. Moreover, SARS-CoV induced THP-1 cells to express CCL2/MCP-1, CXCL8/IL-8, CCL3/MIP-1alpha, CXCL10/IP-10, CCL4/MIP-1beta, and CCL5/RANTES, which attracted neutrophils, monocytes, and activated T cells in a chemotaxis assay. We also demonstrated that DC-SIGN was inducible in THP-1 as well as A549 cells after SARS-CoV infection. Our in vitro experiments modeling infection in humans together with the study of a lung biopsy of a patient who died during the early phase of infection demonstrated that SARS-CoV, through a dynamic interaction with lung epithelial cells and monocytic cells, creates an environment conducive for immune cell migration and accumulation that eventually leads to lung injury.  相似文献   

14.
It is well known that black and green tea extracts, particularly polyphenols, have antimicrobial activity against various pathogenic microbes including viruses. However, there is limited data on the antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged rapidly in China in late 2019 and which has been responsible for coronavirus disease 2019 (COVID-19) pandemic globally. In this study, 20 compounds and three extracts were obtained from black and green tea and found that three tea extracts showed significant antiviral activity against SARS-CoV-2, whereby the viral titre decreased about 5 logs TCID50 per ml by 1·375 mg ml−1 black tea extract and two-fold diluted tea bag infusion obtained from black tea when incubated at 25°C for 10 s. However, when concentrations of black and green tea extracts were equally adjusted to 344 µg ml−1, green tea extracts showed more antiviral activity against SARS-CoV-2. This simple and highly respected beverage may be a cheap and widely acceptable means to reduce SARS-CoV-2 viral burden in the mouth and upper gastrointestinal and respiratory tracts in developed as well as developing countries.  相似文献   

15.
The penetration of various viruses into host cells is accomplished by hijacking the host endocytosis machinery. In the case of severe acute respiratory syndrome coronavirus (SARS-CoV) infection, viral entry is reported to require a low pH in intracytoplasmic vesicles; however, little is known about how SARS-CoV invades such compartments. Here we demonstrate that SARS-CoV mainly utilizes the clathrin-mediated endocytosis pathway for its entry to target cells by using infectious SARS-CoV, as well as a SARS-CoV pseudovirus packaged in the SARS-CoV envelope. The SARS-CoV entered caveolin-1-negative HepG2 cells, and the entry was significantly inhibited by treatment with chlorpromazine, an inhibitor for clathrin-dependent endocytosis, and by small interfering RNA-mediated gene silencing for the clathrin heavy chain. Furthermore, the SARS-CoV entered COS7 cells transfected with the mutant of ACE2 with the cytoplasmic tail deleted, SARS-CoV receptor, as well as the wild-type ACE2, and their entries were significantly inhibited by treatment with chlorpromazine. In addition, ACE2 translocated into EEA1-positive early endosomes immediately after the virus attachment to ACE2. These results suggest that when SARS-CoV binds ACE2 it is internalized and penetrates early endosomes in a clathrin-dependent manner and that the cytoplasmic tail of ACE2 is not required for the penetration of SARS-CoV.  相似文献   

16.
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The SARS-CoV receptor, human angiotensin 1-converting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway tissues derived from nasal or tracheobronchial regions, suggesting that SARS-CoV may infect the proximal airways. To assess infectivity in an in vitro model of human ciliated airway epithelia (HAE) derived from nasal and tracheobronchial airway regions, we generated recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF7a/7b) and insertion of the green fluorescent protein (GFP), resulting in SARS-CoV GFP. SARS-CoV GFP replicated to titers similar to those of wild-type viruses in cell lines. SARS-CoV specifically infected HAE via the apical surface and replicated to titers of 10(7) PFU/ml by 48 h postinfection. Polyclonal antisera directed against hACE2 blocked virus infection and replication, suggesting that hACE2 is the primary receptor for SARS-CoV infection of HAE. SARS-CoV structural proteins and virions localized to ciliated epithelial cells. Infection was highly cytolytic, as infected ciliated cells were necrotic and shed over time onto the luminal surface of the epithelium. SARS-CoV GFP also replicated to a lesser extent in ciliated cell cultures derived from hamster or rhesus monkey airways. Efficient SARS-CoV infection of ciliated cells in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.  相似文献   

17.
世界卫生组织(World Health Organization, WHO)于2021年11月26日将首次在南非报告的新型冠状病毒 B.1.1.529 变异株列为受关注变种(variant of concern, VOC),并将其命名为奥密克戎(Omicron)。该变异株存在约50个突变,仅在刺突蛋白区域就有至少30个突变,远远超过其他流行株的突变位点数量。根据对突变位点的分析以及初步实验证实,该毒株可能具有极强的传染性以及免疫逃逸能力。Omicron变异株会怎样影响新冠疫情的走向引起了各国的广泛关注,本文将从Omicron变异株的基本特征、检测、致病性、传染性、免疫逃逸等方面进行综述。  相似文献   

18.
The coronavirus membrane protein (M) is the key player in the assembly of virions at intracellular membranes between endoplasmic-reticulum and Golgi-complex. Using a newly established human monoclonal anti-M antibody we detected glycosylated and nonglycosylated membrane-associated M in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infected cells and in purified virions. Further analyses revealed that M contained a single N-glycosylation site at asparagine 4. Recombinant M was transported to the plasma membrane and gained complex-type N-glycosylation. In SARS-CoV infected cells and in purified virions, however, N-glycosylation of M remained endoglycosidase H-sensitive suggesting that trimming of the N-linked sugar side chain is inhibited.  相似文献   

19.
Severe acute respiratory syndrome (SARS) is a deadly form of pneumonia caused by a novel coronavirus, a viral family responsible for mild respiratory tract infections in a wide variety of animals including humans, pigs, cows, mice, cats, and birds. Analyses to date have been unable to identify the precise origin of the SARS coronavirus. We used Bayesian, neighbor-joining, and split decomposition phylogenetic techniques on the SARS virus replicase, surface spike, matrix, and nucleocapsid proteins to reveal the evolutionary origin of this recently emerging infectious agent. The analyses support a mammalian-like origin for the replicase protein, an avian-like origin for the matrix and nucleocapsid proteins, and a mammalian-avian mosaic origin for the host-determining spike protein. A bootscan recombination analysis of the spike gene revealed high nucleotide identity between the SARS virus and a feline infectious peritonitis virus throughout the gene, except for a 200- base-pair region of high identity to an avian sequence. These data support the phylogenetic analyses and suggest a possible past recombination event between mammalian-like and avian-like parent viruses. This event occurred near a region that has been implicated to be the human receptor binding site and may have been directly responsible for the switch of host of the SARS coronavirus from animals to humans.  相似文献   

20.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been transmitted across all over the world, in contrast to the limited epidemic of genetically- and virologically-related SARS-CoV. However, the molecular basis explaining the difference in the virological characteristics among SARS-CoV-2 and SARS-CoV has been poorly defined. Here we identified that host sialoglycans play a significant role in the efficient spread of SARS-CoV-2 infection, while this was not the case with SARS-CoV. SARS-CoV-2 infection was significantly inhibited by α2-6-linked sialic acid-containing compounds, but not by α2–3 analog, in VeroE6/TMPRSS2 cells. The α2-6-linked compound bound to SARS-CoV-2 spike S1 subunit to competitively inhibit SARS-CoV-2 attachment to cells. Enzymatic removal of cell surface sialic acids impaired the interaction between SARS-CoV-2 spike and angiotensin-converting enzyme 2 (ACE2), and suppressed the efficient spread of SARS-CoV-2 infection over time, in contrast to its least effect on SARS-CoV spread. Our study provides a novel molecular basis of SARS-CoV-2 infection which illustrates the distinctive characteristics from SARS-CoV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号