首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
The Saccharomyces cerevisiae Pif1p helicase is a negative regulator of telomere length that acts by removing telomerase from chromosome ends. The catalytic subunit of yeast telomerase, Est2p, is telomere associated throughout most of the cell cycle, with peaks of association in both G1 phase (when telomerase is not active) and late S/G2 phase (when telomerase is active). The G1 association of Est2p requires a specific interaction between Ku and telomerase RNA. In mutants lacking this interaction, telomeres were longer in the absence of Pif1p than in the presence of wild-type PIF1, indicating that endogenous Pif1p inhibits the active S/G2 form of telomerase. Pif1p abundance was cell cycle regulated, low in G1 and early S phase and peaking late in the cell cycle. Low Pif1p abundance in G1 phase was anaphase-promoting complex dependent. Thus, endogenous Pif1p is unlikely to act on G1 bound Est2p. Overexpression of Pif1p from a non-cell cycle-regulated promoter dramatically reduced viability in five strains with impaired end protection (cdc13–1, yku80Δ, yku70Δ, yku80–1, and yku80–4), all of which have longer single-strand G-tails than wild-type cells. This reduced viability was suppressed by deleting the EXO1 gene, which encodes a nuclease that acts at compromised telomeres, suggesting that the removal of telomerase by Pif1p exposed telomeres to further C-strand degradation. Consistent with this interpretation, depletion of Pif1p, which increases the amount of telomere-bound telomerase, suppressed the temperature sensitivity of yku70Δ and cdc13–1 cells. Furthermore, eliminating the pathway that recruits Est2p to telomeres in G1 phase in a cdc13–1 strain also reduced viability. These data suggest that wild-type levels of telomere-bound telomerase are critical for the viability of strains whose telomeres are already susceptible to degradation.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.  相似文献   

13.
The heterodimeric Ku complex affects telomere structure in diverse organisms. We report here that in the absence of Ku, the catalytic subunit of telomerase, Est2p, was not telomere-associated in G1 phase, and its association in late S phase was decreased. The telomere association of Est1p, a telomerase component that binds telomeres only in late S phase, was also reduced in the absence of Ku. The effects of Ku on telomerase binding require a 48-nucleotide (nt) stem-loop region of TLC1 telomerase RNA. Ku interacts with TLC1 RNA via this 48-nt region throughout the cell cycle, but this interaction was reduced after telomere replication. These data support a model in which Ku recruits telomerase to telomeres in G1 phase when telomerase is inactive and promotes telomerase-mediated telomere lengthening in late S phase.  相似文献   

14.
Intracellular trafficking of yeast telomerase components   总被引:3,自引:0,他引:3  
  相似文献   

15.
16.
Telomerase regulation is critical to genome maintenance yet remains poorly understood. Without telomerase's ability to synthesize telomere repeats, chromosome ends shorten progressively, as conventional DNA polymerases cannot fully replicate the ends of linear molecules. In Saccharomyces cerevisiae, telomerase activity in vivo absolutely depends on a set of telomerase accessory proteins that includes Est1p, which appears to recruit or activate telomerase at the site of polymerization. Thus, est1Delta cells have the same cellular senescence phenotype as cells lacking either the catalytic protein subunit of telomerase or its template-containing RNA subunit. While the telomerase protein is highly conserved among eukaryotes, the apparent lack of Est1p homologs has frustrated efforts to describe a common mechanism of telomerase recruitment and activation. Here, we describe SpEst1p, a homolog of Est1p from the evolutionarily distant Schizosaccharomyces pombe. Like ScEst1p, SpEst1p is required for telomerase activity in vivo. Coupled with the identification of an orthologous Est1 protein in humans [10], this suggests a much wider conservation of telomerase regulation than was previously known. Strikingly, in cells with compromised telomere function (taz1Delta), SpEst1p loss confers a lethal germination phenotype, while telomerase loss does not, indicating that SpEst1p plays an unexpected additional role in chromosome end protection.  相似文献   

17.
Chan A  Boulé JB  Zakian VA 《PLoS genetics》2008,4(10):e1000236
The catalytic subunit of yeast telomerase, Est2p, is a telomere associated throughout most of the cell cycle, while the Est1p subunit binds only in late S/G2 phase, the time of telomerase action. Est2p binding in G1/early S phase requires a specific interaction between telomerase RNA (TLC1) and Ku80p. Here, we show that in four telomerase-deficient strains (cdc13-2, est1Ä, tlc1-SD, and tlc1-BD), Est2p telomere binding was normal in G1/early S phase but reduced to about 40–50% of wild type levels in late S/G2 phase. Est1p telomere association was low in all four strains. Wild type levels of Est2p telomere binding in late S/G2 phase was Est1p-dependent and required that Est1p be both telomere-bound and associated with a stem-bulge region in TLC1 RNA. In three telomerase-deficient strains in which Est1p is not Est2p-associated (tlc1-SD, tlc1-BD, and est2Ä), Est1p was present at normal levels but its telomere binding was very low. When the G1/early S phase and the late S/G2 phase telomerase recruitment pathways were both disrupted, neither Est2p nor Est1p was telomere-associated. We conclude that reduced levels of Est2p and low Est1p telomere binding in late S/G2 phase correlated with an est phenotype, while a WT level of Est2p binding in G1 was not sufficient to maintain telomeres. In addition, even though Cdc13p and Est1p interact by two hybrid, biochemical and genetic criteria, this interaction did not occur unless Est1p was Est2p-associated, suggesting that Est1p comes to the telomere only as part of the holoenzyme. Finally, the G1 and late S/G2 phase pathways for telomerase recruitment are distinct and are likely the only ones that bring telomerase to telomeres in wild-type cells.  相似文献   

18.
19.
20.
In diverse organisms, the Mre11 complex and phosphoinositide 3-kinase-related kinases (PIKKs), such as Tel1p and Mec1p from S. cerevisiae, are key mediators of DNA repair and DNA damage checkpoints that also function at telomeres. Here, we use chromatin immunoprecipitation (ChIP) to determine if Mre11p, Tel1p, or Mec1p affects telomere maintenance by promoting recruitment of telomerase subunits to S. cerevisiae telomeres. We find that recruitment of Est2p, the catalytic subunit of telomerase, and Est1p, a telomerase accessory protein, was severely reduced in mre11Delta and tel1Delta cells. In contrast, the levels of Est2p and Est1p binding in late S/G2 phase, the period in the cell cycle when yeast telomerase lengthens telomeres, were indistinguishable in wild-type (WT) and mec1Delta cells. These data argue that Mre11p and Tel1p affect telomere length by promoting telomerase recruitment to telomeres, whereas Mec1p has only a minor role in telomerase recruitment in a TEL1 cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号