首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups based on neurovirulence. During the acute phase, DA virus infects cells in the gray matter of the central nervous system (CNS). Throughout the chronic phase, DA virus infects glial cells in the white matter, causing demyelinating disease. Although GDVII virus also infects neurons in the gray matter, infected mice developed a severe polioencephalomyelitis, and no virus is detected in the white matter or other areas in the CNS in rare survivors. Several sequence differences between the two viruses are located in VP2 puff B and VP1 loop II, which are located near each other, close to the proposed receptor binding site. We constructed a DA virus mutant, DApBL2M, which has the VP1 loop II of GDVII virus and a mutation at position 171 in VP2 puff B. While DApBL2M virus replicated less efficiently than DA virus during the acute phase, DApBL2M-induced acute polioencephalitis was comparable to that in DA virus infection. Interestingly, during the chronic phase, DApBL2M caused prolonged gray matter disease in the brain without white matter involvement in the spinal cord. This is opposite what is observed during wild-type DA virus infection. Our study is the first to demonstrate that conformational differences via interaction of VP2 puff B and VP1 loop II between GDVII and DA viruses can play an important role in making the transition of infection from the gray matter in the brain to the spinal cord white matter during TMEV infection.  相似文献   

2.
We constructed a Theiler's virus mutant designated DA3304, in which the amino acid at position 101 of VP1 was changed from a threonine to an alanine. Because of this single amino acid change, DA3304 could still produce a biphasic central nervous system disease similar to that produced by the wild-type DA virus. However, DA3304 was significantly attenuated in both the acute and the chronic phases and induced smaller demyelinating lesions than the wild-type DA virus. The data are most compatible with the attenuated phenotype in DA3304 being due to the change of binding efficiency between the virus and receptor resulting from the physical alteration at the mutation site.  相似文献   

3.
Zhou L  Luo Y  Wu Y  Tsao J  Luo M 《Journal of virology》2000,74(3):1477-1485
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus of the Cardiovirus genus. Certain strains of TMEV may cause a chronic demyelinating disease, which is very similar to multiple sclerosis in humans, associated with a persistent viral infection in the mouse central nervous system (CNS). Other strains of TMEV only cause an acute infection without persistence in the CNS. It has been shown that sialic acid is a receptor moiety only for the persistent TMEV strains and not for the nonpersistent strains. We report the effect of sialylation on cell surface on entry and the complex structure of DA virus, a persistent TMEV, and the receptor moiety mimic, sialyllactose, refined to a resolution of 3.0 A. The ligand binds to a pocket on the viral surface, composed mainly of the amino acid residues from capsid protein VP2 puff B, in the vicinity of the VP1 loop and VP3 C terminus. The interaction of the receptor moiety with the persistent DA strain provides new understanding for the demyelinating persistent infection in the mouse CNS by TMEV.  相似文献   

4.
DA strain of Theiler's murine encephalomyelitis virus produces a persistent demyelinating infection. We previously produced escape mutant viruses that are resistant to a neutralizing monoclonal antibody and have a mutation in VP1 amino acid residue 268 in a neutralization site (Y. Ohara, A. Senkowski, J. Fu, L. Klaman, J. Goodall, M. Toth, and R.P. Roos, J. Virol. 62:3527-3529, 1988). In contrast to wild-type DA strain, these escape mutants produce little if any demyelinating disease after inoculation into weanling mice.  相似文献   

5.
Following intracranial inoculation, Theiler's virus causes either an acute encephalitis (strain GDVII) or a chronic demyelinating disease (strain DA). The DA strain sequentially infects the grey matter of the brain, the grey matter of the spinal cord, and, finally, the white matter of the spinal cord, where it persists in glial cells and causes demyelinating lesions. Analysis of the phenotype of recombinant viruses has shown that the viral capsid contains determinants for persistence and demyelination. Our previous studies showed that a Lys at position 141 of the VP2 capsid protein (VP2-141) could render a chimeric virus persistent. We also reported that another recombinant virus, virus R5, migrated from the grey matter of the brain to that of the spinal cord inefficiently and was unable to infect the white matter of the spinal cord. In this article, we report that introducing a Lys at position VP2-141 in virus R5 increases its ability to infect the white matter of the spinal cord. Our results indicate that this amino acid is important for the spread of the virus within the central nervous system.  相似文献   

6.
Theiler's murine encephalomyelitis virus (TMEV) is a natural pathogen of the mouse. The different strains of TMEV are divided into two subgroups according to the pathology they provoke. The neurovirulent strains GDVII and FA induce an acute fatal encephalitis, while persistent strains, like DA and BeAn, cause a chronic demyelinating disease associated with viral persistence in the central nervous system. Different receptor usage was proposed to account for most of the phenotype difference between neurovirulent and persistent strains. Persistent but not neurovirulent strains were shown to bind sialic acid. We characterized DA and GDVII derivatives adapted to grow on CHO-K1 cells. Expression of glycosaminoglycans did not influence infection of CHO-K1 cells by parental and adapted viruses. Mutations resulting from adaptation of DA and GDVII to CHO-K1 cells notably mapped to the well-characterized VP1 CD and VP2 EF loops of the capsid. Adaptation of the DA virus to CHO-K1 cells correlated with decreased sialic acid usage for entry. In contrast, adaptation of the GDVII virus to CHO-K1 cells correlated with the appearance of a weak sialic acid usage for entry. The sialic acid binding capacity of the GDVII variant resulted from a single amino acid mutation (VP1-51, Asn-->Ser) located out of the sialic acid binding region defined for virus DA. Mutations affecting tropism in vitro and sialic acid binding dramatically affected the persistence and neurovirulence of the viruses.  相似文献   

7.
R L Yauch  K Kerekes  K Saujani    B S Kim 《Journal of virology》1995,69(11):7315-7318
Intracerebral inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in a chronic, immunologically mediated demyelinating disease that shares many features with human multiple sclerosis. CD4+ T lymphocytes play a critical role in the pathogenesis of virus-induced demyelinating disease. We have identified a region within amino acid residues 24 to 37 of the VP3 capsid protein of TMEV (VP3(24-37)) that is recognized by T lymphocytes from the demyelination-susceptible SJL/J strain of mice. The T-cell response to VP3(24-37) represents a predominant Th-cell response against the virus from either TMEV-immunized or TMEV-infected SJL/J mice, and viral epitopes VP1(233-250), VP2(74-86), and VP3(24-37) account for most of the Th-cell response to TMEV.  相似文献   

8.
Theiler’s murine encephalomyelitis viruses, which are murine picornaviruses, can cause central nervous system inflammatory disease. To study the role of loop II in capsid protein VP1, two mutant viruses of strain DA in which DA loop II amino acids were replaced with strain GDVII amino acids were constructed. Infection of mice with the two mutant viruses led to dramatically different patterns of disease.  相似文献   

9.
Assembly of poliovirus virions requires proteolytic cleavage of the P1 capsid precursor polyprotein between two separate glutamine-glycine (QG) amino acid pairs by the viral protease 3CD. In this study, we have investigated the effects on P1 polyprotein processing and subsequent assembly of processed capsid proteins caused by substitution of the glycine residue at the individual QG cleavage sites with valine (QG-->QV). P1 cDNAs encoding the valine substitutions were created by site-directed mutagenesis and were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses which expressed the mutant P1 precursors. The recombinant vaccinia virus-expressed mutant P1 polyproteins were analyzed for proteolytic processing defects in cells coinfected with a recombinant vaccinia virus (VVP3) that expresses the poliovirus 3CD protease and for processing and assembly defects by using a trans complementation system in which P1-expressing recombinant vaccinia viruses provide capsid precursor to a defective poliovirus genome that does not express functional capsid proteins (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The QV-substituted precursors were proteolytically processed at the altered sites both in cells coinfected with VVP3 and in cells coinfected with defective poliovirus, although the kinetics of cleavage at the altered sites were slower than those of cleavage at the wild-type QG site in the precursor. Completely processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor containing a valine at the amino terminus of VP3 (VP3-G001V) were unstable and failed to assemble stable subviral structures in cells coinfected with defective poliovirus. In contrast, capsid proteins derived from the P1 precursor with a valine substitution at the amino terminus of VP1 (VP1-G001V) assembled empty capsid particles but were deficient in assembling RNA-containing virions. The assembly characteristics of the VP1-G001V mutant were compared with those of a previously described VP3-VP1 cleavage site mutant (K. Kirkegaard and B. Nelsen, J. Virol. 64:185-194, 1990) which contained a deletion of the first four amino-terminal residues of VP1 (VP1-delta 1-4) and which was reconstructed for our studies into the recombinant vaccinia virus system. Complete proteolytic processing of the VP1-delta 1-4 precursor also occurred more slowly than complete cleavage of the wild-type precursor, and formation of virions was delayed; however, capsid proteins derived from the VP1-G001V mutant assembled RNA-containing virions less efficiently than those derived from the VP1-delta 1-4 precursor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Theiler's virus is a neurotropic murine picornavirus which, depending on the strain, causes either an acute encephalitis or a persistent demyelinating disease. Following intracranial inoculation, the demyelinating strains infect sequentially the grey matter of the brain, the grey matter of the spinal cord, and finally the white matter of the spinal cord, where they persist and cause chronic demyelination. The neurovirulent strains cause a generally fatal encephalitis with lytic infection of neurons. The study of chimeric Theiler's viruses, obtained by recombining the genomes of demyelinating and neurovirulent strains, has shown that the viral capsid contains determinants for persistence and demyelination. In this article we describe the recombinant virus R5, in which the capsid protein VP1 and a small portion of protein 2A come from the neurovirulent GDVII strain and the rest of the genome comes from the persistent DA strain. The capsid of virus R5 also contains one mutation at amino acid 34 of VP3 (Asn-->His). Virus R5 does not persist in the central nervous system (CNS) of immunocompetent SJL/J or BALB/c mice. However, it replicates efficiently and persists in the CNS of BALB/c nu/nu mice, showing that its growth in the CNS is not impaired. In BALB/c nu/nu mice, whereas virus DA causes mortality with large amounts of viral antigens in the white matter of the spinal cord, virus R5 does not kill the animals, persists in the neurons of the grey matter of the brain, and never reaches the white matter of the spinal cord. This phenotype is due to the chimerism of the capsid and/or to the mutation in VP3. These results indicate that the capsid plays an important role in the characteristic migration of Theiler's virus within the CNS.  相似文献   

11.
Theiler''s virus-induced demyelinating disease has been extensively investigated as a model for persistent viral infection and multiple sclerosis (MS). However, the role of CD8+ T cells in the development of disease remains unclear. To assess the role of virus-specific CD8+ T cells in the pathogenesis of demyelinating disease, a single amino acid substitution was introduced into the predominant viral epitope (VP3 from residues 159 to 166 [VP3159-166]) and/or a subdominant viral epitope (VP3173-181) of susceptible SJL/J mice by site-directed mutagenesis. The resulting variant viruses (N160V, P179A, and N160V/P179A) failed to induce CD8+ T cell responses to the respective epitopes. Surprisingly, mice infected with N160V or N160V/P179A virus, which lacks CD8+ T cells against VP3159-166, did not develop demyelinating disease, in contrast to wild-type virus or P179A virus lacking VP3173-181-specific CD8+ T cells. Our findings clearly show that the presence of VP3159-166-specific CD8+ T cells, rather than viral persistence itself, is strongly correlated with disease development. VP3173-181-specific CD8+ T cells in the central nervous system (CNS) of these virus-infected mice expressed higher levels of transforming growth factor β, forkhead box P3, interleukin-22 (IL-22), and IL-17 mRNA but caused minimal cytotoxicity compared to that caused by VP3159-166-specific CD8+ T cells. VP3159-166-specific CD8+ T cells exhibited high functional avidity for gamma interferon production, whereas VP3173-181-specific CD8+ T cells showed low avidity. To our knowledge, this is the first report indicating that the induction of the IL-17-producing CD8+ T cell type is largely epitope specific and that this specificity apparently plays a differential role in the pathogenicity of virus-induced demyelinating disease. These results strongly advocate for the careful consideration of CD8+ T cell-mediated intervention of virus-induced inflammatory diseases.  相似文献   

12.
13.
Theiler's murine encephalomyelitis virus induces chronic demyelinating disease in genetically susceptible mice. The histopathological and immunological manifestation of the disease closely resembles human multiple sclerosis, and, thus, this system serves as a relevant infectious model for multiple sclerosis. The pathogenesis of demyelination appears to be mediated by the inflammatory Th1 response to viral epitopes. In this study, T cell repertoire reactive to the major pathogenic VP1 epitope region (VP1233-250) was analyzed. Diverse minimal T cell epitopes were found within this region, and yet close to 50% of the VP1-reactive T cell hybridomas used V beta 16. The majority (8/11) of the V beta 16+ T cells required the C-terminal amino acid residue on the epitope, valine at position 245, and every T cell hybridoma recognizing this C-terminal residue expressed V beta 16. However, the complementarity-determining region 3 sequences of the V beta 16+ T cell hybridomas were markedly heterogeneous. In contrast, such a restriction was not found in the V alpha usage. Only restricted residues at this C-terminal position allowed for T cell activation, suggesting that V beta 16 may recognize this terminal residue. Further functional competition analysis for TCR and MHC class II-contacting residues indicate that many different residues can be involved in the class II and/or TCR binding depending on the T cell population, even if they recognize the identical minimal epitope region. Thus, recognition of the C-terminal residue of a minimal T cell epitope may associate with a particular V beta (but not V alpha) subfamily-specific sequence, resulting in a highly restricted V beta repertoire of the epitope-specific T cells.  相似文献   

14.
M Xue  H Wang  W Li  G Zhou  Y Tu  L Yu 《Virology journal》2012,9(1):191
ABSTRACT: BACKGROUND: Foot-and-mouth disease virus (FMDV) exhibits a high degree of antigenic variability. Studies of the antigenic diversity and determination of amino acid changes involved in this diversity are important to the design of broadly protective new vaccines. Although extensive studies have been carried out to explore the molecular basis of the antigenic variation of serotype O and serotype A FMDV, there are few reports on Asia1 serotype FMDV. METHODS: Two serotype Asia1 viruses, Asia1/YS/CHA/05 and Asia1/1/YZ/CHA/06, which show differential reactivity to the neutralizing monoclonal antibody (nMAb) 1B4, were subjected to sequence comparison. Then a reverse genetics system was used to generate mutant versions of Asia1/YS/CHA/05 followed by comparative analysis of the antigenicity, growth property and pathogenicity in the suckling mice. RESULTS: Three amino acid differences were observed when the structural protein coding sequences of Asia1/1/YZ/CHA/06 were compared to that of Asia1/YS/CHA/05. Site-directed mutagenesis and Immunofluorescence analysis showed that the amino acid substitution in the B-C loop of the VP2 protein at position 72 is responsible for the antigenic difference between the two Asia1 FMDV strains. Furthermore, alignment of the amino acid sequences of VP2 proteins from serotype Asia1 FMDV strains deposited in GenBank revealed that most of the serotype Asia1 FMDV strains contain an Asn residue at position 72 of VP2. Therefore, we constructed a mutant virus carrying an Asp-to-Asn substitution at position 72 and named it rD72N. Our analysis shows that the Asp-to-Asn substitution inhibited the ability of the rD72N virus to react with the MAb 1B4 in immunofluorescence and neutralization assays. In addition, this substitution decreased the growth rate of the virus in BHK-21 cells and decreased the virulence of the virus in suckling mice compared with the Asia1/YS/CHA/05 parental strain. CONCLUSIONS: These results suggest that variations in domains other than the hyper variable VP1 G-H loop (amino acid 140 to 160) are relevant to the antigenic diversity of FMDV. In addition, amino acid substitutions in the VP2 influenced replicative ability and virulence of the virus. Thus, special consideration should be given to the VP2 protein in research on structure-function relationships and in the development of an FMDV vaccine.  相似文献   

15.
The HI loop is a prominent domain on the adeno-associated virus (AAV) capsid surface that extends from each viral protein (VP) subunit overlapping the neighboring fivefold VP. Despite the highly conserved nature of the residues at the fivefold pore, the HI loops surrounding this critical region vary significantly in amino acid sequence between the AAV serotypes. In order to understand the role of this unique capsid domain, we ablated side chain interactions between the HI loop and the underlying EF loop in the neighboring VP subunit by generating a collection of deletion, insertion, and substitution mutants. A mutant lacking the HI loop was unable to assemble particles, while a substitution mutant (10 glycine residues) assembled particles but was unable to package viral genomes. Substitution mutants carrying corresponding regions from AAV1, AAV4, AAV5, and AAV8 yielded (i) particles with titers and infectivity identical to those of AAV2 (AAV2 HI1 and HI8), (ii) particles with a decreased virus titer (1 log) but normal infectivity (HI4), and (iii) particles that synthesized VPs but were unable to assemble into intact capsids (HI5). AAV5 HI is shorter than all other HI loops by one amino acid. Replacing the missing residue (threonine) in AAV2 HI5 resulted in a moderate particle assembly rescue. In addition, we replaced the HI loop with peptides varying in length and amino acid sequence. This region tolerated seven-amino-acid peptide substitutions unless they spanned a conserved phenylalanine at amino acid position 661. Mutation of this highly conserved phenylalanine to a glycine resulted in a modest decrease in virus titer but a substantial decrease (1 log order) in infectivity. Subsequently, confocal studies revealed that AAV2 F661G is incapable of efficiently completing a key step in the infectious pathway nuclear entry, hinting at a possible perturbation of VP1 phospholipase activity. Molecular modeling studies with the F661G mutant suggest that disruption of interactions between F661 and an underlying P373 residue in the EF loop of the neighboring subunit might adversely affect incorporation of the VP1 subunit at the fivefold axis. Western blot analysis confirmed inefficient incorporation of VP1, as well as a proteolytically processed VP1 subunit that could account for the markedly reduced infectivity. In summary, our studies show that the HI loop, while flexible in amino acid sequence, is critical for AAV capsid assembly, proper VP1 subunit incorporation, and viral genome packaging, all of which implies a potential role for this unique surface domain in viral infectivity.  相似文献   

16.
The DA strain of Theiler's virus persists in the central nervous systems of mice and causes chronic inflammation and demyelination. The GDVII strain, on the other hand, causes an acute encephalitis that kills the host in a matter of days. We constructed a series of recombinants between two infectious cDNA clones of the genomes of DA and GDVII viruses. Analysis of the phenotypes of the recombinant viruses yielded the following results. (i) Determinants of persistence and demyelination are found only in the VP1 capsid protein of DA virus. (ii) Whereas the VP1 capsid protein of DA virus is able to fully attenuate the neurovirulence of GDVII virus and to allow the chimeric virus to persist and demyelinate, the VP1 capsid protein of GDVII virus is unable to render DA virus neurovirulent. (iii) The mere attenuation of the neurovirulence of GDVII virus does not allow it to persist and demyelinate.  相似文献   

17.
The DA strain of Theiler's virus persists in the central nervous system of mice and causes chronic inflammation and demyelination. On the other hand, the GDVII strain causes an acute encephalitis and does not persist in surviving animals. Series of recombinants between infectious cDNA clones of the genomes of DA and GDVII viruses have been constructed. The analysis of the phenotypes of the recombinant viruses has shown that determinants of persistence and demyelination are present in the capsid proteins of DA virus. Chimeric viruses constructed by the different research groups gave consistent results, with one exception. Chimeras GD1B-2A/DAFL3 and GD1B-2C/DAFL3, which contain part of capsid protein VP2, capsid proteins VP3 and VP1, and different portions of P2 of GDVII in a DA background, were able to persist and cause demyelination. Chimera R4, whose genetic map is identical to that of GD1B-2A/DAFL3, was not. After exchanging the viral chimeras between laboratories and verifying each other's observations, new chimeras were generated in order to explain this difference. Here we report that the discrepancy can be attributed to a single amino acid difference in the sequence of the capsid protein VP2 of the two parental DA strains. DAFL3 (University of Chicago) and the chimeras derived from it, GD1B-2A/DAFL3 and GD1B-2C/DAFL3, contain a Lys at position 141, while TMDA (Institut Pasteur) and R4, the chimera derived from it, contain an Asn in that position. This amino acid is located at the tip of the EF loop, on the rim of the depression spanning the twofold axis of the capsid. These results show that a single amino acid change can confer the ability to persist and demyelinate to a chimeric Theiler's virus, and they pinpoint a region of the viral capsid that is important for this phenotype.  相似文献   

18.
During entry into host cells, poliovirus undergoes a receptor-mediated conformational transition to form 135S particles with irreversible exposure of VP4 capsid sequences and VP1 N termini. To understand the role of VP4 during virus entry, the fate of VP4 during infection by site-specific mutants at threonine-28 of VP4 (4028T) was compared with that of the parental Mahoney type 1 virus. Three virus mutants were studied: the entry-defective, nonviable mutant 4028T.G and the viable mutants 4028T.S and 4028T.V, in which residue threonine-28 was changed to glycine, serine, and valine, respectively. We show that mutant and wild-type (WT) VP4 proteins are localized to cellular membranes after the 135S conformational transition. Both WT and viable 4028T mutant particles interact with lipid bilayers to form ion channels, whereas the entry-defective 4028T.G particles do not. In addition, the electrical properties of the channels induced by the mutant viruses are different from each other and from those of WT Mahoney and Sabin type 3 viruses. Finally, uncoating and/or cytoplasmic delivery of the viral genome is altered in the 4028T mutants: the 4028T.G lethal mutant does not release its genome into the cytoplasm, and genome delivery is slower during infection by mutant 4028T.V 135S particles than by mutant 4028T.S or WT 135S particles. The distinctive electrical characteristics of the different 4028T mutant channels indicate that VP4 sequences might form part of the channel structure. The different entry phenotypes of these VP4 mutants suggest that the ion channels may be related to VP4's role during genome uncoating and/or delivery.  相似文献   

19.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(22):11780-11784
Theiler's murine encephalomyelitis virus (TMEV) infection induces immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infectious model for human multiple sclerosis. To investigate the pathogenic mechanisms, two strains of TMEV (DA and BeAn), capable of inducing chronic demyelination in the central nervous system (CNS), have primarily been used. Here, we have compared the T-cell responses induced after infection with DA and BeAn strains in highly susceptible SJL/J mice. CD4(+) T-cell responses to known epitopes induced by these two strains were virtually identical. However, the CD8(+) T-cell response induced following DA infection in susceptible SJL/J mice was unable to recognize two of three H-2K(s)-restricted epitope regions of BeAn, due to single-amino-acid substitutions. Interestingly, T cells specific for the H-2K(s)-restricted epitope (VP1(11-20)) recognized by both strains showed a drastic increase in frequency as well as avidity after infection with DA virus. These results strongly suggest that the level and avidity of virus-specific CD8(+) T cells infiltrating the CNS could be drastically different after infection with these two strains of TMEV and may differentially influence the pathogenic and/or protective outcome.  相似文献   

20.
J Fu  M Rodriguez    R P Roos 《Journal of virology》1990,64(12):6345-6348
The GDVII strain and other members of the GDVII subgroup of Theiler's murine encephalomyelitis viruses (TMEV) cause an acute lethal neuronal infection in mice, whereas the DA strain and other members of the TO subgroup of TMEV cause a chronic demyelinating disease associated with a persistent virus infection. We used GDVII/DA chimeric infectious cDNAs to produce intratypic recombinant viruses in order to clarify reasons for the TMEV subgroup-specific difference in demyelinating activity. We found that both the GDVII and DA strains contain a genetic determinant(s) for demyelinating activity. No demyelination occurs following GDVII strain inoculation because this strain produces an early neuronal disease that kills mice before white matter disease and persistent infection can occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号