首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The goal of this study was to compare the possible locations, timing, and characteristics of potentially spawning shovelnose sturgeon (Scaphirhynchus platorynchus), blue sucker (Cycleptus elongatus), and associated species during the spring of 2007–2015 in the 149‐km‐long lower Wisconsin River, Wisconsin, USA, a large, shallow, sand‐dominated Mississippi River tributary. A 5‐km index station of two pairs of rocky shoals surrounded by sandy areas was electrofished for shovelnose sturgeon and blue sucker in a standardized fashion a total of 40 times from late March through mid‐June, the presumed spawning period. On one date in 2008 and two dates in 2012, all rocky shoals and adjacent sandy areas in the lowermost 149 km of the river were also electrofished for both species. Shovelnose sturgeon and blue sucker appeared to spawn in the limited rocky areas of the river along with at least four other species: mooneye (Hiodon tergisus), quillback (Carpiodes cyprinus), smallmouth buffalo (Ictiobus bubalus), and shorthead redhorse (Moxostoma macrolepidotum), usually at depths of 0.8–2.0 m and surface velocities of 0.4–1.0 m/s. However, apparently spawning shovelnose sturgeon were found only on mid‐channel cobble and coarse gravel shoals within a single 7‐km segment that included the 5‐km index station, whereas apparently spawning blue suckers were encountered on these same shoals but also more widely throughout the river on eroding bluff shorelines of bedrock and boulder and on artificial boulder wing dams and shoreline rip‐rap. Both species showed evidence of homing to the same mid‐channel shoal complexes across years. Blue sucker tended to concentrate on the shoals earlier in the spring than shovelnose sturgeon, usually from late April through mid‐May at water temperatures of 8.0–15.5°C along with quillback and shorthead redhorse. In comparison, shovelnose sturgeon usually concentrated on the shoals from mid‐May through early June at 13.5–21.8°C along with mooneye and smallmouth buffalo. Based on recaptures of tagged fish, at least some shovelnose sturgeon and blue sucker returned to the shoals at one‐year intervals, although there was evidence that female blue sucker may have been more likely to return at two‐year intervals. Most shovelnose sturgeon could not be reliably sexed based on external characteristics. Spawning shovelnose sturgeon ranged from 487 to 788 mm fork length, 500–2400 g weight, and 5–20 years of age, whereas spawning blue sucker ranged from 495 to 822 mm total length, 900–5100 g weight, and 5–34 years of age, although age estimates were uncertain. Females were significantly larger than males for both species although there was overlap. Growth in length was negligible for tagged and recaptured presumably spawning shovelnose sturgeon and low (3.5 mm/y) for blue sucker, suggesting that nearly all growth may have occurred prior to maturity and that fish may have matured at a wide range of sizes.  相似文献   

2.
Post‐release survival and upstream movement of Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) in the Suwannee River, Florida, were examined following induced spawning using carp pituitary extract (CPE). Six mature females (one CPE‐treated and five control) and 12 mature males (five CPE‐treated and seven control) were implanted with ultrasonic tags in March 2001 during their ingress into the Suwannee River. All CPE‐treated sturgeon and 10 of the 12 control fish were relocated using ultrasonic telemetry during 4 months following their release, resulting in 100% survival of treated fish and 83% known survival of control fish. Two control fish (one female and one male) could not be relocated after 2 weeks post‐release. CPE treatment did not result in mortality but did affect upstream movement behavior, with CPE‐treated males moving upstream at a significantly slower rate than control males and females. Similarly, the maximum observed distance that the fish moved upstream differed among control fish (males and females) and treated males, with control fish moving further upstream than CPE‐treated males. The rate of upstream movement for the single CPE‐treated female was similar to the control females and the maximum upstream distance that this female was located was near a putative spawning area. In general, the environmental parameters of temperature, dissolved oxygen, and conductivity differed over the course of the study but did not differ between treatments and sexes. Treating sturgeon with CPE to induce spawning therefore did not cause mortality but did appear to slow the rate of upstream movement and maximum distance moved in male Gulf sturgeon.  相似文献   

3.
Evidence of autumn spawning of Gulf sturgeon Acipenser oxyrinchus desotoi in the Suwannee River, Florida, was compiled from multiple investigations between 1986 and 2008. Gulf sturgeon are known from egg collections to spawn in the springtime months following immigration into rivers. Evidence of autumn spawning includes multiple captures of sturgeon in September through early November that were ripe (late‐development ova; motile sperm) or exhibited just‐spawned characteristics, telemetry of fish that made >175 river kilometer upstream excursions to the spawning grounds in September–October, and the capture of a 9.3 cm TL age‐0 Gulf sturgeon on 29 November 2000 (which would have been spawned in late September 2000). Analysis of age‐at‐length data indicates that ca. 20% of the Suwannee River Gulf sturgeon population may be attributable to autumn spawning. However, with the very low sampling effort expended, eggs or early life stages have not yet been captured in the autumn, which would be the conclusive proof of autumn spawning. More sampling, and sampling at previously unknown sites frequented by acoustic telemetry fish, would be required to find eggs.  相似文献   

4.
The Kootenai River white sturgeon Acipenser transmontanus population in Idaho, US and British Columbia (BC), Canada became recruitment limited shortly after Libby Dam became fully operational on the Kootenai River, Montana, USA in 1974. In the USA the species was listed under the Endangered Species Act in September of 1994. Kootenai River white sturgeon spawn within an 18‐km reach in Idaho, river kilometer (rkm) 228.0–246.0. Each autumn and spring Kootenai River white sturgeon follow a ‘short two‐step’ migration from the lower river and Kootenay Lake, BC, to staging reaches downstream of Bonners Ferry, Idaho. Initially, augmented spring flows for white sturgeon spawning were thought to be sufficient to recover the population. Spring discharge mitigation enhanced white sturgeon spawning but a series of research investigations determined that the white sturgeon were spawning over unsuitable incubation and rearing habitat (sand) and that survival of eggs and larvae was negligible. It was not known whether post‐Libby Dam management had changed the habitat or if the white sturgeon were not returning to more suitable spawning substrates farther upstream. Fisheries and hydrology researchers made a team effort to determine if the spawning habitat had been changed by Libby Dam operations. Researchers modeled and compared velocities, sediment transport, and bathymetry with post‐Libby Dam white sturgeon egg collection locations. Substrate coring studies confirmed cobbles and gravel substrates in most of the spawning locations but that they were buried under a meter or more of post‐Libby Dam sediment. Analysis suggested that Kootenai River white sturgeon spawn in areas of highest available velocity and depths over a range of flows. Regardless of the discharge, the locations of accelerating velocities and maximum depth do not change and spawning locations remain consistent. Kootenai River white sturgeon are likely spawning in the same locations as pre‐dam, but post‐Libby Dam water management has reduced velocities and shear stress, thus sediment is now covering the cobbles and gravels. Although higher discharges will likely provide more suitable spawning and rearing conditions, this would be socially and politically unacceptable because it would bring the river elevation to or in excess of 537.66 m, which is flood stage. Thus, support should be given to habitat modifications incorporated into a management plan to restore suitable habitat and ensure better survival of eggs and larvae.  相似文献   

5.
Lake sturgeon Acipenser fulvescens are imperiled throughout the Laurentian Great Lakes basin. Efforts to restore this species to former population levels have been ineffective due in part to limited information regarding its early life history. The objectives of this study were to characterize the larval drift and biological attributes of age‐0 lake sturgeon in the lower Peshtigo River, Wisconsin. Lake sturgeon larvae were captured from May to June 2002 and 2003 using drift nets, while age‐0 juveniles were captured from June through October 2002 and 2003 using wading, snorkeling, backpack electrofishing, and haul‐seine surveys. Larval drift occurred within 14 days of adult spawning and extended from 1 to 3 weeks in duration, with two peaks in the number of fish drifting downstream each year. Larvae had a median total length (TL) of 19 mm (range: 13–23; N = 159) in 2002 and 18 mm (range: 13–24; N = 652) in 2003. Catch‐per‐unit‐effort for larvae was 0.18 fish h?1 m2 and 0.94 fish h?1 m2 in 2002 and 2003, respectively. Age‐0 juvenile lake sturgeon exhibited rapid growth (i.e. 2.57 mm day?1 in TL and 0.66 g day?1 in wet weight) throughout summer and fall months; relative condition of fish in both years was approximately 100, indicating good condition. Absolute abundance of age‐0 juveniles in 2003 was estimated at 261 fish using the Schnabel estimator. The results from this study indicate that the lower Peshtigo River contains important nursery habitats suitable for age‐0 lake sturgeon.  相似文献   

6.
Fragmentation of the Yellowstone River is hypothesized to preclude recruitment of endangered Scaphirhynchus albus (pallid sturgeon) by impeding upstream spawning migrations and access to upstream spawning areas, thereby limiting the length of free‐flowing river required for survival of early life stages. Building on this hypothesis, the reach of the Yellowstone River affected by Intake Diversion Dam (IDD) is targeted for modification. Structures including a rock ramp and by‐pass channel have been proposed as restoration alternatives to facilitate passage. Limited information on migrations and swimming capabilities of pallid sturgeon is available to guide engineering design specifications for the proposed structures. Migration behavior, pathways (channel routes used during migrations), and swimming capabilities of free‐ranging wild adult pallid sturgeon were examined using radiotelemetry, and complemented with hydraulic data obtained along the migration pathways. Migrations of 12–26% of the telemetered pallid sturgeon population persisted to IDD, but upstream passage over the dam was not detected. Observed migration pathways occurred primarily through main channel habitats; however, migrations through side channels up to 3.9 km in length were documented. The majority of pallid sturgeon used depths of 2.2–3.4 m and mean water velocities of 0.89–1.83 m/s while migrating. Results provide inferences on depths, velocities, and habitat heterogeneity of reaches successfully negotiated by pallid sturgeon that may be used to guide designs for structures facilitating passage at IDD. Passage will provide connectivity to potential upstream spawning areas on the Yellowstone River, thereby increasing the likelihood of recruitment for this endangered species.  相似文献   

7.
Quantified were the age, growth, mortality and reproductive structure of lake sturgeon (Acipenser fulvescens) collected in the US and Canadian waters of the Namakan Reservoir. The hypotheses were tested that (i) age and growth of lake sturgeon in the Namakan Reservoir would differ by sex and reproductive stage of maturity, and (ii) that the relative strength of year‐classes of lake sturgeon in the reservoir would be affected by environmental variables. To quantify age, growth and mortality of the population, existing data was used from a multi‐agency database containing information on all lake sturgeon sampled in the reservoir from 2004 to 2009. Lake sturgeon were sampled in the Minnesota and Ontario waters of the Namakan Reservoir using multi‐filament gillnets 1.8 m high and 30–100 m long and varying in mesh size from 178 to 356 mm stretch. Reproductive structure of the lake sturgeon was assessed only during spring 2008 and 2009 using plasma testosterone and estradiol‐17β concentrations. Ages of lake sturgeon >75 cm ranged from 9 to 86 years (n = 533, mean = 36 years). A catch‐curve analysis using the 1981–1953 year classes estimated total annual mortality of adults to be 4.8% and annual survival as 95.2%. Using logistic regression analysis, it was found that total annual precipitation was positively associated with lake sturgeon year‐class strength in the Namakan Reservoir. A 10 cm increase in total annual precipitation was associated with at least a 39% increase in the odds of occurrence of a strong year class of lake sturgeon in the reservoir. Plasma steroid analysis revealed a sex ratio of 2.4 females: 1 male and, on average, 10% of female and 30% of male lake sturgeon were reproductively mature each year (i.e. potential spawners). Moreover, there was evidence based on re‐captured male fish of both periodic and annual spawning, as well as the ability of males to rapidly undergo gonadal maturation prior to spawning. Knowledge of lake sturgeon reproductive structure and factors influencing recruitment success contribute to the widespread conservation efforts for this threatened species.  相似文献   

8.
Stream and river ecosystems present fluvial fishes with a dynamic energy landscape because moving water generates heterogeneous flow fields that are rarely static in space and time. Fish movement behavior should be consistent with conserving energy in these dynamic flowing environments, but little evidence supporting this hypothesis exists. Here, we tested experimentally whether three general movement behaviors—against the current, with the current, or holding position (i.e., staying in one position and location)—were performed in a way consistent with minimizing the cost of swimming in a heterogeneous flow field. We tested the effects of water velocity on movement behavior across three age classes (0, 1, and 5 years) of two different fluvial specialist fishes, the pallid sturgeon (Scaphirhynchus albus) and shovelnose sturgeon (Scaphirhynchus platorynchus). Individuals from the three age classes were exposed to a continuous and dynamic velocity field ranging from 0.02 to 0.53 m s−1, which represented natural benthic flow regimes occupied by these species in rivers. Both sturgeon species exhibited the same pattern with regard to their tendency to hold position, move upstream, or move downstream. Moving downstream was positively associated with velocity for all age groups. Moving upstream was inversely related to velocity for young fish, but as the fish aged, moving upstream was not related to water velocity. The oldest fish (age 5) moved upstream more frequently compared to the younger age classes. Holding position within a water current was the most frequent behavior and occurred with similar probability across the range of experimental velocity for youngest fish (age 0), but was inversely related to velocity in older fish. Our experiment across age classes suggests that the suite of swimming behaviors exhibited by fluvial specialists might have evolved to mitigate the energetic costs of complex energy landscapes generated by moving water to ultimately maximize net energy gain.  相似文献   

9.
Continued study of the relationship between lake sturgeon (Acipenser fulvescens) recruitment and hydroelectric dams and operations, in a variety of river systems and habitat types is needed to improve the ability to predict and monitor impacts of the hydroelectric industry on this species. Herein, we present results of a juvenile lake sturgeon study aimed at addressing concerns over an inferred lack of recruitment resulting from spawning downstream of a hydroelectric generating station (HGS). Two years of sampling (2015 and 2016) were conducted in five sections of a 41 km long reach of the Seine River, Ontario, a lake sturgeon spawning tributary of Rainy Lake. Using an established gillnetting method, deepwater habitat was targeted to capture juvenile lake sturgeon to assess relative abundance, recruitment (cohort strength), and growth. Deepwater habitat, defined as water depths >6 m in this system, comprised only 2.1% of the wetted area in this study area. Within these habitats, a total of 331 lake sturgeon capture events were observed over the 2-years study period. The majority of the lake sturgeon catch (85%) was comprised of age-0 to age-5 individuals (both sampling years combined). Although inter-annual variation in cohort strength was apparent, each cohort between 2006 and 2016 was represented. The spatial distribution of cohorts varied among river reaches with younger individuals (age-0 and age-1) occupying reaches proximal to the Sturgeon Falls HGS, and larger, older individuals (age-2 to age-5) occupying reaches further downstream. The rarity of age-6+ individuals can likely be explained by ongoing downstream redistribution of juveniles over time, out of the Seine River and into Rainy Lake. Growth of juvenile lake sturgeon captured in the Seine River was above average relative to conspecifics from other rivers in the Hudson Bay drainage. Unfortunately, baseline data sets required to facilitate comparisons of contemporary (post-construction Sturgeon Falls HGS) versus historical (i.e. pre- Sturgeon Falls HGS) lake sturgeon recruitment, or to evaluate the influence of the Seine River Water Management Plan (2004) on lake sturgeon recruitment, are lacking. However, juvenile Lake Sturgeon are more abundant in this system than what had been surmised based on recent studies which implemented random sampling. Results indicate that juvenile lake sturgeon may reside in spawning tributaries for several years (age-0 to age-5) prior to seeking alternate habitats and highlights the value of targeted sampling (i.e. by depth) along the flow axis of rivers downstream of spawning areas when assessing lake sturgeon recruitment patterns.  相似文献   

10.
Recent advancements in telemetry have allowed managers and researchers to conduct comprehensive studies on the movement ecology of lake sturgeon (Acipenser fulvescens), a species of conservation concern in most of the Laurentian Great Lakes basin. In Michigan waters of Lake Michigan, drowned river mouth systems (a protected lake-like habitat that connects a river to lake) support 4 of 11 remaining lake sturgeon populations. One of those remnant populations is supported by the Muskegon River, a drowned river mouth system consisting of both Muskegon Lake and the Muskegon River. The objectives of this 6-year telemetry study were to determine whether adult lake sturgeon occupied the Muskegon River system outside of the spawning season (defined as March to July), to quantify their use of the system annually, and to identify and characterize patterns in occurrence. A total of 21 adult lake sturgeon implanted with acoustic transmitters were passively monitored throughout the year during 2012–2017. Eighty-two percent of tagged fish at large were detected ≥1 day in the Muskegon River system annually, and tagged lake sturgeon were frequently detected during both spawning and non-spawning time periods. Residency index (i.e., no. detection days/365 days) values indicated that adult lake sturgeon were not only detected throughout the year but that they occupied the Muskegon River system for an average of 130 days each year (residency index = 0.36 ± 0.05 SE) during our most spatially intensive acoustic monitoring in 2016–2017. Additionally, 24% of tagged lake sturgeon were primary residents (i.e., residency index >0.5) of the Muskegon River system in both years. Adult lake sturgeon followed 1 of 3 patterns of occurrence based on individual detection histories, and those patterns varied temporally and by the relative amount of use (i.e., high, medium, and low). Our findings build on previous research that found drowned river mouth systems in Lake Michigan can be important nursery habitats for juvenile lake sturgeon by showing that these habitats also can be used extensively by adult lake sturgeon throughout the year.  相似文献   

11.
This study was conducted in order to evaluate seasonal migratory behaviour and reproductive pattern of lake sturgeon in a confined region of the Mattagami River system in northern Ontario where river flow is regulated by hydroelectric works. Radio tracking and the systematic sampling of lake sturgeon using gill nets indicated that the distribution of fish throughout the study site varied on a seasonal basis. This distribution was related to the migration of individuals to potential spawning sites in the spring, a post-spawning dispersal to feeding areas and late summer migration to an area of concentration on the Groundhog River which is a tributary of the Mattagami River. There was a high proportion of fish (about 50%), within the size range of reproductively active fish, found in the vicinity of suitable spawning habitat during early May. Measurement of the gonadosomatic index (GSI) and plasma sex steroid hormone levels revealed a divergent pattern of reproductive development between the sexes. Female sturgeon exhibited a prolonged period of ovarian regression following spawning. Resumption of ovarian development was not evident until September and was characterized by an increased GSI and plasma levels of testosterone and 17β-estradiol. In contrast, male lake sturgeon began testicular recrudescence within one month of spawning with the GSI reaching prespawning levels by September; reproductive hormones were at prespawning levels by the end of June. It seems that hydroelectric works has complex effects on sturgeon in the Mattagami system. The extensive migratory behaviour of lake sturgeon within the study area make it prone to impingement or entrainment whereas the altered river flow appears to enhance reproductive development. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Annual reproductive surveys monitored nesting location, reproductive success and the age and size of individually tagged male smallmouth bass Micropterus dolomieu that reproduced in Millers Lake, a 45 ha widening of the Mississippi River, Ontario, and in a 1·5 km pool and riffle section of the river directly upstream. The vast majority of males displayed fidelity to either the river or the lake as reproductive habitat throughout their lifetimes. Nearly, half of the males that reproduced in successive years exhibited strong nest‐site fidelity by nesting within 20 m of their previous year’s nest site. In most years, when compared to those in the lake, reproductive males in the river differed significantly in reproductive characteristics including age and size at maturation and nesting success rates. A 3 year telemetry project identified two distinct habitat use patterns: lake‐resident fish remained in the lake throughout the year and potamodromous individuals migrated from the lake to upriver spawning habitat in the spring and then returned to the lake prior to the onset of winter. Integration of habitat use and reproductive data suggests that there are significant differences in the life‐history strategies of fish that reproduce in the river v. the lake.  相似文献   

13.
Species translocations are increasingly being used as a management tool to mitigate population losses due to such factors as habitat degradation and fragmentation, but post‐introduction follow‐up is relatively sparse. Post‐translocation telemetry can assess success by identifying activity, emigrations, survival, habitat usage, and reproductive events, aiding in the continued management of translocated populations and informing future efforts. This study assessed movement of translocated adult lake sturgeon (Acipenser fulvescens) immediately post‐release and a decade later, and tested for associations between environmental variables and spawning movements. Prior to their translocation in 2002, 13 of 51 adult lake sturgeon were surgically implanted with radio telemetry tags and tracked for 1 year. In 2011 and 2013, eight additional adults were captured within the reintroduction site and implanted with radio‐tags. Six of the 13 sturgeon tagged in 2002 dispersed downstream over a dam during the early post‐release period. In spring 2014, tagged adults were tracked to the spillway at the release area's inflow, and spawning was confirmed by larval captures. Movement data for tagged adults differed between the two tracking periods, showing marked differences in behaviour over time. Water velocity was correlated with upstream and downstream spawning movements, with water temperature also correlated with downstream movement. Research regarding post‐translocation movement and dispersal provides insight on behavioural responses following translocation, and may improve outcomes by informing future efforts.  相似文献   

14.
Migration of green sturgeon, Acipenser medirostris, in the Sacramento River   总被引:1,自引:0,他引:1  
Adult green sturgeon, Acipenser medirostris, were collected in San Pablo Bay, California, and surgically implanted with ultrasonic acoustic tags from 2004 to 2006. An array of automated acoustic monitors was maintained in the Sacramento River to record movements of these fish. We presumed movements to known spawning areas (based on previous green sturgeon egg collections) or areas with potential spawning habitat (characterized by substrate, flow, and temperature criteria) represented a “spawning migration.” Three separate annual “spawning migrations” were recorded involving 15 individuals. The majority of the Sacramento River migrants entered the system in the months of March and April. Two different patterns of “spawning migration” and out-migration were observed. Six individuals potentially spawned, over-summered and moved out of the river with the first fall flow event. This is believed to be the common behavior of the green sturgeon. Alternatively, nine individuals promptly moved out of the Sacramento River before 1 September, and any known flow or temperature cue. Some green sturgeon appeared to be impeded on their upstream movement by the 15 May closure of the Red Bluff Diversion Dam, and at least five passed under the dam gates during downstream migration. A delay in the closure of the Red Bluff Diversion Dam would likely allow upstream passage of spawning green sturgeon, further, the potential mortality affects of downstream passage beneath the Red Bluff Diversion Dam should be assessed. Specific protection should be also given to the large aggregation of green sturgeon located in the reach of the Sacramento River adjacent to the Glen Colusa Irrigation District pumping facility.  相似文献   

15.
Mortality that occurs during larval dispersal as a consequence of environmental, maternal, and genetic effects and their interactions can affect annual recruitment in fish populations. We studied larval lake sturgeon (Acipenser fulvescens) drift for two consecutive nights to examine whether larvae from different females exposed to the same environmental conditions during dispersal differed in relative levels of mortality. We estimated proportional contributions of females to larval collections and relative larval loss among females as larvae dispersed downstream between two sampling sites based on genetically determined parentage. Larval collections were composed of unequal proportions of offspring from different females that spawned at upstream and downstream locations (~0.8 km apart). Hourly dispersal patterns of larvae produced from females spawning at both locations were similar, with the largest number of larvae observed during 22:00–23:00 h. Estimated relative larval loss did not differ significantly among females as larvae were sampled at two sites approximately 0.15 and 1.5 km from the last section downstream of spawning locations. High inter- and intra-female variation in larval contributions and relative larval loss between nights may be a common feature of lake sturgeon and other migratory fish species, and likely is a source of inter-annual and intra-annual variation in fish recruitment.  相似文献   

16.
Koed  A.  Balleby  K.  Mejlhede  P. 《Hydrobiologia》2002,483(1-3):175-184
The behaviour of radio-tagged adult pikeperch (Stizostedion lucioperca (L.)) from two areas in the Danish River Gudenaa were recorded prior to, and during the spawning period. Eight of 13 tagged fish in the lower reaches of the river were located throughout the whole study. Five of these fish moved upstream to various sites in the river prior to spawning, which occurred from late April to June. The three remaining fish moved to the fjord. These movements were interpreted as a spawning migration, and it is suggested that the lower reaches of the River Gudenaa constitute an over-wintering area for pikeperch, which use different spawning areas. Ten pikeperch caught just downstream of an impassable hydropower plant were radio-tagged and translocated upstream of the dam to a reservoir. Within a week, half of the fish moved to a lake situated more than 30 km upstream the reservoir. This behaviour is hypothesised to be a homing response. The study reveals that the pikeperch is a highly mobile species with a complicated migration pattern, even in relatively small river systems.  相似文献   

17.
We observed Suwannee River Gulf sturgeon, Acipenser oxyrinchus desotoi, in the laboratory and found free embryos (first interval after hatching) hid under rocks and did not migrate. Thus, wild embryos should be at the spawning area. Larvae (first interval feeding exogenously) initiated a slow downstream migration, and some juveniles (interval with adult features) continued to migrate slowly for at least 5 months, e.g., a 1-step long larva-juvenile migration. No other population of sturgeon yet studied has this migration style. A conceptual model using this result suggests wild year-0 sturgeon have a variable downstream migration style with short-duration (short distance) migrants and long-duration (long distance) migrants. This migration style should widely disperse wild fish. The model is supported by field studies that found year-0 juveniles are widely dispersed in fresh water to river km 10. Thus, laboratory and field data agree that the entire freshwater reach of river downstream of spawning is nursery habitat. Foraging position of larvae and early juveniles was mostly on the bottom, but fish also spent hours holding position in the water column, an unusual feeding location for sturgeons. The holding position of fish above the bottom suggests benthic forage in the river is scarce and fish have evolved drift feeding. The unusual migration and foraging styles may be adaptations to rear in a river at the southern limit of the species range with poor rearing habitat (low abundance of benthic forage and high summer water temperatures). Suwannee River Gulf sturgeon and Hudson River Atlantic sturgeon, A. o. oxyrinchus, are similar for initiation of migration, early habitat preference, and diel migration. The two subspecies differ greatly for migration and foraging styles, which is likely related to major differences in the quality of rearing habitat. The differences between Atlantic sturgeon populations show the need for geographical studies to represent the behavior of an entire species.  相似文献   

18.
Green sturgeon, Acipenser medirostris, movement and migration within the Klamath and Trinity rivers were assessed using radio and sonic telemetry. Sexually mature green sturgeon were captured with gillnets in the spring, as adults migrated upstream to spawn. In total, 49 green sturgeon were tagged with radio and/or sonic telemetry tags and tracked manually or with receiver arrays from 2002 to 2004. Tagged individuals exhibited four movement patterns: upstream spawning migration, spring outmigration to the ocean, or summer holding, and outmigration after summer holding. Spawning migrations occurred from April to June, as adults moved from the ocean upstream to spawning sites. Approximately 18% of adults, those not out mignation in the spring, made spring post-spawning outmigrations. The majority of adults, those not outmigrating in the spring, remained in discrete locations characterized as deep, low velocity pools for extended periods during the summer and early fall. Fall outmigration occurred when fish left summer holding locations, traveled rapidly downstream, and exited the river system. High river discharge due to the onset of winter rainstorms and freshets appear to be the key environmental cue instigating the fall outmigration.  相似文献   

19.
For effective conservation, it is important to explore the environmental cues initiating the spawning activities of a fish species. Based on monitoring data gathered between 1998 and 2011, the relationships between spawning activities of the Chinese sturgeon, Acipenser sinensis, and several environmental cues were analyzed using the rare events logistic regression ‘Relogit’ method, which indicated that water temperature, 1‐day ?‐discharge, and atmospheric pressure were among the key spawning cues for Asinensis (P < 0.05). It is suggested that Chinese sturgeon might have an optimal environment window of 17–20°C water temperature, high day‐to‐day discharge increase, and low atmospheric pressure for spawning. In support of Chinese sturgeon reproduction, suggested modifications to the operational procedures for the Three Gorges Reservoir (TGR) to trigger spawning are: lowering the downstream water temperature to below 20°C before mid‐October and expanding the period with water temperatures of between 17 and 20°C; to create a day‐to‐day intermittent increase in the discharge to an optimal spawning water temperature; and to regulate flow at nights with a low atmospheric pressure.  相似文献   

20.
In 2007, Hydro‐Québec began the construction of the Rupert Diversion in conjunction with the Eastmain‐1A and Sarcelle powerhouses. The partial diversion of the Rupert River became operational in 2009. Mitigation measures to preserve lake sturgeon (Acipenser fulvescens) habitat downstream of the diversion include an instream flow, weir and spurs to maintain water levels, and fish passage channels and spawning grounds. An environmental follow‐up was done in the reduced‐flow section of the Rupert. The baseline status was established from 2007 to 2009 and follow‐up studies were conducted from 2010 through 2012, and in 2014 and 2016. Besides presenting results from Hydro‐Québec's environmental monitoring, analyses were performed to search for determinants of year‐class strength. The results of the lake sturgeon monitoring activities indicate that the abundance of juveniles ≤8‐year‐old in the reduced flow section of the river remained similar or increased. Although larval production increased in post diversion conditions, cohort strength tended to decrease as did juvenile growth. Year‐class strength was positively correlated with spring and summer flow. Also, a significant, strong negative correlation was found between estimated larval abundance and water temperature during larval drift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号