首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depth-dependent fluorescence quenching by lipid-attached quenchers (e.g., bromine atoms and doxyl groups) is an important tool for determining the penetration of proteins and peptides into lipid bilayers. Extracting quantitative information and accurate calculations of the depth of the fluorophore are complicated by thermal disorder, resulting in broad distributions of the transverse positions of both quenchers and fluorophores. Twenty-one years ago a methodology called distribution analysis (DA) was introduced, based on the emerging view of the complexity of the transverse organization of lipid bilayer structure. The method is aimed at extracting quantitative information on membrane penetration, such as position and width of fluorophore's distribution along the depth coordinate and its exposure to the lipid phase. Here we review recent progress in refining the DA method and illustrate its applications to protein–membrane interactions. We demonstrate how basic assumptions of the DA approach can be validated using molecular dynamics simulations and how the precision of depth determination is improved by applying a new protocol based on a combination of steady-state and time-resolved fluorescence quenching. Using the example of the MPER fragment of the membrane-spanning domain of the HIV-1 gp41 fusion protein, we illustrate how DA applications and computer simulations can be used together to reveal the molecular organization of a protein–membrane complex. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

2.
Accurate determination of the depth of membrane penetration of a fluorescent probe, attached to a lipid, protein, or other macromolecule of interest, using depth-dependent quenching methodology is complicated by thermal motion in the lipid bilayer. Here, we suggest that a combination of steady-state and time-resolved measurements can be used to generate a static quenching profile that reduces the contribution from transverse diffusion occurring during the excited-state lifetime. This procedure results in narrower quenching profiles, compared with those obtained by traditional measurements, and thus improves precision in determination of the underlying depth distribution of the probe.  相似文献   

3.
The fluorescence of a membrane-bound tryptophan derivative (tryptophan octyl ester, TOE) has been examined as a model for tryptophan fluorescence from proteins in membrane environments. The depth-dependent fluorescence quenching of TOE by brominated lipids was found to proceed via a dynamic mechanism with vertical fluctuations playing a central role in the process. The activation energy for the quenching was estimated to be 1.3 kcal/mole. The data were analyzed using the distribution analysis (DA) method, which extends the conventional parallax method to account more realistically for the transbilayer distributions of both probe and quencher and for possible variations in the probe's accessibility. DA provides a better fit than the parallax method to data collected with TOE in membranes formed of lipids brominated at either the 4,5, the 6,7, the 9,10, or the 11,12 positions of the sn-2 acyl chain. DA yields information on the fluorophore's most probable depth in the membrane, its conformational heterogeneity, and its accessibility to the lipid phase. Previously reported data on cytochrome b5 and melittin were reanalyzed together with data obtained with TOE. This new analysis demonstrates conformational heterogeneity in melittin and provides estimates of the freedom of motion and exposure to the lipid phase of membrane-embedded tryptophans of cytochrome b5.  相似文献   

4.
Fluorescence quenching is used to gain information on the exposure of tryptophan residues to lipid in membrane-bound proteins and peptides. A protocol is developed to calculate this exposure, based on a comparison of quenching efficiency and of a fluorescence lifetime (or quantum yield) measured for a protein and for a model tryptophan-containing compound. Various methods of analysis of depth-dependent quenching are compared and three universal measures of quenching profile are derived. One of the measures, related to the area under profile, is used to estimate quenching efficiency. The method is applied to single tryptophan mutants of a membrane-anchoring nonpolar peptide of cytochrome b(5) and of an outer membrane protein A. Analysis of quenching of the cytochrome's nonpolar peptide by a set of four brominated lipids reveals a temperature-controlled reversible conformational change, resulting in increased exposure of tryptophan to lipid and delocalization of its transverse position. Kinetic quenching profiles and fluorescence binding kinetics reported by Kleinschmidt et al. (Biochemistry (1999) 38, 5006-5016) were analyzed to extract information on the relative exposure of tryptophan residues during folding of an outer membrane protein A. Trp-102, which translocates across the bilayer, was found to be noticeably shielded from the lipid environment throughout the folding event compared to Trp-7, which remains on the cis side. The approach described here provides a new tool for studies of low-resolution structure and conformational transitions in membrane proteins and peptides.  相似文献   

5.
Membrane-protein interaction plays key roles in a wide variety of biological processes. Although various methods have been employed to measure membrane binding of soluble proteins, a robust high-throughput assay that is universally applicable to all proteins is lacking at present. Here we report a new fluorescence quenching assay utilizing enhanced green fluorescence protein (EGFP)-fusion proteins and a lipid containing a dark quencher, N-dimethylaminoazobenzenesulfonyl-phosphatidylethanolamine (dabsyl-PE). The EGFP fluorescence emission intensity showed a large decrease (i.e., >50%) when EGFP-fusion proteins bound the vesicles containing 5 mol% dabsyl-PE. This simple assay, which can be performed using either a cuvette-based spectrofluorometer or a fluorescence plate reader, allowed rapid, sensitive, and accurate determination of lipid specificity and affinity for various lipid binding domains, including two pleckstrin homology domains, an epsin N-terminal homology domain, and a phox homology domain. The assay can also be applied to high-throughput screening of small molecules that modulate membrane binding of proteins.  相似文献   

6.
The partitioning of fluorescence probes into intracellular organelles poses a major problem when fluorescence methods are applied to evaluate the fluidity properties of cell plasma membranes with intact cells. This work describes a method for resolution of fluidity parameters of the plasma membrane in intact cells labelled with the fluorescence polarization probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The method is based on selective quenching, by nonradiative energy transfer, of the fluorescence emitted from the plasma membrane after tagging the cell with a suitable membrane impermeable electron acceptor. Such selective quenching is obtained by chemical binding of 2,4,6-trinitrobenzene sulfonate (TNBS), or by incorporation of N-bixinoyl glucosamine (BGA) to DPH-labelled cells. The procedures for determination of lipid fluidity in plasma membranes of intact cells by this method are simple and straightforward.  相似文献   

7.
The tryptophan intrinsic fluorescence of mitochondrial complex III reconstituted in phosphatidylcholine bilayers was examined at different temperatures. Absorption and emission maxima occur at 277 and 332 nm, irrespective of temperature or lipid:protein ratio even if there are indications (from fluorescence quenching) of protein conformational changes as a function of lipid:protein ratio. Low values of Trp fluorescence quantum yield in complex III (0.008-0.010) are probably due to the neighborhood of the heme groups. The temperature-dependent decrease of fluorescence intensity is nonlinear; the corresponding Arrhenius plots show "breaks" or discontinuities that could be interpreted as thermally dependent changes in protein conformation. However, no temperature-dependent changes in fluorescence quenching have been observed that may be related to protein conformational changes. In addition, Arrhenius plots of the fluorescence intensity of simple molecules, such as Trp or 1-anilino-8-naphthalene sulfonate in the presence of aqueous phospholipid dispersions, also show breaks in the same temperature range. Stern-Volmer plots of acrylamide and iodide quenching were also nonlinear, indicating large differences in quenching constants for the various tryptophanyl residues. The quenching results also suggest that, at high lipid:protein ratios, the microviscosity of the protein matrix is higher than that in lipid-poor systems. Comparison of quenching efficiencies of iodide and acrylamide suggest that no significant fraction of the fluorophores occurs in the neighborhood of charged residues.  相似文献   

8.
Nile red (NR) is a popular fluorescent indicator to visualize lipid bodies in intact cells and has been extensively utilized to monitor triglyceride accumulation in microalgae. Typically, addition of NR to algae results in a rapid fluorescence enhancement followed by fluorescence quenching. NR fluorescence rise can be resolved into two kinetic phases: a fast phase (P1, sec), monitored at 525 nm/630 nm, followed by a slower phase (P2, min), monitored at 488 nm/575 nm. Studies with isolated plasma membrane (PM) and lipid globule (LG) preparations, suggest that P1 and P2 represent entry to the PM and transfer to LG, respectively. High NaCl slows down the interactions of NR with algae and with lipid globules. The onset of NR fluorescence quenching varies in different algae species between 5 min to 1 h, and is observed in intact cells and in isolated LG. NR fluorescence quenching depends on NR concentration and is almost eliminated at low NR/cell ratios, indicating that it results from self-interactions of LG-associated dye. Glycerol has a dual effect on NR fluorescence: it eliminates kinetic anomalies resulting from limited solubility and self-interactions, but it also quenches NR fluorescence. NR fluorescence quenching by glycerol, as well as NR fluorescence enhancement by iodide anions, was observed only at high NR/LG ratios. These findings suggest that lipid-associated NR is more exposed to hydrophilic quenchers at high than at low NR concentrations. The results emphasize the importance of defining the optimal time window and NR concentrations for monitoring lipid accumulation in microalgae by NR fluorescence and clarify the origin of spectral anomalies resulting from self-interactions of dye molecules.  相似文献   

9.
The intrinsic fluorescence of the colicin A thermolytic fragment does not change after insertion into normal phospholipid vesicles and is thus an unsuitable probe for monitoring the membrane insertion process. In this paper, we report the results of studies on the quenching of this fluorescence by brominated dioleoylphosphatidylglycerol (Br-DOPG) vesicles. Bromine atoms located at the midpoint of the phospholipid acyl chain quench the tryptophan fluorescence, indicating contact between fluorophores of the protein and the bilayer's hydrophobic core. Addition of Br-DOPG vesicles to a protein solution quenches the tryptophan fluorescence in a time-dependent manner. This quenching can be fitted to a single-exponential function, and thus interpreted as a one-step process. This allows calculation of an apparent rate constant of protein insertion into the membrane. Parameters known to affect the insertion of the thermolytic fragment into phospholipid monolayers or vesicles (pH and negative charge density) also affect the rate constant in comparable ways. In addition to the information gained concerning membrane exposure in the steady state, this approach provides the first real-time method for measuring the insertion of colicin into membranes. It is highly quantitative and can be used on all versions of the protein, e.g., full size, proteolytic fragments, and mutants. Brominated lipids provide experimental conditions identical to normal lipids and allow for great flexibility in protein/lipid ratios and concentrations. The kinetic analysis shows clearly the existence of a two-step process involving a rapid adsorption of the protein to the lipid surface followed by a slow insertion.  相似文献   

10.
An important component of the study of membrane proteins involves the determination of details associated with protein topology - for example, the location of transmembrane residues, specifics of immersion depth, orientation of the protein in the membrane, and extent of solvent exposure for each residue. Solution state NMR is well suited to the determination of immersion depth with the use of paramagnetic additives designed to give rise to depth-specific relaxation effects or chemical shift perturbations. Such additives include spin labels designed to be "anchored" within a given region of the membrane or small freely diffusing paramagnetic species, whose partitioning properties across the water membrane interface create a gradient of paramagnetic effects which correlate with depth. This review highlights the use of oxygen and other small paramagnetic additives in studies of immersion depth and topology of membrane proteins in lipid bilayers and micelles.  相似文献   

11.
An inquiry into the effect of temperature on carotenoid triggered quenching of phycobilisome (PBS) fluorescence in a photosystem II-deficient mutant of Synechocystis sp. results in identification of two temperature-dependent processes: one is responsible for the quenching rate, and one determines the yield of PBS fluorescence. Non-Arrhenius behavior of the light-on quenching rate suggests that carotenoid-absorbed light triggers a process that bears a strong resemblance to soluble protein folding, showing temperature-dependent enthalpy of activated complex formation. The response of PBS fluorescence yield to hydration changing additives and to passing of the membrane lipid phase transition point indicates that the pool size of PBSs subject to quenching depends on the state of some membrane component.  相似文献   

12.
Bolivar JH  East JM  Marsh D  Lee AG 《Biochemistry》2012,51(30):6010-6016
The state of aggregation of potassium channel KcsA was determined as a function of lipid:protein molar ratio in bilayer membranes of the zwitterionic lipid phosphatidylcholine (PC) and of the anionic lipid phosphatidylglycerol (PG). EPR (electron paramagnetic resonance) with spin-labeled phospholipids was used to determine the number of motionally restricted lipids per KcsA tetramer. Unexpectedly, this number decreased with a decreasing lipid:KcsA tetramer molar ratio in the range of 88:1 to 30:1, consistent with sharing of annular lipid shells and KcsA-KcsA contact at high mole fractions of protein. Fluorescence quenching experiments with brominated phospholipids showed a decrease in fluorescence quenching at low lipid:KcsA tetramer mole ratios, also consistent with KcsA-KcsA contact at high mole fractions of protein. The effects of low mole ratios of lipid seen in EPR and fluorescence quenching experiments were more marked in bilayers of PC than in bilayers of PG, suggesting stronger association of PG than PC with KcsA. This was confirmed by direct measurement of lipid association constants using spin-labeled phospholipids, showing higher association constants for all anionic lipids than for PC. The results show that the probability of contacts between KcsA tetramers will be very low at lipid:protein molar ratios that are typical of native biological membranes.  相似文献   

13.
Transbilayer lipid asymmetry is a fundamental characteristic of the eukaryotic cell plasma membrane (PM). While PM phospholipid asymmetry is well documented, the transbilayer distribution of PM sterols such as mammalian cholesterol and yeast ergosterol is not reliably known. We now report that sterols are asymmetrically distributed across the yeast PM, with the majority (~80%) located in the cytoplasmic leaflet. By exploiting the sterol‐auxotrophic hem1Δ yeast strain we obtained cells in which endogenous ergosterol was quantitatively replaced with dehydroergosterol (DHE), a closely related fluorescent sterol that functionally and accurately substitutes for ergosterol in vivo. Using fluorescence spectrophotometry and microscopy we found that <20% of DHE fluorescence was quenched when the DHE‐containing cells were exposed to membrane‐impermeant collisional quenchers (spin‐labeled phosphatidylcholine and trinitrobenzene sulfonic acid). Efficient quenching was seen only after the cells were disrupted by glass‐bead lysis or repeated freeze‐thaw to allow quenchers access to the cell interior. The extent of quenching was unaffected by treatments that deplete cellular ATP levels, collapse the PM electrochemical gradient or affect the actin cytoskeleton. However, alterations in PM phospholipid asymmetry in cells lacking phospholipid flippases resulted in a more symmetric transbilayer distribution of sterol. Similarly, an increase in the quenchable pool of DHE was observed when PM sphingolipid levels were reduced by treating cells with myriocin. We deduce that sterols comprise up to ~45% of all inner leaflet lipids in the PM, a result that necessitates revision of current models of the architecture of the PM lipid bilayer.   相似文献   

14.
The topography of nicotinic acetylcholine receptor (AChR) membrane-embedded domains and the relative affinity of lipids for these protein regions were studied using fluorescence methods. Intact Torpedo californica AChR protein and transmembrane peptides were derivatized with N-(1-pyrenyl)maleimide (PM), purified, and reconstituted into asolectin liposomes. Fluorescence mapped to proteolytic fragments consistent with PM labeling of cysteine residues in alphaM1, alphaM4, gammaM1, and gammaM4. The topography of the pyrene-labeled Cys residues with respect to the membrane and the apparent affinity for representative lipids were determined by differential fluorescence quenching with spin-labeled derivatives of fatty acids, phosphatidylcholine, and the steroids cholestane and androstane. Different spin label lipid analogs exhibit different selectivity for the whole AChR protein and its transmembrane domains. In all cases labeled residues were found to lie in a shallow position. For M4 segments, this is compatible with a linear alpha-helical structure, but not so for M1, for which "classical" models locate Cys residues at the center of the hydrophobic stretch. The transmembrane topography of M1 can be rationalized on the basis of the presence of a substantial amount of non-helical structure, and/or of kinks attributable to the occurrence of the evolutionarily conserved proline residues. The latter is a striking feature of M1 in the AChR and all members of the rapid ligand-gated ion channel superfamily.  相似文献   

15.
A method of Monte Carlo calculations has been applied to the problem of fluorescence energy transfer in two dimensions in order to provide a quantitative measure of the effects of nonideal mixing of lipid and protein molecules on the quenching profiles of membrane systems. These numerical techniques permit the formulation of a detailed set of equations that describes in a precise manner the quenching and depolarization properties of planar donor-acceptor distributions as a function of specific spectroscopic and organizational parameters. Because of the exact nature of the present numeric method, these results are used to evaluate critically the validity of previous approximate treatments existing in the literature. This method is also used to examine the effects of excluded volume interactions and distinct lattice structures on the expected transfer efficiencies. As a specific application, representative quenching profiles for protein-lipid mixtures, in which donor groups are covalently linked to the protein molecules and acceptor species are randomly distributed within lipid domains, have been obtained. It is found that the existence of phase-separated protein domains gives rise to a shielding effect that significantly decreases the transfer efficiencies with respect to those expected for an ideal distribution of protein molecules. The results from the present numerical study indicate that the experimental application of fluorescence energy transfer measurements in multicomponent membrane systems can be used to obtain organizational parameters that accurately reflect the lateral distribution of protein and lipid molecules within the bilayer membrane.  相似文献   

16.
Diphenylhexatriene transverse distribution has been studied in normal and diabetic erythrocyte membrane ghosts using fluorescence polarization and fluorescence quenching methods. Acrylamide quenched the fluorescence of diphenylhexatriene according to a dynamic mechanism in agreement with Stern-Volmer equation. Nonlinear least-squares analysis based on quenching results has shown greater accessibility of fluorophore to quencher molecules in diabetic ghosts (37.2 +/- 3.2% in normal vs. 67.5 +/- 6.4% in diabetic membranes). Steady-state fluorescence anisotropy measurements evidenced the lowered membrane lipid fluidity in diabetics (anisotropy values: 0.166 +/- 0.011 in normal subjects vs. 0.193 +/- 0.018 in diabetics). A model mechanism is proposed which attributes the lowered capacity of lipid bilayer in diabetes to the increased ordering and more compact structure of membrane phospholipids. The implications of the results for the resolving of steady-state anisotropy data are discussed.  相似文献   

17.
Membrane penetration depth is an important parameter in relation to membrane structure and organization. A methodology has been developed to analyze the membrane penetration depths of fluorescent molecules or groups utilizing differential fluorescence quenching caused by membrane embedded spin-label probes located at different depths. The method involves determination of the parallax in the apparent location of fluorophores, detected when quenching by phospholipids spin-labelled at two different depths is compared. By use of relatively simple algebraic expressions, the method allows calculation of depth in å. This method has been used to determine the location of fluorophores in NBD-labelled lipids and anthroyloxy-labelled fatty acids in model membranes and of the membrane embedded tryptophan residues in the reconstituted nicotinic acetylcholine receptor.  相似文献   

18.
In the mitogen activated protein kinase (MAPK) cascades of budding yeast, the scaffold protein Ste5 is recruited to the plasma membrane to transmit pheromone induced signal. A region or domain of Ste5 i.e. residues P44-R67, referred here as Ste5PM24, has been known to be involved in direct interactions with the membrane. In order to gain structural insights into membrane interactions of Ste5, here, we have investigated structures and interactions of two synthetic peptide fragments of Ste5, Ste5PM24, and a hyperactive mutant, Ste5PM24LM, by NMR, ITC, and fluorescence spectroscopy, with lipid membranes. We observed that Ste5PM24 predominantly interacted only with the anionic lipid vesicles. By contrast, Ste5PM24LM exhibited binding with negatively charged as well as zwitterionic or mixed lipid vesicles. Binding of Ste5 peptides with the negatively charged lipid vesicles were primarily driven by hydrophobic interactions. NMR studies revealed that Ste5PM24 assumes dynamic or transient conformations in zwitterionic dodecylphosphocholine (DPC) micelles. By contrast, NMR structure, obtained in anionic sodium dodecyl sulphate (SDS), demonstrated amphipathic helical conformations for the central segment of Ste5PM24. The hydrophobic surface of the helix was found to be buried inside the micelles. Taken together, these results provide important insights toward the structure and specificity determinants of the scaffold protein interactions with the plasma membrane.  相似文献   

19.
Nonenzymatic lipid peroxidation in thymus cell plasma membranes was studied. The composition of lipid and protein components, intensity of fluorescence of the membrane probes (1-anilinonaphthalene-8-sulfonate, 4-dimethylaminochalcon, eosin, pyronin and rhodamine), fluorescence polarization of tryptophan residues of membrane proteins and quenching by acrylamide of intrinsic fluorescence of proteins were determined. Induction of lipid peroxidation by the Fe(2+)-ascorbate system caused changes in the composition and structure of lipids. This was paralleled with changes in the structural-dynamic organization of membrane proteins, transition of some peripheral proteins to the water phase and increased solubilization of integral proteins by Triton X-100.  相似文献   

20.
Fluorescence of an intramembranous polypeptide (T-3) derived from the carboxy-terminal sequence of lipophilin was studied in aqueous solution, detergent micelles, and lipid vesicles. In all cases, the fluorescence of the only Trp (211) was indicative of a hydrophobic, buried residue. Addition of lysophosphatidylcholine (LPC) or phosphatidylcholine (PC) gave Trp-211 a more hydrophobic, less quenching environment as compared to that in aqueous solution. Energy transfer between Trp and Tyr observed in aqueous solution was decreased by the addition of lipid or detergent. There was limited quenching by acrylamide both in the aqueous and in the lipid or detergent environments. However, PC or LPC further decreased this quenching. Cs+ and I- were even less accessible than acrylamide to Trp, further proving that the Trp was located inside the lipid bilayer. The quenching indicated that I- binds to positive charges of the protein located on the surface of the membrane. This, combined with knowledge of the sequence of lipophilin, suggested that Trp-211 was located within the membrane but was close to amino acid residues that are external to the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号