首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
Attractive petals are an integral component of animal-pollinated flowers and in many flowering plant species are restricted to the second floral whorl. Interestingly, multiple times during angiosperm evolution, petaloid characteristics have expanded to adjacent floral whorls or to extra-floral organs. Here, we investigate developmental characteristics of petaloid sepals in Rhodochiton atrosanguineum, a close relative of the model species Antirrhinum majus (snapdragon). We undertook this in two ways, first using scanning electron microscopy we investigate the micromorphology of petals and sepals, followed by expression studies of genes usually responsible for the formation of petaloid structures. From our data, we conclude that R. atrosanguineum petaloid sepals lack micromorphological characteristics of petals and that petaloid sepals did not evolve through regulatory evolution of B-class MADS box genes, which have been shown to specify second whorl petal identity in a number of model flowering plant species including snapdragon. These data, in conjunction with other studies, suggests multiple convergent pathways for the evolution of showy sepals.  相似文献   

4.
5.
6.
Acylation of anthocyanins with hydroxycinnamic acid derivatives is one of the most important and less understood modification reactions during anthocyanin biosynthesis. Anthocyanin aromatic acyltransferase catalyses the transfer of hydroxycinnamic acid moieties from their CoA esters to the glycosyl groups of anthocyanins. A full-length cDNA encoding the anthocyanin 5-aromatic acyltransferase (5AT) ( EC 2.3.1.153 ) that acylates the glucose bound at the 5-position of anthocyanidin 3,5-diglucoside was isolated from petals of Gentiana triflora on the basis of the amino acid sequence of the purified enzyme. The isolated full-length cDNA had an open reading frame of 469 amino acids and the calculated molecular weight was 52 736. The deduced amino acid sequence contains consensus motifs that are conserved among the putative acyl CoA-mediated acyltransferases, and this indicates that 5AT is a member of a proposed superfamily of multifunctional acyltransferases ( St-Pierre et al . (1998 ) Plant J. 14, 703–713). The cDNA was expressed in Escherichia coli and yeast, and confirmed to encode 5AT. The enzymatic characteristics of the recombinant 5AT were consistent with those of the native gentian 5AT. Immunoblot analysis using specific antibodies to 5AT showed that the 5AT protein is present in petals, but not in sepals, stems or leaves of G. triflora . RNA blot analysis showed that the 5AT gene is expressed only in petals and that its expression is temporally regulated during flower development coordinately with other anthocyanin biosynthetic genes. Immunohistochemical analysis demonstrated that the 5AT protein is specifically expressed in the outer epidermal cells of gentian petals and that it is localized mainly in the cytosol.  相似文献   

7.
8.
9.
The well‐known ABC model describes the combinatorial interaction of homeotic genes in specifying floral organ identities. While the B‐ and C‐functions are highly conserved throughout flowering plants and even in gymnosperms, the A‐function, which specifies the identity of perianth organs (sepals and petals in eudicots), remains controversial. One reason for this is that in most plants that have been investigated thus far, with Arabidopsis being a remarkable exception, one does not find recessive mutants in which the identity of both types of perianth organs is affected. Here we report a comprehensive mutational analysis of all four members of the AP1/FUL‐like subfamily of MADS‐box genes in rice (Oryza sativa). We demonstrate that OsMADS14 and OsMADS15, in addition to their function of specifying meristem identity, are also required to specify palea and lodicule identities. Because these two grass‐specific organs are very likely homologous to sepals and petals of eudicots, respectively, we conclude that there is a floral homeotic (A)‐function in rice as defined previously. Together with other recent findings, our data suggest that AP1/FUL‐like genes were independently recruited to fulfil the (A)‐function in grasses and some eudicots, even though other scenarios cannot be excluded and are discussed.  相似文献   

10.
In addition to contributing to the coloration of plant organs and their defense against herbivores, the consumption of anthocyanins in the human diet has a number of health benefits. Crabapple (Malus sp.) represents a valuable experimental model system to research the mechanisms and regulation of anthocyanin accumulation, in part due to the often vivid and varied petal and leaf coloration that is exhibited by various cultivars. The enzyme anthocyanidin synthase (ANS) plays a pivotal role in anthocyanin biosynthesis; however, the relationship between ANS expression and petal pigmentation has yet to be established in crabapple. To illuminate the mechanism of anthocyanin accumulation in crabapple petals, we evaluated the expression of two crabapple ANS allelic genes (McANS-1 and McANS-2) and the levels of anthocyanins in petals from cultivars with dark red (‘Royalty’) and white (‘Flame’) petals, as well as another (‘Radiant’) whose petals have an intermediate pink color. We determined that the expression of McANS in the three cultivars correlated with the variation of anthocyanin accumulation during different petal developmental stages. Furthermore, transgenic tobacco plants constitutively overexpressing one of the two McANS genes, McANS-1, had showed elevated anthocyanin accumulation and a deeper red coloration in their petals than those from untransformed control lines. In conclusion, we propose that McANS are responsible for anthocyanin accumulation during petal coloration in different crabapple cultivars.  相似文献   

11.
Itagaki  Tomoyuki  Misaki  Ando  Sakai  Satoki 《Plant Ecology》2020,221(5):347-359

Pollinator-mediated selection might lead to among-trait differences in the degree and pattern of floral integration and intra-flower variation. To examine the patterns of intra-flower variation in floral traits, including nectar volume, we performed a field study using the zygomorphic flowers of Aconitum japonicum ssp. subcuneatum. We investigated (1) correlations between the sizes of the left and right sepals and petals, (2) variation in floral traits among plants, within plants and within flowers, (3) effects of sexual phases on floral integration variation in floral and nectar traits, and (4) the effect of size and intra-flower variation in traits of the left and right sepals and petals on pollen removal by pollinators. Lateral sepal area, but not lower sepal area, was highly correlated between the left and right sepals. Floral traits were more integrated during the male phase than during the female phase. Nectar standing crop in male-phase flowers correlated with helmet height and lateral and lower sepal area, but in female-phase flowers it only correlated with spur length. While intra-flower variance in lateral sepal area accounted for approximately 10% of the overall variance in these traits, the variance in lower sepal area accounted for 70% of the overall variance. Lateral sepal area had a negative effect on the number of pollen grains remaining after pollinator visits. Low variance in lateral sepals within flowers and measurements of pollen removal suggest that lateral sepals play a more important role in pollen export than the other traits. Left and right sepals may be the targets of selection for symmetry in zygomorphic flowers.

  相似文献   

12.
13.
14.
15.
Anthocyanin synthesis and chlorophyll degradation in regenerated torenia (Torenia fournieri Linden ex Fourn.) shoots induced by osmotic stress with 7% sucrose were examined to identify the genes regulating the underlying molecular mechanism. To achieve this, suppression subtractive hybridization was performed to enrich the cDNAs of genes induced in anthocyanin-synthesizing and chlorophyll-degrading regenerated shoots. The nucleotide sequences of 1,388 random cDNAs were determined, and these were used in the preparation of cDNA microarrays for high-throughput screening. From 1,056 cDNAs analyzed in the microarrays, 116 nonredundant genes were identified, which were up regulated by 7% sucrose to induce anthocyanin synthesis and chlorophyll degradation in regenerated shoots. Of these, eight genes were selected and RNAi transformants prepared, six of which exhibited anthocyanin synthesis inhibition and/or chlorophyll degradation in their leaf discs. Notably, the RNAi transformants of the glucose 6-phosphate/phosphate translocator gene displayed inhibition both of anthocyanin synthesis and chlorophyll degradation in both leaf discs and regenerated shoots. There was also less accumulation of anthocyanin in the petals, and flowering time was shortened. The genes we identified as being up-regulated in the regenerated torenia shoots may help further elucidate the molecular mechanism underlying the induction of anthocyanin synthesis and chlorophyll degradation.  相似文献   

16.
17.
PpMADS1, a member of the euAP1 clade of the class A genes, was previously cloned from peach. In this study, PpMADS1 was constitutively expressed in Arabidopsis thaliana to study its function in plant development. The transgenic A. thaliana plants containing 35S::PpMADS1 showed severe phenotype variation including early flowering, conversion of inflorescence branches to solitary flowers, formation of terminal flowers, production of higher number of carpels, petals, and stamens than non-transgenic plants, and prevention of pod shatter. Significantly, the transgenic plants produced more than one silique from a single flower. The results obtained by using cDNA microarray and real-time PCR analyses in the transgenic Arabidopsis indicated that PpMADS1 might play dual roles in regulating the floral meristem development by activating or repressing different sets of genes that would determine the different fate of a floral meristem. In addition, the PpMADS1 gene promoter was further cloned, and deletion analyses were conducted by using fused GUS as a reporter gene in transgenic A. thaliana. Histochemical staining of different organs from transgenic plants revealed the region between ?197 and ?454?bp was specific for GUS expression in flower primordium, and the region between ?454 and ?678?bp was specific for GUS expression in sepals and petals. In contrast, a negative regulatory element present between ?678 and ?978?bp could suppress GUS expression in filament.  相似文献   

18.
19.
Two genes cloned from Eucalyptus globulus, Eucalyptus LeaFy (ELF1 and ELF2), have sequence homology to the floral meristem identity genes LEAFY from Arabidopsis and FLORICAULA from Antirrhinum. ELF1 is expressed in the developing eucalypt floral organs in a pattern similar to LEAFY while ELF2 appears to be a pseudo gene. ELF1 is expressed strongly in the early floral primordium and then successively in the primordia of sepals, petals, stamens and carpels. It is also expressed in the leaf primordia and young leaves and adult and juvenile trees.The ELF1 promoter coupled to a GUS reporter gene directs expression in transgenic Arabidopsis in a temporal and tissue-specific pattern similar to an equivalent Arabidopsis LEAFY promoter construct. Strong expression is seen in young flower buds and then later in sepals and petals. No expression was seen in rosette leaves or roots of flowering plants or in any non-flowering plants grown under long days. Furthermore, ectopic expression of the ELF1 gene in transgenic Arabidopsis causes the premature conversion of shoots into flowers, as does an equivalent 35S-LFY construct. These data suggest that ELF1 plays a similar role to LFY in flower development and that the basic mechanisms involved in flower initiation and development in Eucalyptus are similar to those in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号