首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
博斯腾湖浮游植物群落结构特征及其影响因子分析   总被引:1,自引:0,他引:1  
2011年对博斯腾湖大湖区17个采样站位的浮游植物及水体主要理化因子进行了4次系统调查。结果表明, 在17个站位共鉴定出浮游植物127种(属), 其中优势种(属)9种。浮游植物群落全年均以硅藻为主导, 冬、春季节, 浮游植物组成呈硅藻-甲藻型, 优势类群主要为贫-中营养型浮游藻类, 到夏、秋季节逐渐形成硅藻-绿藻型, 以富营养型的浮游藻类为优势类群。浮游植物总平均生物量为(2.512.95) mg/L, 生物量季节变动显著, 峰值出现在夏季, 冬季最低。基于Canoco的多变量分析表明: 环境变量共解释了浮游植物群落总变异的54.5%, 水温是影响浮游植物分布最重要的环境因子, 其次为枝角类丰度。水中氮含量是影响浮游植物丰度的主要因子, 同时浮游植物对水体有机物含量也有较大的影响。    相似文献   

2.
Eva Willén 《Hydrobiologia》2003,502(1-3):315-324
Dominance patterns of phytoplankton during a late phase (August) in the seasonal sequence of species are presented from 15 Swedish forest lakes with little or no local anthropogenic impact. The main question to elucidate is if predominance of a small number of species (1–3) occurs during a mature phase of the annual succession i.e. if there is an evident competitive exclusion of species in favour of a few dominants. Ten August months per lake are used to illustrate interannual variations caused mainly by differences in weather conditions. In general, 1–3 dominant taxa do not reach more than 60% of the total phytoplankton volume. Only lakes exposed to some stress factors exhibit a more pronounced dominance pattern with 1–3 species occupying >80% of the phytoplankton biomass. Stress factors are harsh climate (arctic lake), light deficiency (very brown water), acidification and occurrence of the invasive raphidophycean species Gonyostomum semen. The variation in phytoplankton assemblages in relation to environmental variables and years was tested by classification and ordination methods (TWINSPAN, CCA). The consistency of the species/lake groupings and the set of explanatory environmental variables was checked in a discriminant function analysis. Species associations during investigated years and environmental variables show a very good consistency and 75% of the lakes was classified in the same species group irrespective of year, indicating stable species assemblages from summer to summer.  相似文献   

3.
Despite improvements in wastewater treatment systems, the impact of anthropogenic nutrient sources remains a key issue for the management of European lakes. The Water Framework Directive (WFD) provides a mechanism through which progress can be made on this issue. The Directive requires a classification of the ecological status of phytoplankton, which includes an assessment of taxonomic composition. In this paper, we present a composition metric, the plankton trophic index, that was developed in the WISER EU FP7 project and demonstrate how it has been used to compare national phytoplankton classification systems in Northern and Central Europe. The metric was derived from summer phytoplankton data summarised by genus from 1,795 lakes, covering 20 European countries. We show that it is significantly related to total phosphorus concentrations, but that it is also sensitive to alkalinity, lake size and climatic variables. Through the use of country-specific reference values for the index, we demonstrate that it is significantly related to other national phytoplankton assessment systems and illustrate for a single European (intercalibration) lake type how it was used to intercalibrate WFD boundaries from different countries.  相似文献   

4.
Phytoplankton data from 606 lakes were used to characterize indicator taxa of near-pristine reference conditions in clearwater and humic lowland lakes of Northern and Central Europe. Reference lakes were selected based on low pressure from catchment land-use, low population density and the absence of point sources. Reference lakes had low phytoplankton biomass and taxa richness compared to non-reference lakes. In low alkalinity lakes of Northern Europe, the reference communities had high biomass proportions of chrysophytes and low proportions of cyanobacteria; in the Central European high alkalinity lakes, the biomass was distributed more evenly among algal groups. Indicator species analysis and similarity analysis listed 5–29 taxa indicating reference conditions. Indicator taxa differed especially between the low alkalinity and the high alkalinity lakes, but there were also country-specific differences. Most common indicator taxa for the northern reference lakes were chrysophytes (e.g. Bitrichia, Dinobryon). In the Central European reference lakes, diatoms (e.g. Cyclotella) were more characteristic. Despite the differences, there was a general finding that taxa present in reference lakes were often also present in non-reference lakes, but typically in lower biomass proportions; another characteristic of the reference communities is the absence of many taxa typically found in non-reference lakes.  相似文献   

5.
Community composition, biomass and primary production of phytoplankton were studied in the east- ernmost section of the Westerschelde estuary in 1984. Photosynthetic characteristics were compared with distribution of some dominant phytoplankton species along a salinity gradient from 5 to 22 Spring phytoplankton, with Cyclotella meneghiniana (freshwater) and Skeletonema costatum (marine) as the dominant species grew faster than summer phytoplankton. In summer, biomass achieved its maximum, due to the riverine Scenedesmus species and the marine diatoms Thalassiosira levanderi and Ditylum brightwellii, as dominants. Growth conditions were more favourable to phytoplankton communities above 15%, than below this salinity. The data were compared with previous studies (1972) of species composition in the area.  相似文献   

6.
Here, we use a novel space-by-time approach to study large-scale changes in phytoplankton species distribution in Swedish boreal lakes in response to climate variability. Using phytoplankton samples from 27 lakes, evenly distributed across Sweden, all relatively unimpacted by anthropogenic disturbance and sampled annually between 1996 and 2010, we found significant shifts in the geographical distribution of 18 species. We also found significant changes in the prevalence of 45 species (33 became more common and 12 less common) over the study period. Using species distribution models and phytoplankton samples from 60 lakes sampled at least twice between 1992 and 2010, we evaluated the importance of climate variability and other environmental variables on species distribution. We found that temperature (e.g., extreme events and the duration of the growing season) was the most important predictor for species detections. Many cyanobacteria, chlorophytes, and, to a lesser extent, diatoms and zygnematophytes, showed congruent and positive responses to temperature. In contrast, precipitation explained little variation and was important only for a few taxa (e.g., Staurodesmus spp., Trachelomonas volvocina). At the community level, our results suggest a change in community composition at temperatures over 20 °C and growing seasons longer than 40 days. We conclude that climate is an important driver of the distributional patterns of individual phytoplankton species and may drive changes in community composition in minimally disturbed boreal lakes.  相似文献   

7.
The epilimnetic phytoplankton and its relations to nutrient content in Lake Verevi through the whole vegetation period in 2000 were studied. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m) is a hypertrophic hard-water lake, where the so-called spring meromixis occurs due to an extremely warm spring. Most dissolved nutrients in the epilimnion were low already in spring, and their concentrations were quite stable during the study period. The concentration of total silicon was very low in spring but increased rapidly in summer. Total phosphorus followed the pattern for stratified eutrophic lakes, and total nitrogen was quite high. The stoichiometric N:P ratio fluctuated between 25 and 81. The dynamics of phytoplankton biomass with a spring peak from April to May and a late summer peak from July to August is typical of Estonian eutrophic lakes. Green algae and chrysophytes occurred in the phytoplankton throughout the vegetation period. The spring peak was dominated by diatoms (Synedra ulna and Synedra acus var. angustissima) and the summer peak was caused by Aphanizomenon klebahnii and Ceratium hirundinella. The study showed that in physically stratified systems, the total concentration of limiting resources and plain physical factors (light and temperature) may be more important in the determination of phytoplankton dominants than different resource ratios. A combination of light and temperature optimum, along with nutrient utilization and transport capacity, effectively segregates phytoplankton species and can be used for the explanation of seasonal succession pattern.  相似文献   

8.
文章分析了仙女湖及入湖河流浮游植物群落结构和功能类群的时空分布特征, 探讨了影响其时空分布规律的关键环境因子。调查期间共鉴定表层水体中浮游植物82种(属), 包括蓝藻15种(属), 绿藻33种(属), 硅藻23种(属), 甲藻3种(属), 裸藻5种(属), 隐藻2种(属), 金藻1种(属)。各季节平均密度和生物量分别在7.95×106—2.19×109 cells/L和10.52—792.91 mg/L变化。群落功能类群的结果表明, 冬、春河流生境中具硅质结构的无鞭毛个体浮游植物(硅藻门)占据主导地位(Ⅵ功能群), 而湖区生境中具鞭毛、中等到大型的单细胞或群体浮游植物(如隐藻和甲藻)具有明显优势(Ⅴ功能群); 而夏秋季节不同生境中虽然Ⅵ型浮游植物数量仍然相对较高, 但是具伪空胞的、较大表面积/体积比的丝状个体浮游植物(Ⅲ型)以及具胶质鞘、小的表面积/体积比的群体类的浮游植物(如蓝藻, Ⅶ功能群)在某些河流和湖泊生境中的比重有显著增长。功能类群与环境因子的相关分析表明: 冬、春季Ⅴ与Ⅵ功能群浮游植物生物量主要受到总氮和总磷水平影响; 而夏、秋季节Ⅲ与Ⅶ功能群浮游植物受到水温、浊度、总氮和总磷水平的多重影响。  相似文献   

9.
The midsummer crustacean plankton communities of seven small impoundments   总被引:1,自引:1,他引:0  
The crustacean zooplankton communities of seven, small, eutrophic West Virginian impoundments were examined during midsummer. The more eutrophic lakes had as dominants, 2 cyclopoid, 1 calanoid, and 2 cladoceran species. Cluster analysis showed that the 4 more eutrophic lakes clustered together, further cluster analysis showed there was a very similar group of 5 species which characterized the most eutrophic lakes. Principal components analysis showed that the more eutrophic lakes were characterized by having more cyclopoids and cladocerans than calanoids. Niche breadth showed that the most often dominant species had much higher values than the species ohich could be considered secondary dominants.  相似文献   

10.
SUMMARY 1. We sampled a set of 93 lakes situated in the floodplains of the lower River Rhine in search for morphometric and other factors that explain their variation in clarity.
2. Lakes with a drop in summer water level were less turbid at the time of sampling, mainly because of a lower concentration of inorganic suspended solids (ISS).
3. We also found that older lakes were more turbid than younger lakes and that this was largely because of an increase in phytoplankton.
4. Water clarity was positively related to lake depth and the presence of vegetation.
5. Model calculations indicated that the underwater light climate was strongly affected by chlorophyll and ISS, the latter being the dominant factor affecting Secchi depth. Dissolved organic carbon (DOC) was less important.
6. The high concentration of ISS suggests that intensive resuspension occurs in most of the lakes. Using a simple wave model, and assuming that vegetation protects sediments against resuspension, we could eliminate wind resuspension as an important process in 90% of the lakes, leaving resuspension by benthivorous fish as probably the most important factor determining transparency.
7. Chlorophyll a concentration showed a strong positive correlation to ISS concentration, suggesting that resuspension may also have a positive effect on phytoplankton biomass in these lakes.
8. In conclusion, in-lake processes, rather than river dynamics, seem to be driving the turbidity of floodplain lakes along the lower River Rhine.  相似文献   

11.
Understanding of the forces driving the structure of biotic communities has long been an important focus for ecology, with implications for applied and conservation science. To elucidate the factors driving phytoplankton genus richness in the Danish landscape, we analyzed data derived from late-summer samplings in 195 Danish lakes and ponds in a spatially-explicit framework. To account for the uneven sampling of lakes in the monitoring data, we performed 1,000 permutations. A random set of 131 lakes was assembled and a single sample was selected randomly for each lake at each draw and all the analyses were performed on permuted data 1,000 times. The local environment was described by lake water chemistry, lake morphology, land-use in lake catchments, and climate. Analysis of the effects of four groups of environmental factors on the richness of the main groups of phytoplankton revealed contrasting patterns. Lake water chemistry was the strongest predictor of phytoplankton richness for all groups, while lake morphology also had a strong influence on Bacillariophyceae, Cyanobacteria, Dinophyceae, and Euglenophyceae richness. Climate and land-use in catchments contributed only little to the explained variation in phytoplankton richness, although both factors had a significant effect on Bacillariophyceae richness. Notably, total nitrogen played a more important role for phytoplankton richness than total phosphorus. Overall, models accounted for ca. 30% of the variation in genus richness for all phytoplankton combined as well as the main groups separately. Local spatial structure (<30 km) in phytoplankton richness suggested that connectivity among lakes and catchment-scale processes might also influence phytoplankton richness in Danish lakes.  相似文献   

12.
Species composition and interactions, biomass dominance, geographic distribution and driving variables were investigated for two key elements of the pelagic food web of Alpine lakes, the phytoplankton and the zooplankton, based on a single sampling campaign during summer 2000. Altogether, 70 lakes were surveyed, 49 of which located in three different lake districts of the west and eastern Italian Alps and 21 in the central Austrian Alps (within the uppermost Danube catchment). In addition to the analysis of environmental variables affecting distribution and species structure of the two planktonic compartments, a brief review of the main research lines and hypotheses adopted in the past for the study of phytoplankton and zooplankton in high Alpine lakes is given. The lakes, investigated partly within the European project EMERGE (EVK1-CT-1999-00032) and partly within a regional project in the eastern Alps, comprise a wide range of morphological, chemical and trophic conditions. The phytoplankton communities were found to be diverse and mostly dominated by flagellates (chrysophytes, cryptophytes and dinoflagellates), and only to a lesser extent by non-motile green algae, desmids and centric diatoms. The zooplankton communities were mainly dominated by Alpine cladocerans and copepod species, while rotifers were abundant within one group of Italian lakes (sampled in early summer). The multivariate statistical analyses (CCA) showed that catchment features (i.e. percentage of vegetation cover and geochemical composition) and nitrate concentration are essential drivers for the phytoplankton, whereas for zooplankton also trophic status of the lakes and phytoplankton structure are important. The combined variance analysis of the lake clusters outlined by the multivariate analyses on phytoplankton and zooplankton data, respectively, allowed the identification of four principal lake types (three located on siliceous and one on carbonaceous bedrock), each one characterised by a certain combination of habitat features, which in their turn influence trophic state, and phytoplankton and zooplankton species composition and functionality.  相似文献   

13.
Temponeras  M.  Kristiansen  J.  Moustaka-Gouni  M. 《Hydrobiologia》2000,424(1-3):109-122
Phytoplankton species composition, seasonal dynamics and spatial distribution in the shallow Lake Doïrani were studied during the growth season of 1996 along with key physical and chemical variables of the water. Weak thermal stratification developed in the lake during the warm period of 1996. The low N:P ratio suggests that nitrogen was the potential limiting nutrient of phytoplankton in the lake. In the phytoplankton of the lake, Chlorophyceae were the most species-rich group followed by Cyanophyceae. The monthly fluctuations of the total phytoplankton biomass presented high levels of summer algal biomass resembling that of other eutrophic lakes. Dinophyceae was the group most represented in the phytoplankton followed by Cyanophyceae. Diatomophyceae dominated in spring and autumn. Nanoplankton comprised around 90% of the total biomass in early spring and less than 10% in summer. The seasonal dynamics of phytoplankton generally followed the typical pattern outlined for other eutrophic lakes. R-species (small diatoms), dominant in the early phase of succession, were replaced by S-species (Microcystis, Anabaena, Ceratium) in summer. With cooling of the water in September, the biomass of diatoms (R-species) increased. The summer algal maxima consisted of a combination of H and M species associations (sensu Reynolds). Phytoplankton development in 1996 was subject to the combined effect of the thermal regime, the small depth of mixing and the increased sediment-water interactions in the lake, which caused changes in the underwater light conditions and nutrient concentrations.  相似文献   

14.
Irina Trifonova 《Hydrobiologia》1993,249(1-3):93-100
Seasonal succession of phytoplankton biomass, its diversity and its photosynthetic activity in two highly eutrophic lakes have been compared. In order to test the intermediate disturbance hypothesis, the lakes have been chosen with almost the same level of trophy but different conditions of stratification, through two ice-free periods of open water with different weather conditions.High phytoplankton diversity throughout the period of investigation was characteristic for the shallower Lake Lobardzu. The number of species here was usually more than 30 and the Shannon diversity changed from 1.2 to 4.2. Owing to the frequent external disturbances, periods characterized by autogenic succession with establishing dominance and declining diversity alternated with periods of biomass reduction and rises of diversity and photosynthetic activity. In the warmer summer of 1983, with more intense warming of bottom layers and predominance of blue-greens, phytoplankton biomass was higher and diversity lower than in the cold summer of 1982.In stratified Lake Rudusku, phytoplankton diversity and number of species were usually much lower. During the long summer stratification up to three-four dominant species of blue-greens and dinoflagellates become established and competitive exclusion leading to low diversity advanced. Some changes in biomass and diversity, were caused by zooplankton activity.  相似文献   

15.
Seasonal changes in freshwater phytoplankton communities have been extensively studied, but key drivers of phytoplankton in saline lakes are currently not well understood. Comparative lake studies of 19 prairie saline lakes in the northern Great Plains (USA) were conducted in spring and summer of 2004, with data gathered for a suite of limnological parameters. Nutrient enrichment assays for natural phytoplankton assemblages were also performed in spring and summer of 2006. Canonical correspondence analysis of 2004 data showed salinity (logCl), nitrogen, and phosphorus (N:P ratios) to be the main drivers of phytoplankton distribution in the spring, and phosphorus (C:P ratios), iron (logTFe), and nitrogen (logTN) as important factors in the summer. Despite major differences in nutrient limitation patterns (P-limitation in freshwater systems, N-limitation in saline systems), seasonal patterns of phytoplankton phyla changes in these saline lakes were similar to those of freshwater systems. Dominance shifted from diatoms in the spring to cyanobacteria in the summer. Nutrient enrichment assays (control, +Fe, +N, +P, +N+P) in 2006 indicated that nutrient limitation is generally more consistent within lakes than for individual taxa across systems, with widespread nitrogen and secondary phosphorus limitation. Understanding phytoplankton community structure provides insight into the overall ecology of saline lakes, and will assist in the future conservation and management of these valuable and climatically-sensitive systems.  相似文献   

16.
The temporal and spatial developments of 15 phytoplankton species widely distributed in European and North American lakes, have been studied by informations in the literature and especially by their behaviour during a 5 years development in the Danish lake Grane Langsø. The species were characterized by temporal differences in maximum abundance, the density at the maximum, the number of maxima per year, the length of the vegetative period and the constancy of the annual maximum based on long-term studies. In several cases the phytoplankton species can be characterized by one individual behaviour in one group of lakes, while the same species behaves differently in another group of lakes. The results suggest that several species include two or more types with different tolerances and environmental requirements. Most of the species included are Chrysophytes, mainly species of Uroglena and Dinobryon. A remarkable feature of Grane Langsø's Chrysophytes is their predilection to accumulate in the bottom water during the summer. A similar behaviour was not demonstrated by Chrysophytes in other lakes.  相似文献   

17.
巢湖蓝藻水华形成原因探索及"优势种光合假说"   总被引:12,自引:0,他引:12  
为探索蓝藻水华的形成原因,从2007以来对巢湖西区浮游藻类种类、优势种季节变化、初级生产力、水质参数及优势种的光合生理生态学特性作了观测。关于蓝藻水华形成过程中迅猛发展的原因,近80a已提出了10种假说,但对解释巢湖形成的蓝藻水华,尚显不足。本文基于我们对蓝藻水华的了解,提出了如下“优势种光合假说”:(1)蓝藻水华包含各种藻类,蓝藻水华发生不仅与藻细胞浓度有关,还与水体初级生产力直接有关。巢湖中这两者在夏季最大,在冬季最小。但无定量关系。(2)水华藻类中生长最快、细胞密度最大的是优势种,含有多个优势种时可能随季节更替。巢湖几乎整年发生蓝藻水华,已检测出4种优势种都是蓝藻,从早春起先是水华鱼腥藻,以后有绿色微囊藻、惠氏微囊藻和铜绿微囊藻。(3)各种环境因子都影响优势种生长,其中少数主导因子影响较大。在巢湖富营养条件下,光强、温度和pH值是主导因子。(4)主导因子对优势种光合活性的影响,可决定其能否处于优势。巢湖的温度和pH值变化可能促进了惠氏微囊藻取代绿色微囊藻,铜绿微囊藻取代惠氏微囊藻,而光强变化可能调节冬季时水华鱼腥藻取代了绿色微囊藻,春季时正好是相反的取代。  相似文献   

18.
The respiration of plankton of two polyhumic lakes was measured as production of carbon dioxide in dark bottles. The method proved to be enough sensitive for use in oligotrophic lakes with low alkalinity. The respiration of plankton followed broadly changes in temperature. However, the primary production of phytoplankton was probably the main factor governing the seasonal pattern of respiration. During summer the respiration of plankton was more than three times higher than the primary production of phytoplankton. This suggests that allochthonous humic substances are an important source of carbon and energy for organisms of polyhumic lakes.  相似文献   

19.
High phytoplankton productivity characterizes the eutrophic lakes of the upper Qu'Appelle River system. Annual primary production varied from 187 to 561 g C m? while daily areal production varied from 290 to 8 575 mg C m?2. The Amax range was 164 to 315 mg C m?3h?1 with the highest rates usually occurring in August or September. Amax values on any given day normally occurred in the top 0.5 m. Blue-green algae (Aphanizomenon flos-aquae, Microcystis aeruginosa, Oscillatoria prolifica) dominated the phytoplankton communities during the summer and fall. Diatoms (Asterionella formosa, Fragilaria capucina, Stephanodiscus niagarae) often dominated the spring communities but sometimes persisted as dominants through the summer. Fragilaria on occasion was present at very high concentrations in the late fall. Ceratium hirundinella was sometimes dominant but was usually an important part of the biomass. Green algae, although always present, rarely formed an important part of the biomass with Pediastrum duplex the only exception. A species list is appended.  相似文献   

20.
The impact of hydrology (floods, seepage) on the chemistry of water and sediment in floodplain lakes was studied by a multivariate analysis (PCA) of physico-chemical parameters in 100 lakes within the floodplains in the lower reaches of the rivers Rhine and Meuse. In addition, seasonal fluctuations in water chemistry and chlorophyll-a development in the main channel of the Lower Rhine and five floodplain lakes along a flooding gradient were monitored. The species composition of the summer phytoplankton in these lakes was studied as well.At present very high levels of chloride, sodium, sulphate, phosphate and nitrate are found in the main channels of the rivers Rhine and Meuse, resulting from industrial, agricultural and domestic sewage. Together with the actual concentrations of major ions and nutrients in the main channel, the annual flood duration determines the physico-chemistry of the floodplain lakes. The river water influences the water chemistry of these lakes not only via inundations, but also via seepage. A comparison of recent and historical chemical data shows an increase over the years in the levels of chloride both in the main channel of the Lower Rhine and in seepage lakes along this river. Levels of alkalinity in floodplain lakes showed an inverse relationship with annual flood duration, because sulphur retention and alkalinization occurred in seepage waters and rarely-flooded lakes. The input of large quantities of nutrients (N, P) from the main channel has resulted, especially in frequently flooded lakes, in an increase in algal biomass and a shift in phytoplankton composition from a diatom dominated community towards a community dominated by chlorophytes and cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号