首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Our previous solid-state 13C NMR studies on bR have been directed at characterizing the structure and protein environment of the retinal chromophore in bR568 and bR548, the two components of the dark-adapted protein. In this paper, we extend these studies by presenting solid-state NMR spectra of light-adapted bR (bR568) and examining in more detail the chemical shift anisotropy of the retinal resonances near the ionone ring and Schiff base. Magic angle spinning (MAS) 13C NMR spectra were obtained of bR568, regenerated with retinal specifically 13C labeled at positions 12-15, which allowed assignment of the resonances observed in the dark-adapted bR spectrum. Of particular interest are the assignments of the 13C-13 and 13C-15 resonances. The 13C-15 chemical resonance for bR568 (160.0 ppm) is upfield of the 13C-15 resonance for bR548 (163.3 ppm). This difference is attributed to a weaker interaction between the Schiff base and its associated counterion in bR568. The 13C-13 chemical shift for bR568 (164.8 ppm) is close to that of the all-trans-retinal protonated Schiff base (PSB) model compound (approximately 162 ppm), while the 13C-13 resonance for bR548 (168.7 ppm) is approximately 7 ppm downfield of that of the 13-cis PSB model compound. The difference in the 13C-13 chemical shift between bR568 and bR548 is opposite that expected from the corresponding 15N chemical shifts of the Schiff base nitrogen and may be due to conformational distortion of the chromophore in the C13 = C14-C15 bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Previous solid state 13C-NMR studies of bacteriorhodopsin (bR) have inferred the C = N configuration of the retinal-lysine Schiff base linkage from the [14-13C]retinal chemical shift (1-3). Here we verify the interpretation of the [14-13C]-retinal data using the [epsilon-13C]lysine 216 resonance. The epsilon-Lys-216 chemical shifts in bR555 (48 ppm) and bR568 (53 ppm) are consistent with a C = N isomerization from syn in bR555 to anti in bR568. The M photointermediate was trapped at pH 10.0 and low temperatures by illumination of samples containing either 0.5 M guanidine-HCl or 0.1 M NaCl. In both preparations, the [epsilon-13C]Lys-216 resonance of M is 6 ppm downfield from that of bR568. This shift is attributed to deprotonation of the Schiff base nitrogen and is consistent with the idea that the M intermediate contains a C = N anti chromophore. M is the only intermediate trapped in the presence of 0.5 M guanidine-HCl, whereas a second species, X, is trapped in the presence of 0.1 M NaCl. The [epsilon-13C]Lys-216 resonance of X is coincident with the signal for bR568, indicating that X is either C = N anti and protonated or C = N syn and deprotonated.  相似文献   

3.
Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin   总被引:5,自引:0,他引:5  
The visible absorption of bacteriorhodopsin (bR) is highly sensitive to pH, the maximum shifting from 568 nm (pH 7) to approximately 600 nm (pH 2) and back to 565 nm (pH 0) as the pH is decreased further with HCl. Blue membrane (lambda max greater than 600 nm) is also formed by deionization of neutral purple membrane suspensions. Low-temperature, magic angle spinning 13C and 15N NMR was used to investigate the transitions to the blue and acid purple states. The 15N NMR studies involved [epsilon-15N]lysine bR, allowing a detailed investigation of effects at the Schiff base nitrogen. The 15N resonance shifts approximately 16 ppm upfield in the neutral purple to blue transition and returns to its original value in the blue to acid purple transition. Thus, the 15N shift correlates directly with the color changes, suggesting an important contribution of the Schiff base counterion to the "opsin shift". The results indicate weaker hydrogen bonding in the blue form than in the two purple forms and permit a determination of the contribution of the weak hydrogen bonding to the opsin shift at a neutral pH of approximately 2000 cm-1. An explanation of the mechanism of the purple to blue to purple transition is given in terms of the complex counterion model. The 13C NMR experiments were performed on samples specifically 13C labeled at the C-5, C-12, C-13, C-14, or C-15 positions in the retinylidene chromophore. The effects of the purple to blue to purple transitions on the isotropic chemical shifts for the various 13C resonances are relatively small. It appears that bR600 consists of at least four different species. The data confirm the presence of 13-cis- and all-trans-retinal in the blue form, as in neutral purple dark-adapted bR. All spectra of the blue and acid purple bR show substantial inhomogeneous broadening which indicates additional irregular distortions of the protein lattice. The amount of distortion correlates with the variation of the pH, and not with the color change.  相似文献   

4.
Magic angle sample spinning (MASS) 13C NMR spectra have been obtained of bovine rhodopsin regenerated with retinal prosthetic groups isotopically enriched with 13C at C-5 and C-14. In order to observe the 13C retinal chromophore resonances, it was necessary to employ low temperatures (-15-----35 degrees C) to restrict rotational diffusion of the protein. The isotropic chemical shift and principal values of the chemical shift tensor of the 13C-5 label indicate that the retinal chromophore is in the twisted 6-s-cis conformation in rhodopsin, in contrast to the planar 6-s-trans conformation found in bacteriorhodopsin. The 13C-14 isotropic shift and shift tensor principal values show that the Schiff base C = N bond is anti. Furthermore, the 13C-14 chemical shift (121.2 ppm) is within the range of values (120-123 ppm) exhibited by protonated (C = N anti) Schiff base model compounds, indicating that the C = N linkage is protonated. Our results are discussed with regard to the mechanism of wavelength regulation in rhodopsin.  相似文献   

5.
Solid-state 13C NMR spectra were employed to characterize the protonation state of tyrosine in the light-adapted (bR568) and M states of bacteriorhodopsin (bR). Difference spectra (isotopically labeled bR minus natural-abundance bR) were obtained for [4'-13C]Tyr-labeled bR, regenerated with [14-13C]retinal as an internal marker to identify the photocycle states. The [14-13C]retinal has distinct chemical shifts for bR555, for bR568, and for the M intermediate generated and thermally trapped at pH 10 in the presence of 0.3 M KCl or 0.5 M guanidine. Previous work has demonstrated that tyrosine and tyrosinate are easily distinguished on the basis of the chemical shift of the 4'-13C label and that both NMR signals are detectable in dark-adapted bR, although the tyrosinate signal is only present at pH values greater than 12. In the present work, we show that neither the light-adapted form of bR prepared at pH 7 or 10 nor the M state thermally trapped at -80 degrees C in 0.3 M KCl pH 10, or in 0.5 M guanidine pH 10, shows any detectable tyrosinate. In addition, after the M samples were briefly warmed (approximately 30 s), no tyrosinate was observed. However, small (1-2 ppm) changes in the structure or dispersion in the Tyr peak were observed in the M state phototrapped by either method. These changes were reversible when the sample was warmed, although on a time scale slower than the relaxation of the retinal back to the bR568 conformer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A minimalist Go-model, with no energetic frustration in the native conformation, has been shown to describe accurately the folding pathway of the beta-trefoil protein, interleukin-1beta (IL-1beta). While it appears that these models successfully model transition states and intermediates between the unfolded and native ensembles, it is unclear how accurately they capture smaller, yet biologically relevant, structural changes within the native ensemble after energetic perturbation. Here, we address the following questions. Can a simple Go-model of interleukin-1beta, based on native topology, describe changes in structural properties of the native ensemble as the protein stability is changed? Or is it necessary to include a more explicit representation of atoms, electrostatic, hydrogen bonding, and van der Waals forces to describe these changes? The native ensemble of IL-1beta was characterized using a variety of experimental probes under native (0 M NaCl, guanidine hydrochloride (Gdn-HCl)), moderately destabilized (0 M NaCl, 0.8 M Gdn-HCl), and in moderate salt concentration (0.8 M NaCl, 0 M Gdn-HCl). Heteronuclear (1)H-(15)N nuclear Overhauser effect spectroscopy (NOESY) and heteronuclear single quantum correlation (HSQC) NMR spectra confirmed that the beta-trefoil global fold was largely intact under these three conditions. However, 25 of the 153 residues throughout the chain did demonstrate (13)C and (1)H-(15)N chemical shifts when perturbed with 0.8 M NaCl or Gdn-HCl. Despite large differences in protection factors from solvent hydrogen-deuterium exchange for all residues between stable (0 M Gdn-HCl) and destabilized (0.8 M Gdn-HCl) IL-1beta, no difference in steady-state (15)N-(1)H NOE enhancements were measured. Thus, the chemical shifts correlate with a global but limited increase in residue flexibility in the presence of Gdn-HCl. Minimalist simulations highlight the regions of greatest position shift between native and 0.8 M Gdn-HCl, which were determined experimentally. This correlation demonstrates that structural changes within the native ensemble of IL-1beta are, at least partially, governed by the principle of minimal energetic frustration.  相似文献   

7.
E K Jaffe  G D Markham 《Biochemistry》1987,26(14):4258-4264
13C NMR has been used to observe the equilibrium complex of [4-13C]-5-aminolevulinate ([4-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [4-13C]ALA (chemical shift = 205.9 ppm) forms [3,5-13C]PBG (chemical shifts = 121.0 and 123.0 ppm). PBG prepared from a mixture of [4-13C]ALA and [15N]ALA was used to assign the 121.0 and 123.0 ppm resonances to C5 and C3, respectively. For the enzyme-bound equilibrium complex formed from holoenzyme and [4-13C]ALA, two peaks of equal area with chemical shifts of 121.5 and 127.2 ppm are observed (line widths approximately 50 Hz), indicating that the predominant species is probably a distorted form of PBG. When excess free PBG is present, it is in slow exchange with bound PBG, indicating an exchange rate of less than 10 s-1, which is consistent with the turnover rate of the enzyme. For the complex formed from [4-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation, the predominant species is a Schiff base adduct (chemical shift = 166.5 ppm, line width approximately 50 Hz). Free ALA is in slow exchange with the Schiff base. Activation of the MMTS-modified enzyme-Schiff base complex with 113Cd and 2-mercaptoethanol results in the loss of the Schiff base signal and the appearance of bound PBG with the same chemical shifts as for the bound equilibrium complex with Zn(II) enzyme. Neither splitting nor broadening from 113Cd-13C coupling was observed.  相似文献   

8.
We have obtained Raman spectra of a series of all-trans retinal protonated Schiff-base isotopic derivatives. 13C-substitutions were made at the 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 positions while deuteration was performed at position 15. Based on the isotopic shifts, the observed C--C stretching vibrations in the 1,100-1,400 cm-1 fingerprint region are assigned. Normal mode calculations using a modified Urey-Bradley force field have been refined to reproduce the observed frequencies and isotopic shifts. Comparison with fingerprint assignments of all-trans retinal and its unprotonated Schiff base shows that the major effect of Schiff-base formation is a shift of the C14--C15 stretch from 1,111 cm-1 in the aldehyde to approximately 1,163 cm-1 in the Shiff base. This shift is attributed to the increased C14--C15 bond order that results from the reduced electronegativity of the Schiff-base nitrogen compared with the aldehyde oxygen. Protonation of the Schiff base increases pi-electron delocalization, causing a 6 to 16 cm-1 frequency increase of the normal modes involving the C8--C9, C10--C11, C12--C13, and C14--C15 stretches. Comparison of the protonated Schiff base Raman spectrum with that of light-adapted bacteriorhodopsin (BR568) shows that incorporation of the all-trans protonated Schiff base into bacterio-opsin produces an additional approximately 10 cm-1 increase of each C--C stretching frequency as a result of protein-induced pi-electron delocalization. Importantly, the frequency ordering and spacing of the C--C stretches in BR568 is the same as that found in the protonated Schiff base.  相似文献   

9.
The structure and the photocycle of bacteriorhodopsin (bR) containing 13-cis,15-syn retinal, so-called bR548, has been studied by means of molecular dynamics simulations performed on the complete protein. The simulated structure of bR548 was obtained through isomerization of in situ retinal around both its C13-C14 and its C15-N bond starting from the simulated structure of bR568 described previously, containing all-trans,15-anti retinal. After a 50-ps equilibration, the resulting structure of bR548 was examined by replacing retinal by analogues with modified beta-ionone rings and comparing with respective observations. The photocycle of bR548 was simulated by inducing a rapid 13-cis,15-anti-->all-trans,15-syn isomerization through a 1-ps application of a potential that destabilizes the 13-cis isomer. The simulation resulted in structures consistent with the J, K, and L intermediates observed in the photocycle of bR548. The results offer an explanation of why an unprotonated retinal Schiff base intermediate, i.e., an M state, is not formed in the bR548 photocycle. The Schiff base nitrogen after photoisomerization of bR548 points to the intracellular rather than to the extracellular site. The simulations suggest also that leakage from the bR548 to the bR568 cycle arises due to an initial 13-cis,15-anti-->all-trans,15-anti photoisomerization.  相似文献   

10.
High-resolution, solid-state 15N NMR has been used to study the chemical shift anisotropies of the Schiff bases in bacteriorhodopsin (bR) and in an extensive series of model compounds. Using slow-spinning techniques, we are able to obtain sufficient rotational sideband intensity to determine the full 15N chemical shift anisotropy for the Schiff base nitrogen in bR548 and bR568. Comparisons are made between all-trans-bR568 and N-all-trans-retinylidene butylimine salts with halide, phenolate, and carboxylate counterions. It is argued that for the model compounds the variation in 15N chemical shift reflects the variation in (hydrogen) bond strength with the various counterions. The results suggest that carboxylates and tyrosinates may form hydrogen bonds of comparable strength in a hydrophobic environment. Thus, the hydrogen bonding strength of a counterion depends on factors that are not completely reflected in the solution pKa of its conjugate acid. For the model compounds, the two most downfield principal values of the 15N chemical shift tensor, sigma 22 and sigma 33, vary dramatically with different counterions, whereas sigma 11 remains essentially unaffected. In addition, there exists a linear correlation between sigma 22 and sigma 33, which suggests that a single mechanism is responsible for the variation in chemical shifts present in all three classes of model compounds. The data for bR568 follow this trend, but the isotropic shift is 11 ppm further upfield than any of the model compounds. This extreme value suggests an unusually weak hydrogen bond in the protein.  相似文献   

11.
The structure of the retinal chromophore about the C = N and C14-C15 bonds in bacteriorhodopsin's M412 intermediate has been determined by analyzing resonance Raman spectra of 2H and 13C isotopic derivatives. Normal mode calculations on 13-cis-retinal Schiff bases demonstrate that the C15-D rock and N-CLys stretch are strongly coupled for C = N-syn chromophores and weakly coupled for C = N-anti chromophores. When the Schiff base geometry is anti, the C15-D rock appears as a localized resonance Raman active mode at approximately 980 cm-1, which is moderately sensitive to 13C substitution at positions 14 and 15 (approximately 7 cm-1) and insensitive to 13C substitution at the epsilon position of lysine. When the Schiff base geometry is syn, in-phase and out-of-phase combinations of the C15-D rock and N-CLys stretch are predicted at approximately 1060 and approximately 910 cm-1, respectively. The in-phase mode is more sensitive to 13C substitution at positions 14 and 15 (approximately 15 cm-1) and at the epsilon position of lysine (approximately 4 cm-1). Calculations and comparison with experimental data on dark-adapted bacteriorhodopsin indicate that the in-phase mode at approximately 1060 cm-1 carries the majority of the resonance Raman intensity. M412 exhibits a C15-D rock at 968 cm-1 that shifts 8 cm-1 when 13C is added at positions 14 and 15 and is insensitive to 13C substitution at the epsilon-position of lysine. This demonstrates that M412 contains a C = N-anti Schiff base.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Maximum of the M intermediate difference spectrum in the wild-type Halobacterium salinarium purple membrane is localized at 405-406 nm under conditions favoring accumulation of the M(N) intermediate (6 M guanidine chloride, pH 9.6), whereas immediately after laser flash the maximum is localized at 412 nm. The maximum is also localized at 412 nm 0.1 msec after the flash in the absence of guanidine chloride at pH 11.3. Within several milliseconds the maximum is shifted to short-wavelength region by 5-6 nm. This shift is similar to that in the D96N mutant which accompanies the M(N) (M(open)) intermediate formation. The main two differences are: 1) the rate of the shift is slower in the wild-type bacteriorhodopsin, and is similar to the rate of the M to N intermediate transition (t1/2 approximately 2 msec); 2) the shift in the wild-type bacteriorhodopsin is observed at alkaline pH values which are higher than pK of the Schiff base (approximately 10.8 at 1 M NaCl) in the N intermediate with the deprotonated Asp-96. Thus, the M(N) (M(open)) intermediate with open water-permeable inward proton channel is observed only at high pH, when the Schiff base and Asp-96 are deprotonated. The data confirmed our earlier conclusion that the M intermediate observed at lower pH has the closed inward proton channel.  相似文献   

13.
Pyridoxal 5'-phosphate labeled to the extent of 90% with 13C in the 4' (aldehyde) and 5' (methylene) positions has been synthesized. 13C NMR spectra of this material and of natural abundance pyridoxal 5'-phosphate are reported, as well as 13C NMR spectra of the Schiff base formed by reaction of pyridoxal 5'-phosphate with n-butylamine, the secondary amine formed by reduction of this Schiff base, the thiazolidine formed by reaction of pyridoxal 5'-phosphate with cysteine, the hexahydropyrimidine formed by reaction of pyridoxal 5'-phosphate with 1,3-diaminobutane, and pyridoxamine 5'-phosphate. The range of chemical shifts for carbon 4' in these compounds is more than 100 ppm, and thus this chemical shift is expected to be a sensitive indicator of structure in enzyme-bound pyridoxal 5'-phosphate. The chemical shift of carbon 5', on the other hand, is insensitive to these structure changes. 13C NMR spectra have been obtained at pH 7.8 and 9.4 for D-serine dehydratase (Mr = 46,000) containing natural abundance pyridoxal 5'-phosphate and containing 13C-enriched pyridoxal 5'-phosphate. The enriched material contains two new resonances not present in the natural abundance material, one at 167.7 ppm with a linewidth of approximately 24 Hz, attributed to carbon 4' of the Schiff base in the bound coenzyme, and one at 62.7 Hz with a linewidth of approximately 48 Hz attributed to carbon 5' of the bound Schiff base. A large number of resonances due to individual amino acids are assigned. The NMR spectrum changes only slightly when the pH is raised to 9.4. The widths of the two enriched coenzyme resonances indicate that the coenzyme is rather rigidly bound to the enzyme but probably has limited motional freedom relative to the protein. 13C NMR spectra have been obtained for L-glutamate decarboxylase containing natural abundance pyridoxal 5'-phosphate and 13C-enriched pyridoxal 5'-phosphate. Under conditions where the two enriched 13C resonances are clearly visible in D-serine dehydratase, no resonances are visible in enriched L-glutamate decarboxylase, presumably because the coenzyme is rigidly bound to the protein and the 300,000 molecular weight of this enzyme produces very short relaxation times for the bound coenzyme and thus very broad lines.  相似文献   

14.
H. Takei  Y. Gat  M. Sheves    A. Lewis 《Biophysical journal》1992,63(6):1643-1653
We have applied low temperature difference FTIR spectroscopy to investigate intermediates produced from the M intermediate upon blue light excitation (<480 nm). In agreement with an earlier report by Balashov and Litvin (1981), who studied these intermediates with low temperature visible absorption spectrophotometry, we have observed at least three stages in this backphotoreaction. The initial photoproduct is stable at 100 K, and two products of subsequent thermal reactions are observed upon raising the temperature to 130 and 160 K, respectively.

The alterations in the C=N stretching mode of the Schiff base have been identified by isotopically labeling the retinal chromophore, and changes in C=O stretching modes of amino acid residues with acidic side chains have been investigated. Analysis of the C=N stretching mode shows that the Schiff base remains unprotonated after the photochemical reaction at 100 K. Moreover, there are two types of Schiff bases, presumably associated with different bR species, that become thermally reprotonated at 130 and 160 K, respectively. Bands associated with the C=O stretching modes suggest that Asp 85 rather than Asp 96 reprotonates the Schiff base during the M to bR backphotoreaction. This conclusion is consistent with earlier observations that the polarity of electrical signals during this photochemical back reaction is reversed as compared to the thermal regeneration of bR from M.

  相似文献   

15.
Novel 1H nuclear magnetic resonance (NMR) resonances, arising from exchangeable protons and centered at approximately 11.2 and 10.1 parts per million (ppm), have been observed in the low-field spectrum (10-15 ppm) of the chicken erythrocyte core particle [145 +/- 2 base pairs (bp)]. These peaks are located upfield from the normal adenine-thymine (A-T) and guanine-cytosine (G-C) imino peaks characteristic of B-form deoxyribonucleic acid (DNA) and are not observed in free DNA under identical conditions. The appearance of the new peaks is ionic strength dependent and temperature-reversible below 75 degrees C. At 25 degrees C, the upfield peak area represents 5% of the DNA base pairs (7 bp), while between 45 and 55 degrees C, the area increases to 18%, affecting approximately 25 bp. Area increases in the upfield resonances result in a complementary decrease in the A-T and G-C imino peaks found between 12 and 14 ppm. We believe these novel proton signals represent a histone-induced DNA conformational change which involves localized alteration of base pairing in the core particle.  相似文献   

16.
Apoenzyme samples of aspartate aminotransferase (AspAT) purified from the cytosolic fraction of pig heart were reconstituted with [4'-13C]pyridoxal 5'-phosphate (pyridoxal-P). The 13C NMR spectra of AspAT samples thus generated established the chemical shift of 165.3 ppm for C4' of the coenzyme bound as an internal aldimine with lysine 258 of the enzyme at pH 5. In the absence of ligands the chemical shift of C4' was shown to be pH dependent, shifting 5 ppm upfield to a constant value of 160.2 ppm above pH 8, the resulting pKa of 6.3 in agreement with spectrophotometric titrations. The addition of the competitive inhibitor succinate to the internal aldimine raises the pKa of the imine to 7.8, consistent with the theory of charge neutralization in the active site. In the presence of saturating concentrations of 2-methylaspartic acid the C4' signal of the coenzyme was shown to be invariant with pH and located at 162.7 ppm, midway between the observed chemical shifts of the protonated and unprotonated forms of the internal aldimine. The intermediate chemical shift of the external aldimine complex is thought to reflect the observation of an equilibrium mixture composed of roughly equal populations of the protonated ketoenamine and a dipolar anion species, corresponding to their respective spectral bands at 430 and 360-370 nm. Conversion to the pyridoxamine form was accomplished via reaction of the internal aldimine with L-cysteinesulfinate or by reduction with sodium borohydride, and the resulting C4' chemical shifts were identified by difference spectroscopy. Finally, the line widths of the C4' resonance under the various conditions were measured and qualitatively compared. The results are discussed in terms of the current mechanism and molecular models of the active site of AspAT.  相似文献   

17.
Vinarov DA  Miziorko HM 《Biochemistry》2000,39(12):3360-3368
Binding of [1,2-(13)C]acetyl-CoA to wild-type 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase is characterized by large upfield shifts for C1 (184 ppm, Deltadelta = 20 ppm) and C2 (26 ppm, Deltadelta = 7 ppm) resonances that are attributable to formation of the covalent [1,2 -(13)C]acetyl-S-enzyme reaction intermediate. NMR spectra of [1, 2-(13)C]acetyl-S-enzyme prepared in H(2)(16)O versus H(2)(18)O indicate a 0.055 ppm upfield shift of the C1 resonance in the presence of the heavier isotope. The magnitude of this (18)O-induced (13)C shift suggests that the 184 ppm resonance is attributable to a reaction intermediate in which C1 exhibits substantial carbonyl character. No significant shift of the C2 resonance occurs. These observations suggest that, in the absence of second substrate (acetoacetyl-CoA), enzymatic addition of H(2)(18)O to the C1 carbonyl of acetyl-S-enzyme occurs to transiently produce a tetrahedral species. This tetrahedral adduct exchanges oxygen upon backward collapse to re-form the sp(2)-hybridized thioester carbonyl. In contrast with HMG-CoA synthase, C378G Zoogloea ramigera beta-ketothiolase, which also forms a (13)C NMR-observable covalent acetyl-enzyme species, exhibits no (18)O-induced shift. Formation of the [(13)C]acetyl-S-enzyme reaction intermediate of HMG-CoA synthase in D(2)O versus H(2)O is characterized by a time-dependent isotope-induced upfield shift of the C1 resonance (maximal shift = 0. 185 ppm) in the presence of the heavier isotope. A more modest upfield shift (0.080 ppm) is observed for C378G Z. ramigera beta-ketothiolase in similar experiments. The slow kinetics for the development of the deuterium-induced (13)C shift in the HMG-CoA synthase experiments suggest a specific interaction (hydrogen bond) with a slowly exchangeable proton (deuteron) of a side chain/backbone of an amino acid residue at the active site.  相似文献   

18.
L M Abell  M H O'Leary 《Biochemistry》1988,27(9):3325-3330
The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product gamma-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 degrees C, the isotope effect is k14/k15 = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is k14/k15 = 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction [O'Leary, M.H., Yamada, H., & Yapp, C.J. (1981) Biochemistry 20, 1476] shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.  相似文献   

19.
The photosynthetic reaction center of Rhodobacter sphaeroides 2.4.1 contains one carotenoid that protects the protein complex against photodestruction. The structure around the central (15,15') double bond of the bound spheroidene carotenoid was investigated with low-temperature magic angle spinning 13C NMR, which allows an in situ characterization of the configuration of the central double bond in the carotenoid. Carotenoidless reaction centers of R. sphaeroides R26 were reconstituted with spheroidene specifically labeled at the C-14' or C-15' position, and the signals from the labels were separated from the natural abundance background using 13C MAS NMR difference spectroscopy. The resonances shift 5.2 and 3.8 ppm upfield upon incorporation in the protein complex, similar to the 5.6 and 4.4 ppm upfield shift occurring in the model compound beta-carotene upon trans to 15,15'-cis isomerization. Hence the MAS NMR favors a cis configuration, as opposed to the trans configuration deduced from X-ray data.  相似文献   

20.
Lumazine protein is believed to serve as an optical transponder in bioluminescence emission by certain marine bacteria. Sequence arguments suggest that the protein comprises two similarly folded riboflavin synthase-type domains, but earlier work also suggested that only one domain binds 6,7-dimethyl-8-ribityllumazine (DMRL). We show that the replacement of serine-48 or threonine-50 in the N-terminal domain of lumazine protein of Photobacterium leiognathi modulates the absorbance and fluorescence properties of bound DMRL or riboflavin. Moreover, the replacement of these amino acids is accompanied by reduced ligand affinity. Replacement of serine-48 by tryptophan shifts the (13)C NMR signal of the 6-methyl group in bound DMRL upfield by 2.9 ppm as compared to the wild-type protein complex. Replacement of threonine-50 causes a downfield shift of approximately 20 ppm for the (15)N NMR signal of N-5, as well as an upfield shift of 3 ppm for the (13)C NMR signal of C-7 in bound DMRL, respectively. The replacement of the topologically equivalent serine-144 and proline-146 in the C-terminal domain had no significant impact on optical properties, chemical shifts and apparent binding constants of bound DMRL. These data show that the N-terminal domain is the unique site for ligand binding in lumazine protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号